
Nat. Hazards Earth Syst. Sci., 13, 2353–2367, 2013
www.nat-hazards-earth-syst-sci.net/13/2353/2013/
doi:10.5194/nhess-13-2353-2013
© Author(s) 2013. CC Attribution 3.0 License.

Natural Hazards 
and Earth System 

Sciences
O

pen A
ccess

Integrating spatial, temporal, and size probabilities for the annual
landslide hazard maps in the Shihmen watershed, Taiwan

C. Y. Wu and S. C. Chen

Department of Soil and Water Conservation, National Chung-Hsing University, Taichung 40227, Taiwan

Correspondence to:S. C. Chen (scchen@nchu.edu.tw)

Received: 23 February 2013 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 19 March 2013
Revised: 13 August 2013 – Accepted: 13 August 2013 – Published: 25 September 2013

Abstract. Landslide spatial, temporal, and size probabilities
were used to perform a landslide hazard assessment in this
study. Eleven intrinsic geomorphological, and two extrinsic
rainfall factors were evaluated as landslide susceptibility re-
lated factors as they related to the success rate curves, land-
slide ratio plots, frequency distributions of landslide and non-
landslide groups, as well as probability–probability plots.
Data on landslides caused by Typhoon Aere in the Shihmen
watershed were selected to train the susceptibility model.
The landslide area probability, based on the power law re-
lationship between the landslide area and a noncumulative
number, was analyzed using the Pearson type 5 probabil-
ity density function. The exceedance probabilities of rainfall
with various recurrence intervals, including 2, 5, 10, 20, 50,
100 and 200 yr, were used to determine the temporal proba-
bilities of the events. The study was conducted in the Shih-
men watershed, which has an area of 760 km2 and is one of
the main water sources for northern Taiwan. The validation
result of Typhoon Krosa demonstrated that this landslide haz-
ard model could be used to predict the landslide probabilities.
The results suggested that integration of spatial, area, and
exceedance probabilities to estimate the annual probability
of each slope unit is feasible. The advantage of this annual
landslide probability model lies in its ability to estimate the
annual landslide risk, instead of a scenario-based risk.

1 Introduction

Taiwan is often affected by landslides because of its steep to-
pography, fragile geology, seismic activity, and rapid devel-
opment in the mountainous regions. After the Chichi earth-
quake (ML = 7.3 in 1999), the affected areas became more

susceptible to landslides, and heavy rainfall during typhoons
or storms have indeed caused large landslides of loosened
soil (Wu and Chen, 2009). Furthermore, climate change en-
larges bare land areas, thereby increasing the frequency of
landslides in Taiwan (Chen and Huang, 2010). Because of
the uncertainties associated with natural disasters, risk man-
agement is necessary to minimize losses (Chen et al., 2010).
In view of the growing emphasis on risk management in dis-
aster prevention work, quantitative assessment of landslide
risk is becoming increasingly important. In particular, the
landslide hazard analysis is the most important step in risk
assessment. Therefore, a landslide hazard model that can be
used as a basis for landslide risk analysis was established in
this study.

The accepted definition of landslide hazard was proposed
by Varnes and IAEG (1984). Guzzetti et al. (1999) incorpo-
rated “magnitude of event” into this definition to redefine
landslide hazard. Further, Guzzetti et al. (2005) established
a landslide hazard probability model. Thus, landslide spatial
probability, landslide temporal probability, and landslide size
probability were combined to construct the landslide hazard
probability model in this study.

Landslide spatial probability is also known as landslide
susceptibility, which can be estimated using qualitative or
quantitative methods. Quantitative statistical analysis meth-
ods included bivariate analyses (Chung and Fabbri, 1993;
Zêzere et al., 2007), multivariate regression (Carrara, 1983;
Baeza and Corominas, 2001), logistic regression (Lee et al.,
2008; Rossi et al., 2010; Nefeslioglu and Gokceoglu, 2011),
and discriminant analysis (Guzzetti et al., 2006; Carrara et
al., 2008).

