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Abstract. Landslide spatial, temporal, and size probabilities susceptible to landslides, and heavy rainfall during typhoons
were used to perform a landslide hazard assessment in thizr storms have indeed caused large landslides of loosened
study. Eleven intrinsic geomorphological, and two extrinsic soil (Wu and Chen, 2009). Furthermore, climate change en-
rainfall factors were evaluated as landslide susceptibility redarges bare land areas, thereby increasing the frequency of
lated factors as they related to the success rate curves, lantindslides in Taiwan (Chen and Huang, 2010). Because of
slide ratio plots, frequency distributions of landslide and non-the uncertainties associated with natural disasters, risk man-
landslide groups, as well as probability—probability plots. agement is necessary to minimize losses (Chen et al., 2010).
Data on landslides caused by Typhoon Aere in the Shihmerin view of the growing emphasis on risk management in dis-
watershed were selected to train the susceptibility modelaster prevention work, quantitative assessment of landslide
The landslide area probability, based on the power law re+isk is becoming increasingly important. In particular, the
lationship between the landslide area and a noncumulativéandslide hazard analysis is the most important step in risk
number, was analyzed using the Pearson type 5 probabilassessment. Therefore, a landslide hazard model that can be
ity density function. The exceedance probabilities of rainfall used as a basis for landslide risk analysis was established in
with various recurrence intervals, including 2, 5, 10, 20, 50, this study.
100 and 200 yr, were used to determine the temporal proba- The accepted definition of landslide hazard was proposed
bilities of the events. The study was conducted in the Shih-by Varnes and IAEG (1984). Guzzetti et al. (1999) incorpo-
men watershed, which has an area of 768 lamd is one of  rated “magnitude of event” into this definition to redefine
the main water sources for northern Taiwan. The validationlandslide hazard. Further, Guzzetti et al. (2005) established
result of Typhoon Krosa demonstrated that this landslide haza landslide hazard probability model. Thus, landslide spatial
ard model could be used to predict the landslide probabilitiesprobability, landslide temporal probability, and landslide size
The results suggested that integration of spatial, area, angrobability were combined to construct the landslide hazard
exceedance probabilities to estimate the annual probabilityprobability model in this study.
of each slope unit is feasible. The advantage of this annual Landslide spatial probability is also known as landslide
landslide probability model lies in its ability to estimate the susceptibility, which can be estimated using qualitative or
annual landslide risk, instead of a scenario-based risk. guantitative methods. Quantitative statistical analysis meth-
ods included bivariate analyses (Chung and Fabbri, 1993;
Zézere et al., 2007), multivariate regression (Carrara, 1983;
Baeza and Corominas, 2001), logistic regression (Lee et al.,
1 Introduction 2008; Rossi et al., 2010; Nefeslioglu and Gokceoglu, 2011),
and discriminant analysis (Guzzetti et al., 2006; Carrara et
Taiwan is often affected by landslides because of its steep tog) 2008).
pography, fragile geology, seismic activity, and rapid devel- The Poisson probability model and binomial probabil-

quake M = 7.3 in 1999), the affected areas became more
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probability model has been used to estimate the temporal s i
recurrence probability in studies, including flooding proba- ' '
bility research (Onoz and Bayazit, 2001) and landslide prob-
ability research (Guzzetti et al., 2005; Ghosh et al., 2012b).
However, because the data on natural hazards rely on limitec
time periods, it was necessary to develop flexible methods to
avoid inconsistencies that exist between the assumptions o
the Poisson probability model (Crovelli, 2000) and the real

situation. For example, rainfall factors can be considered im-
portant triggering factors for landslide and debris flow haz-

ards, because rainfall intensity in different return periods lead |
to different scale of landslide and debris flow hazards. Using
the exceedance probability of various rainfall return periods
to estimate the probability of landslide and debris flow events
can also achieve the goal of estimating temporal probability
to a certain degree (Briindl et al., 2009; Chen et al., 2010).

On the probability of landslide size, Bak et al. (1988)
argued that self-organized criticality (SOC) occurs in nat-
ural landslides. Malamud et al. (2004) verified the power
law relationship between landslide area and noncumulative
frequency. They also fit the probability density function of
a landslide area with common functions, and found good
agreement with a truncated inverse gamma distribution. In _
addition, Stark and Hovius (2001) achieved a good agree-| g, rivertil:
ment after conducting a double Pareto distribution to fit a
probability density function of the landslide area.

The purpose of this study was to establish a landslide haz-
ard model that can be used to estimate the annual landslid¢
probability. The landslide spatial, temporal, and size proba-
bilities were analyzed based on the landslide inventory fromgig 1. The river system, roads, and topography of the Shihmen
1996 to 2009, 13 variables of landslide susceptibility factors,watershed. The landslides were caused by Typhoon Aere in 2004.
and rainfall data of those events in the Shihmen watershed.