The Poisson probability model and binomial probabil-
ity model are temporal probability methods. The Poisson
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probability model has been used to estimate the temporal
recurrence probability in studies, including flooding proba-
bility research (Onoz and Bayazit, 2001) and landslide prob-
ability research (Guzzetti et al., 2005; Ghosh et al., 2012b).
However, because the data on natural hazards rely on limited
time periods, it was necessary to develop flexible methods to
avoid inconsistencies that exist between the assumptions of
the Poisson probability model (Crovelli, 2000) and the real
situation. For example, rainfall factors can be considered im-
portant triggering factors for landslide and debris flow haz-
ards, because rainfall intensity in different return periods lead
to different scale of landslide and debris flow hazards. Using
the exceedance probability of various rainfall return periods
to estimate the probability of landslide and debris flow events
can also achieve the goal of estimating temporal probability
to a certain degree (Bründl et al., 2009; Chen et al., 2010).

On the probability of landslide size, Bak et al. (1988)
argued that self-organized criticality (SOC) occurs in nat-
ural landslides. Malamud et al. (2004) verified the power
law relationship between landslide area and noncumulative
frequency. They also fit the probability density function of
a landslide area with common functions, and found good
agreement with a truncated inverse gamma distribution. In
addition, Stark and Hovius (2001) achieved a good agree-
ment after conducting a double Pareto distribution to fit a
probability density function of the landslide area.

The purpose of this study was to establish a landslide haz-
ard model that can be used to estimate the annual landslide
probability. The landslide spatial, temporal, and size proba-
bilities were analyzed based on the landslide inventory from
1996 to 2009, 13 variables of landslide susceptibility factors,
and rainfall data of those events in the Shihmen watershed.
This watershed covers an area of 760 km2, and is one of
the main water sources for northern Taiwan. The Shihmen
watershed was divided into 9181 slope units, and the the-
matic variables of individual slope units were then derived,
screened, and entered in the logistic regression analysis. Data
of landslides caused by Typhoon Aere were selected to train
the susceptibility model. The landslide area probability was
analyzed using the Pearson type 5 probability density func-
tion, based on all the new landslides that occurred from 1996
to 2009. The exceedance probabilities of rainfall with vari-
ous recurrence intervals, including 2, 5, 10, 20, 50, 100 and
200 yr, were used to determine the temporal probabilities of
the events. The spatial, area, and exceedance probabilities
were integrated to estimate the annual landslide probability
of each slope unit in the Shihmen watershed. The feasibility
of the integration of this annual landslide probability model
was verified by comparing the results with the results of the
Poisson landslide probability model for each slope unit. The
results indicated that the landslide probability model estab-
lished for this study can be used for landslide risk analysis.
The annual risk, rather than a scenario-based risk, can be es-
timated using this model.
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Fig. 1. The river system, roads, and topography of the Shihmen watershed. The landslides 3 

were caused by Typhoon Aere in 2004. 4 
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Fig. 1. The river system, roads, and topography of the Shihmen
watershed. The landslides were caused by Typhoon Aere in 2004.

2 Data acquisition and processing

2.1 Environmental setting of the Shihmen watershed

The Shihmen watershed straddles Taoyuan, Hsinchu, and Yi-
lan counties, and the reservoir is mainly fed by the Dahan
River. This watershed has an area of approximately 760 km2,
and the Shihmen Reservoir is the third largest reservoir in
Taiwan and one of the main water sources for northern Tai-
wan. The geographical extent and river system of the wa-
tershed are illustrated in Fig. 1. The area is mountainous,
and is higher in the south than in the north. The elevation
ranges from 236 to 3527 m, with an average elevation of
approximately 1409 m. The average slope is approximately
34◦, and the slope decreases progressively from the south-
east to the northwest. With regard to the regional geology,
outcrops in the area primarily consist of the Oligocene Bal-
ing stratum, which occupies approximately 35.07 % of the
total area, Eocene Siling sandstone, which occupies approx-
imately 16.20 % of the area, and the Miocene Wenshui stra-
tum, which occupies 12.43 % of the area. As far as land use is
concerned, most land within the area consists of undeveloped
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Fig. 2. The temporal pattern of rainfall recorded at the New Baishi station during Typhoon 3 
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Fig. 2. The temporal pattern of rainfall recorded at the New Baishi
station during Typhoon Aere.

forest, which occupies 92.44 % of the total area, followed by
farmland, which occupies 2.71 % of the overall area.