This watershed covers an area of 76Fkrand is one of
the main water sources for northern Taiwan. The Shihmerp  Data acquisition and processing
watershed was divided into 9181 slope units, and the the-
matic variables of individual slope units were then derived,2.1 Environmental setting of the Shihmen watershed
screened, and entered in the logistic regression analysis. Data
of landslides caused by Typhoon Aere were selected to traifThe Shihmen watershed straddles Taoyuan, Hsinchu, and Yi-
the susceptibility model. The landslide area probability waslan counties, and the reservoir is mainly fed by the Dahan
analyzed using the Pearson type 5 probability density funcRiver. This watershed has an area of approximately 769 km
tion, based on all the new landslides that occurred from 199@nd the Shihmen Reservoir is the third largest reservoir in
to 2009. The exceedance probabilities of rainfall with vari- Taiwan and one of the main water sources for northern Tai-
ous recurrence intervals, including 2, 5, 10, 20, 50, 100 andvan. The geographical extent and river system of the wa-
200yr, were used to determine the temporal probabilities otershed are illustrated in Fig. 1. The area is mountainous,
the events. The spatial, area, and exceedance probabilitied is higher in the south than in the north. The elevation
were integrated to estimate the annual landslide probabilityranges from 236 to 3527 m, with an average elevation of
of each slope unit in the Shihmen watershed. The feasibilityapproximately 1409 m. The average slope is approximately
of the integration of this annual landslide probability model 34°, and the slope decreases progressively from the south-
was verified by comparing the results with the results of theeast to the northwest. With regard to the regional geology,
Poisson landslide probability model for each slope unit. Theoutcrops in the area primarily consist of the Oligocene Bal-
results indicated that the landslide probability model estab-ing stratum, which occupies approximately 35.07 % of the
lished for this study can be used for landslide risk analysistotal area, Eocene Siling sandstone, which occupies approx-
The annual risk, rather than a scenario-based risk, can be egnately 16.20 % of the area, and the Miocene Wenshui stra-
timated using this model. tum, which occupies 12.43 % of the area. As far as land use is
concerned, most land within the area consists of undeveloped
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& 5 2.3 The available data of landslide susceptibility factors
100 4 =
|| Rainfall ) ] ] ]
Cumulative rainfal ; - 1600 The lithology, slope, aspect, elevation, normalized differen-

tial vegetation index (NDVI), terrain roughness, slope rough-
ness, total slope height, distance from road, distance from
fault, and distance from river were preliminarily selected as
intrinsic causative factors in this study. Lithology was chiefly
classified as argillite, quartzitic sandstone, hard sandstone
and shale, sandstone and shale, terrace deposits, and allu-
vium on the basis of the 150 000 geologic maps from the
Central Geological Survey.

Slope, aspect, and elevation data were acquired from a dig-
ital elevation model (DEM), using the ArcGIS program. The
| 5mx 5m DEM generated from aerial photographs was used
. R in this analysis. Terrain roughness and slope roughness (Wil-
12 24 12 24 12 4 12 4 12 son and Gallant, 2000) are usually determined using a type
of neighborhood analysis, such as an analysis within a 5-cells
moving window (Cavalli et al., 2008), to establish the rough-
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‘E 1800 - ness value for each grid. However, in this study, the terrain
£ variability of the entire slope unit, rather than the variability
= 1600 . of local parts in the slope unit, was considered. The stan-
E 1400 - dard deviation of the elevation calculated by the elevations
= of the entire grid within each slope unit was used to indicate
= 1200 \ the terrain roughness. The slope roughness was simultane-
S 4004 ously selected in this study according to the effectiveness in
. other researches (Lee et al., 2008; Chen et al., 2013). Simi-
£ 0 larly, the standard deviation of the slope in each slope unit
2 600 was calculated to express the slope variability, which was
= then used to indicate the slope roughness. In addition, the
= 108 height differential from the crest to the toe of the slope in
200 - each slope unit was used to indicate the total slope height.
= Yt\ The total slope height may be physically related to the mag-
g h 2h 3h 6h 125 24h 48h 755 96h nitude of the stress and the pore-water pressure in the lower
Rainfall duration (hr) slope, and for long slopes the surface and subsurface water

is more likely to be concentrated in the lower slope, which
Fig. 2. The temporal pattern of rainfall recorded at the New Baishi C2USeS instability (Lee et al., 2008).
station during Typhoon Aere. NDVI values were determined by taking advantage of the
absorption of red light and reflection of near-infrared light
emitted by green plants. The NDVI values, which ranged
forest, which occupies 92.44 % of the total area, followed byfrom —1 to 1, were calculated from SPOT images taken be-
farmland, which occupies 2.71 % of the overall area. fore Typhoon Aere. The horizontal distance of each slope
unit from roads, faults, or perennial rivers were used to reflect
2.2 The landslide inventory in the Shihmen watershed  the effect of roads, faults, and rivers on landslides. The loca-

L ) tions of all the faults (Fig. 1) were extracted from 30 000
The landslide inventory for the Shihmen watershed coverecbeomgic maps published by the Central Geological Survey,

the 1996-2009 temporal interval (Table 1). New and expan,nq the |ocations of all the perennial rivers were extracted

sive landslides caused by Typhoon Aere in 2004 occupiedyom 1. 5000 orthophoto base maps of Taiwan published by
579ha, or 77 % of the total landslide area. Therefore, this o Aerial Survey Office, Forestry Bureau.

event was selected as the research subject. Numerous land-1he 96 h of rainfall data for Typhoon Aere collected from

slides were found in the watershed, especially in the up-12.00 LT on 22 August to 12:00 on 26 August 2004 were

stream basin of the Baishi River (Fig. 1). used for the analysis. In addition, the temporal rainfall pat-
tern during Typhoon Aere was analyzed (Fig. 2) according
to the data from the New Baishi station (the location is indi-
cated in Fig. 4), which recorded the highest cumulative rain-
fall during the meteorological event. Peak rainfall intensity

www.nat-hazards-earth-syst-sci.net/13/2353/2013/ Nat. Hazards Earth Syst. Sci., 13, 235387, 2013



2356 C.Y.Wu and S. C. Chen: Integrating spatial, temporal, and size probabilities

Table 1. The multi-year landslide inventory of the Shihmen watershed.

Date Landslides Landslide Note Date Landslides Landslide Note

area (ha.) area (ha.)
1996/01/01 96 140.21 Before Typhoon Herb 2005/08/16 2152 807.17 After Typhoon Matsa
1996/11/08 168 154.93  After Typhoon Herb 2005/09/21 2075 796.13  After Typhoon Talim
1999/08/17 331 214.95 Before Chichi Earthquake  2005/11/11 1726 816.61 After Typhoon Longwang
2000/01/29 357 289.61 After Chichi Earthquake 2006/10/20 1033 781.49  After Typhoon Shanshan
2000/10/11 610 295.77 Before Typhoon Xangsane 2007/08/28 2013 656.68 Before Typhoon Krosa
2001/03/15 803 584.72  After Typhoon Xangsane 2007/12/21 2062 700.08 After Typhoon Krosa
2001/08/22 556 428.30 After Typhoon Toraji 2008/08/16 1728 566.56 Before Typhoon Nuri
2001/10/13 691 429.84  After Typhoon Nari 2008/08/24 1708 559.71  After Typhoon Nuri
2004/02/10 682 425.12 Before Typhoon Aere 2008/11/06 2000 704.44  After Typhoon Jangmi
2004/11/02 2188 750.52  After Typhoon Aere 2009/05/08 1889 732.22 Before Typhoon Morakot
2005/03/16 1437 632.63 Before Typhoon Haitang 2009/08/20 1860 779.31 After Typhoon Morakot
2005/07/25 2006 733.34  After Typhoon Haitang 2009/10/21 2521 789.92  After Typhoon Parma

occurred from 18:00 on 24 August to 06:00 on 25 August, landslide spatial probability was obtained after testing and
and the cumulative rainfall reached 1600 mm. The maximumvalidating the model.

cumulative rainfalls of various durations were also analyzed. Over 50 types of landslide thematic variables have been
The maximum 12 h cumulative rainfall was 842 mm, approx- considered or used in related studies (Lin, 2003). Based on
imately 52 % of the total rainfall, and the maximum 24 h cu- the references, the following factors were preliminarily se-

mulative rainfall was 1262 mm, approximately 78 % of the lected as the intrinsic causative factors in this study: lithol-

total rainfall. ogy, slope, aspect, elevation, normalized differential vegeta-
tion index (NDVI), terrain roughness, slope roughness, total

slope height, distance from road, distance from fault, and dis-
tance from river. Various rainfall-related data were used as
extrinsic triggering factors. The landslide thematic variables

Landslide hazard is defined as the probability of occurrence lected fracti iabl . i
within a specified period of time and within a given area were selected as elieclive variables using a Success rate curve

of a landslide event with a certain magnitude (Guzzetti et(S.RC)’ landslide rati_o plot, frequency distrit_)gtion of Iaqd—
al., 2005; Ghosh et al., 2012a). Therefore, the landslide haz§Ilde and non-landslide group, and probablllty—proba}blll'ty
ard probability, @), within a given area can be obtained plot (P_P plot fpr ea_ch variable _based on the quantitative
from the conditional probability of landslide spatial probabil- landslide thematic variable screening procedures of the Cen-

. - . tral Geological Survey (2009).
ity, P(SL), of the temporal probability of a landslide event,
P(NL), and of the landslide size probabilit§(A,). The Because the area under the curve (AUC) can be used to

H| can be calculated based on the independence assumpti ] tgegr)m'tr;]i tgeR ggev(\:/g\r/znuesses dotfoa dr;[c:rjﬂirsgrt]ﬁggagirlli?yFoibtzreh
among the three probabilities using the following equation: model to explain training data, The AUC value can range

H = P(SL) x P(NL) x P(AL). Q) from O to 1, and the closer the value is to 1, the more per-
suasive the result. The AUC value of the SRC was used to

slide susceptibility factors, and rainfall data of landslide assess the ability of the thematic variables to predict land-

events were used for the landslide hazard analysis, Whm@ﬁ:ib?ritee;oig:cnul,ll?:ggrtgfeslrg“g 8:1il'tirmsg:(?hs\?arrupel?nr:gxal
included landslide susceptibility (spatial probability), occur- ) . P X

I . . for each variable, landslide ratio plots demonstrating the re-
rence probability of the landslide event (temporal probabil- . . . : . :
. . . o . . lationship between landslide ratios and the various value in-
ity), and landslide size probability. In this study, rainfall was

chosen as the sole triggering factor because most Iandslidetservals were drawn to determine whether the landslide trends

included in the inventory maps had been caused by typhoon%vﬁre consistent with the physi(_:al .mer.:mings of the variables.
or torrential rains. e goal of these frequency gllst_rlbu_tlon plots was to deFer-
mine whether the frequency distribution of both the landslide
3.1 Landslide spatial probability distribution and non-landslide groups could be differentiated, and hence
whether the variable could be used to distinguish the land-
The watershed was divided into several slope units, and thelide from the non-landslide group. A P—P plot was used to
thematic variables of each individual slope unit were sub-inspect the relationship between a certain variable and a spe-
sequently derived, screened, and entered in the logistic resific distribution.
gression to perform the landslide susceptibility analysis. The