2.2 The landslide inventory in the Shihmen watershed

The landslide inventory for the Shihmen watershed covered
the 1996–2009 temporal interval (Table 1). New and expan-
sive landslides caused by Typhoon Aere in 2004 occupied
579 ha, or 77 % of the total landslide area. Therefore, this
event was selected as the research subject. Numerous land-
slides were found in the watershed, especially in the up-
stream basin of the Baishi River (Fig. 1).

2.3 The available data of landslide susceptibility factors

The lithology, slope, aspect, elevation, normalized differen-
tial vegetation index (NDVI), terrain roughness, slope rough-
ness, total slope height, distance from road, distance from
fault, and distance from river were preliminarily selected as
intrinsic causative factors in this study. Lithology was chiefly
classified as argillite, quartzitic sandstone, hard sandstone
and shale, sandstone and shale, terrace deposits, and allu-
vium on the basis of the 1: 50 000 geologic maps from the
Central Geological Survey.

Slope, aspect, and elevation data were acquired from a dig-
ital elevation model (DEM), using the ArcGIS program. The
5 m× 5 m DEM generated from aerial photographs was used
in this analysis. Terrain roughness and slope roughness (Wil-
son and Gallant, 2000) are usually determined using a type
of neighborhood analysis, such as an analysis within a 5-cells
moving window (Cavalli et al., 2008), to establish the rough-
ness value for each grid. However, in this study, the terrain
variability of the entire slope unit, rather than the variability
of local parts in the slope unit, was considered. The stan-
dard deviation of the elevation calculated by the elevations
of the entire grid within each slope unit was used to indicate
the terrain roughness. The slope roughness was simultane-
ously selected in this study according to the effectiveness in
other researches (Lee et al., 2008; Chen et al., 2013). Simi-
larly, the standard deviation of the slope in each slope unit
was calculated to express the slope variability, which was
then used to indicate the slope roughness. In addition, the
height differential from the crest to the toe of the slope in
each slope unit was used to indicate the total slope height.
The total slope height may be physically related to the mag-
nitude of the stress and the pore-water pressure in the lower
slope, and for long slopes the surface and subsurface water
is more likely to be concentrated in the lower slope, which
causes instability (Lee et al., 2008).

NDVI values were determined by taking advantage of the
absorption of red light and reflection of near-infrared light
emitted by green plants. The NDVI values, which ranged
from −1 to 1, were calculated from SPOT images taken be-
fore Typhoon Aere. The horizontal distance of each slope
unit from roads, faults, or perennial rivers were used to reflect
the effect of roads, faults, and rivers on landslides. The loca-
tions of all the faults (Fig. 1) were extracted from 1: 50 000
geologic maps published by the Central Geological Survey,
and the locations of all the perennial rivers were extracted
from 1 : 5000 orthophoto base maps of Taiwan published by
the Aerial Survey Office, Forestry Bureau.

The 96 h of rainfall data for Typhoon Aere collected from
12:00 LT on 22 August to 12:00 on 26 August 2004 were
used for the analysis. In addition, the temporal rainfall pat-
tern during Typhoon Aere was analyzed (Fig. 2) according
to the data from the New Baishi station (the location is indi-
cated in Fig. 4), which recorded the highest cumulative rain-
fall during the meteorological event. Peak rainfall intensity
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Table 1.The multi-year landslide inventory of the Shihmen watershed.

Date Landslides Landslide Note Date Landslides Landslide Note
area (ha.) area (ha.)

1996/01/01 96 140.21 Before Typhoon Herb 2005/08/16 2152 807.17 After Typhoon Matsa
1996/11/08 168 154.93 After Typhoon Herb 2005/09/21 2075 796.13 After Typhoon Talim
1999/08/17 331 214.95 Before Chichi Earthquake 2005/11/11 1726 816.61 After Typhoon Longwang
2000/01/29 357 289.61 After Chichi Earthquake 2006/10/20 1033 781.49 After Typhoon Shanshan
2000/10/11 610 295.77 Before Typhoon Xangsane 2007/08/28 2013 656.68 Before Typhoon Krosa
2001/03/15 803 584.72 After Typhoon Xangsane 2007/12/21 2062 700.08 After Typhoon Krosa
2001/08/22 556 428.30 After Typhoon Toraji 2008/08/16 1728 566.56 Before Typhoon Nuri
2001/10/13 691 429.84 After Typhoon Nari 2008/08/24 1708 559.71 After Typhoon Nuri
2004/02/10 682 425.12 Before Typhoon Aere 2008/11/06 2000 704.44 After Typhoon Jangmi
2004/11/02 2188 750.52 After Typhoon Aere 2009/05/08 1889 732.22 Before Typhoon Morakot
2005/03/16 1437 632.63 Before Typhoon Haitang 2009/08/20 1860 779.31 After Typhoon Morakot
2005/07/25 2006 733.34 After Typhoon Haitang 2009/10/21 2521 789.92 After Typhoon Parma