3 Methodology

Landslide inventory maps, thematic variables of land-
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After establishing the landslide susceptibility model and 3.3 Landslide size analysis
calculating the landslide susceptibility index for each slope
unit, the model accuracy was assessed using a classificatidh@k et al. (1988) derived the distribution of landslide area
error matrix, SRC, and the frequency distribution of the land-and landslide noncumulative number, and found that the
slide and non-landslide groups. Subsequently, the slope unit8umber of landslides increases with the landslide area up to
were ranked with high susceptibility, medium susceptibility, the highest value; then it decays following a power law:
and low susceptibility grades on the basis of their susceptibil- 5
ity indices, and thus enabled the drawing of the landslide susNL = C'A_ ", (4)
ceptibility maps. However, the level of susceptibility index ) . . .
(0— 1) could not be directly treated as the landslide spatialVNeréAL is the landslide areay_ is th/e noncumulative num-
probability. The spatial probability in this study was there- ber of that landslide area, adandC” are constants.

fore determined using the relationship between the landslide NUmerous studies have verified the power law relationship
ratio and landslide susceptibility index. The landslide ratio °€tween landside area and noncumulative frequency, includ-

was the ratio of the landslide sample numbers to the numbe{d studies of rainfall-induced landslides (Fuijii, 1969; Hov-
of slope units for each susceptibility index interval (Lee et al., 'US €t al-, 2000; Weng, 2009; Jaiswal et al., 2011; Ghosh et
2008). The ratios represented the landslide spatial probabilgl" 2012b) and earthquake-induced landslides (Guzzetti et
ities for the slope units with different susceptibility indices. al.,, 2002). . ) . .

The slope units that belonged to the same susceptibility in-_ | e Probability density function of the landslide area was
dex interval would have the same landslide spatial probabilittéd with a Pearson type 5 distribution (i.e., inverse gamma

ity. This was achieved by calculating the landslide ratio for distribution). After ranking the landslide area from small to
each susceptibility index interval, then plotting the relation- large, various parameters of this distribution function (esti-

ship between the landslide ratio and the various value interMatéd by fitting) were used to calculate the corresponding

vals, and converting the various susceptibility indices to Spa_cumulauve probability of various landslide areas. Thus, the

tial probabilities. Relationship plots were also used to verify Probability of one specific landslide area could be predicted
whether the actual landslide trends were consistent with thaVNen & landslide occurred in the slope units.
degrees of landslide susceptibility.

3.2 Temporal probability of landslides 4 Results of landslide probabilities

Any of two method categories could be selected to analyzeA"1 Variable selection of the susceptibility model

the landslide temporal probability, based on the number OfSIope units have more geomorphological and geological sig-

years of landslide data. The first category consisted of I"’md'nificance than grid units because of their relatively unbroken

slide data before and after a single landslide event alone. Thﬁeomorphological boundaries. The slope units were conse-
_hourly rainfall data were collected from rain_ gauge Statio_”squently employed as the basic units of analysis in this study.
in the study area during a typhoon or torrennal_raln that trig- 5 uided by the division method used by Xie et al. (2004),
gered landslides. Frequency analysis of the rainfall data Wag o GIS-based hydrologic analysis and modeling tool, Arc

u;ed to derive the exceedancg probability of each r.e'levaqt_wdro (David, 2002), was used to divide the watershed into
rainfall event, and t_hus to obtain the temporal probability of slope units. The smallest slope units had areas larger than
event-based landslides. the average landslide area (Van Den Eeckhaut et al., 2009),

_ The second category consisted of a multi-year landslid€,ich reduced the chance that a single landslide would be
inventory. In this case, the Poisson probability model wasyiided among various slope units, ensuring relatively opti-

used to calculate the recurrence intervals of historical Iand-mal analytical results. Additionally, the DEM (5m) of the

slide events and the temporal probability of landslides base hihmen watershed was used to divide the watershed into
on the assumptions (Crovelli, 2000). The Poisson probabilitySlope units. The original topography could be divided into

model of experiencing landslides during timeis given by g5g 5 watersheds, and the combination of sub-watershed
the following equation: units before and after reversal yielded the slope units. A total
P[N(t) = n] = exp(—At) x (At)"/n), ) of 9181 slope units were obtained, and the average size of a
slope unit was approximately 8.28 ha.
wherex is the mean occurrence probability of landslides, and  The analysis results of the SRC, landslide ratio plot, fre-
its reciprocal. is the mean recurrence interval between land- quency distribution of landslide and non-landslide group, and
slides in years. The probability that one or more landslidesp—p plot were used for the subsequent selection of intrin-
will occur during timer is given by the following equation:  sjc causative variables. Only the results of three variables
PIN( > 11=1— PIN() =0l = 1 — ex0(—t/11). 3 are pre_sented in Fig. 3. Terrain roug_hn_ess was a represgnta-
N@ = 1] [N =0l P=t/1) &) tive variable that could be used to distinguish the landslide
from the non-landslide group. By contrast, average NDVI

www.nat-hazards-earth-syst-sci.net/13/2353/2013/ Nat. Hazards Earth Syst. Sci., 13, 235387, 2013
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Fig. 3. Success rate curves (SRCs), landslide ratio distributions (LRDs), frequency distributions of landslide and non-landslide group (FDs),
and probability-probability plots (P—P plots) of representative variables.