occurred from 18:00 on 24 August to 06:00 on 25 August,
and the cumulative rainfall reached 1600 mm. The maximum
cumulative rainfalls of various durations were also analyzed.
The maximum 12 h cumulative rainfall was 842 mm, approx-
imately 52 % of the total rainfall, and the maximum 24 h cu-
mulative rainfall was 1262 mm, approximately 78 % of the
total rainfall.

3 Methodology

Landslide hazard is defined as the probability of occurrence
within a specified period of time and within a given area
of a landslide event with a certain magnitude (Guzzetti et
al., 2005; Ghosh et al., 2012a). Therefore, the landslide haz-
ard probability, (HL), within a given area can be obtained
from the conditional probability of landslide spatial probabil-
ity, P(SL), of the temporal probability of a landslide event,
P(NL), and of the landslide size probabilityP(AL). The
HL can be calculated based on the independence assumption
among the three probabilities using the following equation:

HL = P(SL) × P(NL) × P(AL). (1)

Landslide inventory maps, thematic variables of land-
slide susceptibility factors, and rainfall data of landslide
events were used for the landslide hazard analysis, which
included landslide susceptibility (spatial probability), occur-
rence probability of the landslide event (temporal probabil-
ity), and landslide size probability. In this study, rainfall was
chosen as the sole triggering factor because most landslides
included in the inventory maps had been caused by typhoons
or torrential rains.

3.1 Landslide spatial probability distribution

The watershed was divided into several slope units, and the
thematic variables of each individual slope unit were sub-
sequently derived, screened, and entered in the logistic re-
gression to perform the landslide susceptibility analysis. The

landslide spatial probability was obtained after testing and
validating the model.

Over 50 types of landslide thematic variables have been
considered or used in related studies (Lin, 2003). Based on
the references, the following factors were preliminarily se-
lected as the intrinsic causative factors in this study: lithol-
ogy, slope, aspect, elevation, normalized differential vegeta-
tion index (NDVI), terrain roughness, slope roughness, total
slope height, distance from road, distance from fault, and dis-
tance from river. Various rainfall-related data were used as
extrinsic triggering factors. The landslide thematic variables
were selected as effective variables using a success rate curve
(SRC), landslide ratio plot, frequency distribution of land-
slide and non-landslide group, and probability–probability
plot (P–P plot) for each variable based on the quantitative
landslide thematic variable screening procedures of the Cen-
tral Geological Survey (2009).

Because the area under the curve (AUC) can be used to
determine the effectiveness of a model (Chung and Fabbri,
1999), the SRCs were used to determine the ability of the
model to explain training data. The AUC value can range
from 0 to 1, and the closer the value is to 1, the more per-
suasive the result. The AUC value of the SRC was used to
assess the ability of the thematic variables to predict land-
slides. After calculating the ratio of landslide sample num-
bers to the total number of slope units in each value interval
for each variable, landslide ratio plots demonstrating the re-
lationship between landslide ratios and the various value in-
tervals were drawn to determine whether the landslide trends
were consistent with the physical meanings of the variables.
The goal of these frequency distribution plots was to deter-
mine whether the frequency distribution of both the landslide
and non-landslide groups could be differentiated, and hence
whether the variable could be used to distinguish the land-
slide from the non-landslide group. A P–P plot was used to
inspect the relationship between a certain variable and a spe-
cific distribution.
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After establishing the landslide susceptibility model and
calculating the landslide susceptibility index for each slope
unit, the model accuracy was assessed using a classification
error matrix, SRC, and the frequency distribution of the land-
slide and non-landslide groups. Subsequently, the slope units
were ranked with high susceptibility, medium susceptibility,
and low susceptibility grades on the basis of their susceptibil-
ity indices, and thus enabled the drawing of the landslide sus-
ceptibility maps. However, the level of susceptibility index
(0− 1) could not be directly treated as the landslide spatial
probability. The spatial probability in this study was there-
fore determined using the relationship between the landslide
ratio and landslide susceptibility index. The landslide ratio
was the ratio of the landslide sample numbers to the number
of slope units for each susceptibility index interval (Lee et al.,
2008). The ratios represented the landslide spatial probabil-
ities for the slope units with different susceptibility indices.
The slope units that belonged to the same susceptibility in-
dex interval would have the same landslide spatial probabil-
ity. This was achieved by calculating the landslide ratio for
each susceptibility index interval, then plotting the relation-
ship between the landslide ratio and the various value inter-
vals, and converting the various susceptibility indices to spa-
tial probabilities. Relationship plots were also used to verify
whether the actual landslide trends were consistent with the
degrees of landslide susceptibility.

3.2 Temporal probability of landslides

Any of two method categories could be selected to analyze
the landslide temporal probability, based on the number of
years of landslide data. The first category consisted of land-
slide data before and after a single landslide event alone. The
hourly rainfall data were collected from rain gauge stations
in the study area during a typhoon or torrential rain that trig-
gered landslides. Frequency analysis of the rainfall data was
used to derive the exceedance probability of each relevant
rainfall event, and thus to obtain the temporal probability of
event-based landslides.

The second category consisted of a multi-year landslide
inventory. In this case, the Poisson probability model was
used to calculate the recurrence intervals of historical land-
slide events and the temporal probability of landslides based
on the assumptions (Crovelli, 2000). The Poisson probability
model of experiencingn landslides during timet is given by
the following equation:

P [N(t) = n] = exp(−λt) × (λt)n/n!, (2)

whereλ is the mean occurrence probability of landslides, and
its reciprocalµ is the mean recurrence interval between land-
slides in years. The probability that one or more landslides
will occur during timet is given by the following equation:

P [N(t) = 1] = 1− P [N(t) = 0] = 1− exp(−t/µ). (3)

3.3 Landslide size analysis

Bak et al. (1988) derived the distribution of landslide area
and landslide noncumulative number, and found that the
number of landslides increases with the landslide area up to
the highest value; then it decays following a power law:

NL = C′A
−β
L , (4)

whereAL is the landslide area,NL is the noncumulative num-
ber of that landslide area, andβ andC′ are constants.

Numerous studies have verified the power law relationship
between landside area and noncumulative frequency, includ-
ing studies of rainfall-induced landslides (Fujii, 1969; Hov-
ius et al., 2000; Weng, 2009; Jaiswal et al., 2011; Ghosh et
al., 2012b) and earthquake-induced landslides (Guzzetti et
al., 2002).

The probability density function of the landslide area was
fitted with a Pearson type 5 distribution (i.e., inverse gamma
distribution). After ranking the landslide area from small to
large, various parameters of this distribution function (esti-
mated by fitting) were used to calculate the corresponding
cumulative probability of various landslide areas. Thus, the
probability of one specific landslide area could be predicted
when a landslide occurred in the slope units.

4 Results of landslide probabilities

4.1 Variable selection of the susceptibility model

Slope units have more geomorphological and geological sig-
nificance than grid units because of their relatively unbroken
geomorphological boundaries. The slope units were conse-
quently employed as the basic units of analysis in this study.
Guided by the division method used by Xie et al. (2004),
the GIS-based hydrologic analysis and modeling tool, Arc
Hydro (David, 2002), was used to divide the watershed into
slope units. The smallest slope units had areas larger than
the average landslide area (Van Den Eeckhaut et al., 2009),
which reduced the chance that a single landslide would be
divided among various slope units, ensuring relatively opti-
mal analytical results. Additionally, the DEM (5 m) of the
Shihmen watershed was used to divide the watershed into
slope units. The original topography could be divided into
659 sub-watersheds, and the combination of sub-watershed
units before and after reversal yielded the slope units. A total
of 9181 slope units were obtained, and the average size of a
slope unit was approximately 8.28 ha.