and average elevation were variables that were excluded imalue for the non-landslide group, arfj was the pooled

the first and second step of the screening, respectively. Fuistandard deviation for the two groups. The AUC value and
thermore, in the frequency distribution of the landslide and D; for each variable are demonstrated in Table 2.
non-landslide group, the discriminait; was also used to With regard to the selection standard used in variable se-
judge the variables’ ability to distinguish between the land- lection, the first step was to check whether the AUC value
slide and non-landslide groups. I, = (A; — B;) /S;, A;  was greater than 0.5, and if it was less than 0.5, the factor was
was the mean value for the landslide groﬁp,was the mean considered a random variable in the model, and was assumed
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Table 2. The AUC value and; for each variable.

Variable AUC D; \Variable AUC D;
Maximum slope 0.678 0.736 Average aspect 0.5260.114
Average slope 0.629 0.526 Average NDVI 0.481 0.087

Slope roughness 0.603 0.398 Minimum NDVI 0.651-0.650
Highest elevation  0.527 0.155 Distance from fault 0.52%+0.117
Average elevation 0.506 0.050 Distance fromroad 0.5120.062
Total slope height 0.683 0.779 Distance from river 0.609-0.556
Terrain roughness 0.685 0.789 Lithology 0.523-0.136

to increase the model error (Dahal et al., 2008). Furthermore, The results of this comparison indicated that the maximum
the landslide ratio plot had to be consistent with the phys-1h rainfall (cokriging with Gaussian semivariogram model
ical meaning of each variable. For instance, the greater thend elevation variable), and the maximum 24 h rainfall (ordi-
distance from road, the smaller the landslide ratio was. Thenary kriging with Gaussian semivariogram model) were used
analysis results indicated that the variable eliminated in theas extrinsic triggering factors in the landslide susceptibility
first step was average NDVI. In the second step, the absolutenodel. The purpose of selecting two different sets of rain-
value of the discriminanD; had to exceed 0.1 (; value  fall data (namely maximum 1h rainfall and a longer dura-
greater than 0 indicated that the mean value of the landslidéion rainfall) was to reflect the form of rainfall during this
group was relatively large, and a value less than 0 indicatedyphoon. Furthermore, instead of other longer duration rain-
that the non-landslide group had a larger mean value), or théalls, the maximum 24 h rainfall was selected primarily be-
P—P plot indicated that the values had a normal distributioncause of the higher AUC value. The distributions of the max-
Based on the analysis results, the average elevation and dighum 1 h and maximum 24 h rainfalls are demonstrated in
tance from road were eliminated in the second step. FinallyFig. 4.
maximum slope, average slope, slope roughness, highest el-
evation, total slope height, terrain roughness, average aspe;2 Spatial probability analysis
minimum NDVI, distance from fault, distance from river, and
lithology were selected as intrinsic thematic factors. Based on the results of the screening variables, maximum
The extrinsic triggering variables were selected after cal-SIope, average slope, slope roughness, highest elevation, to-
culating the maximum 1, 2, 3, 6, 12, 24, 48, 72, as well astal slope height, terrain roughness, average aspect subgroup,
96 h rainfall at each rain gauge station during Typhoon Aere minimum NDVI, distance from fault, distance from river and
and estimating the rainfall distribution throughout the entire lithology type were selected as intrinsic causative factors, as
research area by the geostatistical method. Ordinary krigWell as the maximum 1h rainfall and maximum 24 h rain-
ing was first used in the geostatistical analysis. Cokrigingfa” were selected as extrinsic triggering factors. The coef-
was also used in analyses with rainfall as the primary vari-ficients of variables used in the logistic regression equation
able, and elevation as a secondary variable. In addition, an@re demonstrated in Table 3. The landslide susceptibility map
other cokriging method was used with rainfall as the primaryPased on the logistic regression model using Typhoon Aere’s
variable and elevation, slope, and aspect as secondary varidinfall as triggering factors is presented in Fig. 5. The clas-
ables. Spherical and Gaussian models were chosen as serfification error matrix is shown in Table 4, and the SRC and
variogram models in the analyses using these three method&€duency distribution are presented in Fig. 6. The applicabil-
and therefore yielded six combinations. ity of the model was confirmed by an accuracy rate of 77.8 %
Several indicators of prediction error were inspected tofor the landslide group, and an accuracy rate of 72.8 % for the
compare the various models. A model complying with the non-landslide group, as well as an AUC value of 0.788, and
following conditions was considered optimal: a mean valuethe separation of the two groups in the frequency distribution
close to 0; a mean standardized value close to 0; the smalPlot.
est root mean square; the average standard error closest toAfter establishing a landslide susceptibility model for Ty-
the root mean square; and the root-mean-square standardiz8#00n Aere, and calculating a landslide susceptibility in-
value closest to 1. In addition, the rainfall distribution esti- déx for each slope unit, the relationship between the land-
mated using the geostatistical methods was compared witglide ratio and the landslide susceptibility index was used
the distribution of landslides triggered by Typhoon Aere. tO determine the spatial probability of landslides. As indi-
Then, SRCs of various rainfall distributions were drawn to cated in Fig. 7, the landslide ratio increased with the land-
calculate the AUC values. slide susceptibility index, which was consistent with the ex-
pected results. The landslide ratio was therefore used to de-
termine the spatial probability of landslides in any particular
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Table 3. Coefficients of variables used in the logistic regression equation.