The analysis results of the SRC, landslide ratio plot, fre-
quency distribution of landslide and non-landslide group, and
P–P plot were used for the subsequent selection of intrin-
sic causative variables. Only the results of three variables
are presented in Fig. 3. Terrain roughness was a representa-
tive variable that could be used to distinguish the landslide
from the non-landslide group. By contrast, average NDVI
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Fig. 3.Success rate curves (SRCs), landslide ratio distributions (LRDs), frequency distributions of landslide and non-landslide group (FDs),
and probability-probability plots (P–P plots) of representative variables.

and average elevation were variables that were excluded in
the first and second step of the screening, respectively. Fur-
thermore, in the frequency distribution of the landslide and
non-landslide group, the discriminantDj was also used to
judge the variables’ ability to distinguish between the land-
slide and non-landslide groups. InDj =

(
Aj − Bj

)/
Sj , Aj

was the mean value for the landslide group,Bj was the mean

value for the non-landslide group, andSj was the pooled
standard deviation for the two groups. The AUC value and
Dj for each variable are demonstrated in Table 2.

With regard to the selection standard used in variable se-
lection, the first step was to check whether the AUC value
was greater than 0.5, and if it was less than 0.5, the factor was
considered a random variable in the model, and was assumed
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Table 2.The AUC value andDj for each variable.

Variable AUC Dj Variable AUC Dj

Maximum slope 0.678 0.736 Average aspect 0.526−0.114
Average slope 0.629 0.526 Average NDVI 0.481 0.087
Slope roughness 0.603 0.398 Minimum NDVI 0.651−0.650
Highest elevation 0.527 0.155 Distance from fault 0.521−0.117
Average elevation 0.506 0.050 Distance from road 0.512−0.062
Total slope height 0.683 0.779 Distance from river 0.609−0.556
Terrain roughness 0.685 0.789 Lithology 0.523−0.136

to increase the model error (Dahal et al., 2008). Furthermore,
the landslide ratio plot had to be consistent with the phys-
ical meaning of each variable. For instance, the greater the
distance from road, the smaller the landslide ratio was. The
analysis results indicated that the variable eliminated in the
first step was average NDVI. In the second step, the absolute
value of the discriminantDj had to exceed 0.1 (aDj value
greater than 0 indicated that the mean value of the landslide
group was relatively large, and a value less than 0 indicated
that the non-landslide group had a larger mean value), or the
P–P plot indicated that the values had a normal distribution.
Based on the analysis results, the average elevation and dis-
tance from road were eliminated in the second step. Finally,
maximum slope, average slope, slope roughness, highest el-
evation, total slope height, terrain roughness, average aspect,
minimum NDVI, distance from fault, distance from river, and
lithology were selected as intrinsic thematic factors.

The extrinsic triggering variables were selected after cal-
culating the maximum 1, 2, 3, 6, 12, 24, 48, 72, as well as
96 h rainfall at each rain gauge station during Typhoon Aere,
and estimating the rainfall distribution throughout the entire
research area by the geostatistical method. Ordinary krig-
ing was first used in the geostatistical analysis. Cokriging
was also used in analyses with rainfall as the primary vari-
able, and elevation as a secondary variable. In addition, an-
other cokriging method was used with rainfall as the primary
variable and elevation, slope, and aspect as secondary vari-
ables. Spherical and Gaussian models were chosen as semi-
variogram models in the analyses using these three methods,
and therefore yielded six combinations.

Several indicators of prediction error were inspected to
compare the various models. A model complying with the
following conditions was considered optimal: a mean value
close to 0; a mean standardized value close to 0; the small-
est root mean square; the average standard error closest to
the root mean square; and the root-mean-square standardized
value closest to 1. In addition, the rainfall distribution esti-
mated using the geostatistical methods was compared with
the distribution of landslides triggered by Typhoon Aere.
Then, SRCs of various rainfall distributions were drawn to
calculate the AUC values.

The results of this comparison indicated that the maximum
1 h rainfall (cokriging with Gaussian semivariogram model
and elevation variable), and the maximum 24 h rainfall (ordi-
nary kriging with Gaussian semivariogram model) were used
as extrinsic triggering factors in the landslide susceptibility
model. The purpose of selecting two different sets of rain-
fall data (namely maximum 1 h rainfall and a longer dura-
tion rainfall) was to reflect the form of rainfall during this
typhoon. Furthermore, instead of other longer duration rain-
falls, the maximum 24 h rainfall was selected primarily be-
cause of the higher AUC value. The distributions of the max-
imum 1 h and maximum 24 h rainfalls are demonstrated in
Fig. 4.