Variable Coefficient  Variable Coefficient  Variable Coefficient
Maximum slope 0.036 Maximum 1 h rainfall 0.035 Average aspect

Average slope 0.004 Maximum 24 h rainfall 0.003 Average aspect subgroup (1) 0.646
Slope roughness 0.019 Intercept —8.053  Average aspect subgroup (2) 1.294
Highest elevation 0.001 Lithology Average aspect subgroup (3) 1.340
Total slope height 0.003 Lithology type (1) 1.128 Average aspect subgdup ( 1.091
Terrain roughness 0.002 Lithology type (2) —0.317 Average aspect subgroup (5) 0.699
Minimum NDVI —2.602 Lithology type (3) —19.364 Average aspect subgroup (6) 0.429
Distance from fault —0.033 Lithology type4) —19.856 Average aspect subgroup (7) 0.316
Distance from river —0.046
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Fig. 4. Maximum 1 h and cumulative 24 h rainfall during Typhoon Fig. 5. Landslide susceptibility map based on logistic regression

Aere.

model using rainfall of Typhoon Aere as triggering factors.

susceptibility interval. To summarize, the relationship equa-4.3 Temporal probability of multi-year landslide

tion was used to convert landslide susceptibility indices to
landslide ratios. The results will express the probability of

inventory

landslides in slope units if identical rainfall conditions oc- The multi-year landslide inventory, as illustrated in Table 1,

curred in future.

Nat. Hazards Earth Syst. Sci., 13, 2353367, 2013

was used to calculate the temporal probability of landslide
occurrence in each slope unit using the Poisson probability
model. The inventory covers the temporal interval of nearly
15yr from 1996 to 2009. After summing the landslide count
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Fig. 6. Success rate curve and frequency distribution of landslide and non-landslide groups for the established model.

Table 4. Classification error matrix for Typhoon Aere.

Prediction results

Accuracy rate (%)
Landslide group  Non-landslide group

Observed data Landslide group 311 89 778
Non-landslide group 109 291 72.8
Overall 753

in each slope unit from 1996 to 2009, the mean recurrencéiigher slope height have a higher probability of landslides
interval (u) of each slope unit was calculated. Based on thewith large area. The first group consisted of slope units with
assumption that landslides will occur with the same rate ovesslope heights of less than 379 m, the second of units with
the next 15yr as over the past 15yr, the probability of land-slope heights of 379-514 m, and the third of units with slope
slides during 1, 2, 5, 10, and 15yr was calculated for eactheights of more than 514 m. The grouping criteria were deter-
slope unit. Figure 8 demonstrates the probability of landslidemined to ensure similar numbers of slope units in each group.
occurrence during the next 1 yr period. The first group had 4016 landslides witl8 aalue of 2.1724;
Under the assumed conditions, the areas with the higheghe second, 3985 landslides withgavalue of 2.2546; and
landslide probability in the Shihmen watershed are those arthe third group had 4007 landslides witl$ aalue of 2.1265.
eas that experienced numerous landslides over the past 15 yrhe higher theg value, the steeper the power law tail will be,
The slope units with the highest landslide probability were thus the lower the ratio of landslides with large areas.
clustered in the southwestern part of the watershed. Additionally, Pearson type 5 and Pearson type 5 (3P) prob-
Furthermore, the landslide probability for the next 1 yr pe- ability density functions were used to convert power laws to
riod was obtained using the Poisson probability model, andcumulative probability of the landslide area. The probabil-
could be validated using the subsequent estimated annudtly of landslides exceeding a certain size threshold was thus
probability. The results of this validation are discussed inderived. The results obtained using the Pearson type 5 and

Sect. 5. Pearson type 5 (3P) probability density functions were ex-
tremely similar for all groups. As a consequence, the Pearson
4.4 Cumulative probability of landslide area type 5 (3P) probability density function was used to demon-

strate the result for all data and the three groups (Fig. 9). The

A landslide inventory for the research area was used to perioUr curves shown in Fig. 9 had a similar probability distribu-
form the landslide size analysis. All new landslides for pre- tion, which implied there was little difference between these

vious years were divided among three groups according tgroups. When a landslide occurs in any slope unit within the
the slope height of each slope unit. The reason why thredesearch area, the probability that the landslide area exceeds

groups were analyzed was to testify whether the units with
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Fig. 8. The landslide probability during the next 1 yr period obtained
Fig. 7. Landslide spatial probability for the established model. The using the Poisson probability model.
landslide susceptibility indices in Fig. 5 were converted to landslide
spatial probability using the relationship as demonstrated in the up-
per right corner.

09 r
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Typhoon Krosa in 2007 were used as extrinsic triggering fac-
tors, in conjunction with the established intrinsic causative 0.1 |
factors, to calculate landslide probability maps. The land-
slide probability in each slope unit was estimated based or
the rainfall conditions that occurred during Typhoon Krosa.
To assess the model’s prediction ability, the resulting land-Fig. 9. Cumulative probability of landslide area exceeding a certain
slide spatial probability map was compared with the actualsize threshold based on Pearson type 5 (3P) distribution.
distribution of new landslides analyzed according to the in-

ventory before and after Typhoon Krosa.

The landslide susceptibility model had an overall predic-the fact that rainfall during Typhoon Aere (the basis of this
tion accuracy rate of 82.3 % for Typhoon Krosa, which was model) was exceptionally heavy. The rainfall was signifi-
an excellent result. However, the accuracy rate for the land€antly lighter during Typhoon Krosa, and therefore increased
slide group was only 62.1%. This could be attributed to the error rate. Furthermore, the AUC value of the success rate

O L L L
1.E-05 L.E-04 1.E-03 LE-02 1.E-01 1.E+00
Landslide area (km?)
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curve was 0.796, which indicated that all landslides occurrec 1
in areas with a relatively high susceptibility. The separation g
of the landslide group from the non-landslide group in the 5 |
frequency distribution plot revealed that the model's parame-
ters possessed the ability to distinguish landslides from non &
landslides. This result indicated that this model also retainec § '
fairly good accuracy under relatively light rainfall conditions, 3 ds
such as the rainfall during Typhoon Krosa. é 04
Furthermore, 611 landslides with new areas greater thai > 03 -
100 n? were caused by Typhoon Krosa. The cumulative per- 02
centages of landslide areas are presented in Fig. 10. Atotal ¢ 0.1 -
296 landslides had areas greater than 1080which consti- Bl o e o ey s o owusen
tuted 48.4 % of all landslides and was less than the predicter ~ 1E05 LE-04 LE03  1E02 LE-01 LE+00
58.3 %. The probability that landslides had areas greater thai Landslide area (km)
1000 nt, caused by a relatively low rainfall event such as Ty- Fig. 10. Cumulative percentage of landslide area for the landslides
phoon Krosa, was less than 58.3 % predicted using the probcaused by Typhoon Krosa in 2007.
ability density function. This result indicated that there was
a higher than expected proportion of landslides with areas
less than 1000 fa As a consequence, a hazard model basedg calculate landslide probability maps for the entire area.
on a Pearson type 5 (3P) probability density function would These maps demonstrated the landslide probabilities with 2,
overestimate the probability of landslides with a certain sizes 10, 20, 50, 100 and 200yr recurrence intervals, respec-
under conditions of relatively |Ight rainfall. However, con- tive|y_ However, because the maximum values at each rain
cerning hazard assessment, this situation could be considergfhuge station were used to estimate the spatial distribution of
a conservation result, and the model could still facilitate themaximum 1 and 24 h rainfall, the resulting landslide suscep-
identification of problem areas. tibilities simultaneously reflected the maximum rainfall val-
ues for all stations. These could be regarded as “worst case”
prediction results.

0.7

—Cumulative probability of
Typhoon Krosa
Cumulative probability of Type 5
Pearson (3P)

5 Results of annual landslide probability

5.2 Annual landslide ratio
Rainfall data from 24 rain gauge stations were collected and
used to perform a frequency analysis. Then, landside probThe landslide probabilities derived from rainfall events with
abilities corresponding to rainfall events with various recur- various recurrence intervals represented the landslide proba-
rence intervals, including 2, 5, 10, 20, 50, 100 and 200 yr,bility of each slope unit following such an event. However,
were derived. Exceedance probabilities for particular rainfallit was difficult to derive the occurrence probabilities of the
events were used as occurrence probabilities. The landslidevents. In these circumstances, the analysis of the occurrence
probabilities of each slope unit with various recurrence in-probability of triggering factors could be used as an alterna-
tervals and the corresponding exceedance probabilities wertve method. Therefore, the exceedance probability of rain-
drawn as a frequency curve. The area under the curve wafll events with various recurrence intervals was used as the
integrated as the annual landslide probability for each slopeccurrence probability of the events. Additionally, the land-

unit. slide probabilities of each slope unit with 2, 5, 10, 20, 50, 100
and 200 yr recurrence intervals, as well as the corresponding
5.1 Landslide ratio in rainfall events with various recur- exceedance probabilities were drawn as a frequency curve.
rence intervals The area under the curve was integrated as the annual land-

slide probability for each slope unit, and the annual landslide
The rainfall data of 24 rain gauge stations in the vicinity probability map in the study area was drawn (Fig. 11). The
of the study area collected from 1987 to 2009 was used tdhighest landslide probability (the annual landslide probabil-
analyze rainfall amounts of rainfall events with various du- ity of approximately 40 %) was distributed over the Taigang
rations and various recurrence intervals. Subsequently, thRiver watershed, the south of this watershed, compared to a
maximum 1 h rainfall and maximum 24 h rainfall with var- probability of less than 10 % in most areas.
ious recurrence intervals, including 2, 5, 10, 20, 50, 100 and
200yr, were obtained. Geostatistical methods were sequert.3 Validation of temporal probability
tially used to estimate the maximum 1 h rainfall and max-
imum 24 h rainfall throughout the entire area with differ- The multi-year landslide inventory was used to calculate the
ent recurrence intervals. These results were used in conjundemporal probability of landslide occurrence in each slope
tion with the already-determined intrinsic causative factorsunit using the Poisson probability model. After assuming that
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Fig. 11. Annual landslide probability obtained conjugating the re- Fig. 12. The difference between the annual landslide probability
sults of rainfall events with various recurrence intervals. (Fig. 11) and Poisson landslide probability (Fig. 8).