4.2 Spatial probability analysis

Based on the results of the screening variables, maximum
slope, average slope, slope roughness, highest elevation, to-
tal slope height, terrain roughness, average aspect subgroup,
minimum NDVI, distance from fault, distance from river and
lithology type were selected as intrinsic causative factors, as
well as the maximum 1 h rainfall and maximum 24 h rain-
fall were selected as extrinsic triggering factors. The coef-
ficients of variables used in the logistic regression equation
are demonstrated in Table 3. The landslide susceptibility map
based on the logistic regression model using Typhoon Aere’s
rainfall as triggering factors is presented in Fig. 5. The clas-
sification error matrix is shown in Table 4, and the SRC and
frequency distribution are presented in Fig. 6. The applicabil-
ity of the model was confirmed by an accuracy rate of 77.8 %
for the landslide group, and an accuracy rate of 72.8 % for the
non-landslide group, as well as an AUC value of 0.788, and
the separation of the two groups in the frequency distribution
plot.

After establishing a landslide susceptibility model for Ty-
phoon Aere, and calculating a landslide susceptibility in-
dex for each slope unit, the relationship between the land-
slide ratio and the landslide susceptibility index was used
to determine the spatial probability of landslides. As indi-
cated in Fig. 7, the landslide ratio increased with the land-
slide susceptibility index, which was consistent with the ex-
pected results. The landslide ratio was therefore used to de-
termine the spatial probability of landslides in any particular
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Table 3.Coefficients of variables used in the logistic regression equation.

Variable Coefficient Variable Coefficient Variable Coefficient

Maximum slope 0.036 Maximum 1 h rainfall 0.035 Average aspect
Average slope 0.004 Maximum 24 h rainfall 0.003 Average aspect subgroup (1) 0.646
Slope roughness 0.019 Intercept −8.053 Average aspect subgroup (2) 1.294
Highest elevation 0.001 Lithology Average aspect subgroup (3) 1.340
Total slope height 0.003 Lithology type (1) 1.128 Average aspect subgroup (4) 1.091
Terrain roughness 0.002 Lithology type (2) −0.317 Average aspect subgroup (5) 0.699
Minimum NDVI −2.602 Lithology type (3) −19.364 Average aspect subgroup (6) 0.429
Distance from fault −0.033 Lithology type (4) −19.856 Average aspect subgroup (7) 0.316
Distance from river −0.046
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Fig. 4. Maximum 1 h and cumulative 24 h rainfall during Typhoon Aere. 3 
  4 

Fig. 4. Maximum 1 h and cumulative 24 h rainfall during Typhoon
Aere.

susceptibility interval. To summarize, the relationship equa-
tion was used to convert landslide susceptibility indices to
landslide ratios. The results will express the probability of
landslides in slope units if identical rainfall conditions oc-
curred in future.
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Fig. 5. Landslide susceptibility map based on logistic regression model using rainfall of 3 

Typhoon Aere as triggering factors. 4 
  5 

Fig. 5. Landslide susceptibility map based on logistic regression
model using rainfall of Typhoon Aere as triggering factors.

4.3 Temporal probability of multi-year landslide
inventory

The multi-year landslide inventory, as illustrated in Table 1,
was used to calculate the temporal probability of landslide
occurrence in each slope unit using the Poisson probability
model. The inventory covers the temporal interval of nearly
15 yr from 1996 to 2009. After summing the landslide count
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Fig. 6. Success rate curve and frequency distribution of landslide and non-landslide groups for 3 

the established model. 4 
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AUC=0.788 

D=1.386 

Fig. 6.Success rate curve and frequency distribution of landslide and non-landslide groups for the established model.

Table 4.Classification error matrix for Typhoon Aere.

Prediction results
Accuracy rate (%)

Landslide group Non-landslide group

Observed data
Landslide group 311 89 77.8

Non-landslide group 109 291 72.8

Overall 75.3

in each slope unit from 1996 to 2009, the mean recurrence
interval (µ) of each slope unit was calculated. Based on the
assumption that landslides will occur with the same rate over
the next 15 yr as over the past 15 yr, the probability of land-
slides during 1, 2, 5, 10, and 15 yr was calculated for each
slope unit. Figure 8 demonstrates the probability of landslide
occurrence during the next 1 yr period.