landslides will occur at the same rate over the next 15yr a5.4 Annual probability of landslides exceeding a certain
over the past 15yr, the probability of landslide occurrence area
for each slope unit during the next 1 yr period were obtained
(Fig. 8). In addition, annual landslide probabilities were ob- The annual probability of landslides exceeding a certain area
tained using the landslide probabilities of each slope unitin any slope unit could be derived with further analysis of
with various recurrence intervals, as well as the correspondthe annual landslide probability and landslide area probabil-
ing exceedance probabilities as demonstrated in Fig. 11. Thy in the Shihmen watershed. For instance, Fig. 13 demon-
difference between these two was calculated using the annugfrates the annual probability of landslides with areas ex-
landslide probability minus the Poisson landslide probability ceeding 3000 fin each slope unit. The resulting landslide
for each slope unit (Fig. 12). probability model can be used as a basis for future land-
Figure 12 demonstrates that the absolute values of thé'lde risk analyses. Furthermore, the annual risk can be es-
probability differentials were nearly less than 0.15, which timated based on the annual landslide probability instead of
indicate a ratio exceeding 91.9%. This result indicated tha@ scenario-based probability. Thus, the annual benefit of a
the estimated annual landslide probabilities were extremelyisk reduction program can be evaluated as the reduced an-
close to the estimated 1 yr landslide probabilities. Addition- nual risk, and the benefit—cost analysis of the program can
ally, the feasibility of the use of exceedance probability as thePe successively conducted. In addition, future research could

basis to determine the temporal probability of event-basecinalyze the sediment delivery ratio of each slope unit to esti-
landslides was verified. mate the volume of sediment transported downstream during

landslide events.
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1217150 121°300° An overall accuracy rate of 75.3% and an AUC value of
0.788 confirmed the applicability of the landslide susceptibil-
ity model. The AUC value was far greater than the AUC val-
ues of the various landslide thematic variables, which high-
lighted that the ability of this landslide susceptibility model
to predict landslides was more efficient than a model based
on only one variable. The validation result of Typhoon Krosa
demonstrated that this landslide susceptibility model could
be used to predict the spatial probability of landslides caused
by rainfall events with various recurrence intervals, including
2,5, 10, 20, 50, 100 and 200 yr. The landslide area probabil-
ity was analyzed using the Pearson type 5 probability density
function based on all new landslides from 1996 to 2009. The
results suggested that when a landslide occurs in any slope
unit within the Shihmen watershed, the probability that the
landslide area will exceed 10 00F1is approximately 6.8 %.
The difference between the annual landslide probability
and the Poisson landslide probability for each slope unit
was compared to verify the feasibility of the use of ex-
ceedance probability to determine the temporal probability of

'
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Annual landslide probability

0.00 - 0.02 event-based landslides. The newly established annual land-
0.02-0.04 slide probability model could be used for future landslide
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risk analysis. This method avoids inconsistencies that exist

8'82:822 between the assumptions of the Poisson probability model

N B 0.10 - 0.20 and the real situation. Especially when the landslide inven-

] 0.20 - 0.30 tory relies on a limited time period, the assumption that land-

0 2 4 8 0.30-0.40 slides will occur with the same rate over the next few years

I ey — ilometers

as over the past can result in a future landslide probability
of 0 in a slope unit if it did not have landslides in the past.
Fig. 13. Annual landslide probability for landslides with area ex- The advantages of this annual landslide probability model
ceeding 3000 rhin each slope unit. are the ability to estimate the annual landslide risk instead
of a scenario-based risk, and the need of landslide data from
few events instead of a long-term inventory. Furthermore, the
6 Conclusions annual benefit of a risk reduction program can be evaluated
as the reduced annual risk, and the benefit—cost analysis of
Climate change enlarges bare land areas and therefore al¢gloe program can be successfully conducted in Taiwan. The
the number of landslides in Taiwan. In view of a grow- resulting model is feasible to estimate the annual probability
ing emphasis on risk management, the quantitative assessf each slope unit with a landslide area exceeding a certain
ment of landslide risk is becoming increasingly important. threshold. We suggest it may be further developed so that
Scenario-based risks can be estimated using scenario-bas#te location where a landslide will most likely occur in each
landslide probability models, but few annual landslide proba-slope unit could be included.
bility models existed for Taiwan. Therefore, a landslide haz-
ard model that can be used to estimate the annual landslide

probablllty, and perform an annual |ands|lde rlsk analys|SACkn0W|edgement5The authors would like to thank the National

was established in this study. Science Council, Taiwan, for financial.ly supporting this research
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analyzed based on the landslide inventory caused by ty-
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probabilities were integrated to estimate the annual probabilreviewed by: two anonymous referees
ity of each slope unit with a landslide area exceeding a cer-

tain threshold in the Shihmen watershed. The results demon-

strated that the south of this watershed is especially prone

to landslides and should therefore be the primary target of

future soil conservation efforts.
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