Under the assumed conditions, the areas with the highest
landslide probability in the Shihmen watershed are those ar-
eas that experienced numerous landslides over the past 15 yr.
The slope units with the highest landslide probability were
clustered in the southwestern part of the watershed.

Furthermore, the landslide probability for the next 1 yr pe-
riod was obtained using the Poisson probability model, and
could be validated using the subsequent estimated annual
probability. The results of this validation are discussed in
Sect. 5.

4.4 Cumulative probability of landslide area

A landslide inventory for the research area was used to per-
form the landslide size analysis. All new landslides for pre-
vious years were divided among three groups according to
the slope height of each slope unit. The reason why three
groups were analyzed was to testify whether the units with

higher slope height have a higher probability of landslides
with large area. The first group consisted of slope units with
slope heights of less than 379 m, the second of units with
slope heights of 379–514 m, and the third of units with slope
heights of more than 514 m. The grouping criteria were deter-
mined to ensure similar numbers of slope units in each group.
The first group had 4016 landslides with aβ value of 2.1724;
the second, 3985 landslides with aβ value of 2.2546; and
the third group had 4007 landslides with aβ value of 2.1265.
The higher theβ value, the steeper the power law tail will be,
thus the lower the ratio of landslides with large areas.

Additionally, Pearson type 5 and Pearson type 5 (3P) prob-
ability density functions were used to convert power laws to
cumulative probability of the landslide area. The probabil-
ity of landslides exceeding a certain size threshold was thus
derived. The results obtained using the Pearson type 5 and
Pearson type 5 (3P) probability density functions were ex-
tremely similar for all groups. As a consequence, the Pearson
type 5 (3P) probability density function was used to demon-
strate the result for all data and the three groups (Fig. 9). The
four curves shown in Fig. 9 had a similar probability distribu-
tion, which implied there was little difference between these
groups. When a landslide occurs in any slope unit within the
research area, the probability that the landslide area exceeds
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Fig. 7. Landslide spatial probability for the established model. The landslide susceptibility 3 

indices of Fig. 5 were converted to landslide spatial probability using the relationship as 4 

demonstrated in the upper right corner.  5 

  6 

Fig. 7. Landslide spatial probability for the established model. The
landslide susceptibility indices in Fig. 5 were converted to landslide
spatial probability using the relationship as demonstrated in the up-
per right corner.

1000 m2 is approximately 58.3 %, and the probability that the
area exceeds 10 000 m2 is approximately 6.8 %.

4.5 Validations of spatial and size probabilities

The maximum 1 h rainfall and maximum 24 h rainfall during
Typhoon Krosa in 2007 were used as extrinsic triggering fac-
tors, in conjunction with the established intrinsic causative
factors, to calculate landslide probability maps. The land-
slide probability in each slope unit was estimated based on
the rainfall conditions that occurred during Typhoon Krosa.
To assess the model’s prediction ability, the resulting land-
slide spatial probability map was compared with the actual
distribution of new landslides analyzed according to the in-
ventory before and after Typhoon Krosa.

The landslide susceptibility model had an overall predic-
tion accuracy rate of 82.3 % for Typhoon Krosa, which was
an excellent result. However, the accuracy rate for the land-
slide group was only 62.1 %. This could be attributed to
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Fig. 8. The landslide probability during the next 1-year period obtained using the Poisson 3 

Probability Model 4 
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Fig. 8.The landslide probability during the next 1 yr period obtained
using the Poisson probability model.

 35

 1 

 2 

Fig. 9. Cumulative probability of landslide area exceeding a certain size threshold based on 3 

Pearson Type 5 (3P) Distribution. 4 
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Fig. 9.Cumulative probability of landslide area exceeding a certain
size threshold based on Pearson type 5 (3P) distribution.

the fact that rainfall during Typhoon Aere (the basis of this
model) was exceptionally heavy. The rainfall was signifi-
cantly lighter during Typhoon Krosa, and therefore increased
the error rate. Furthermore, the AUC value of the success rate
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curve was 0.796, which indicated that all landslides occurred
in areas with a relatively high susceptibility. The separation
of the landslide group from the non-landslide group in the
frequency distribution plot revealed that the model’s parame-
ters possessed the ability to distinguish landslides from non-
landslides. This result indicated that this model also retained
fairly good accuracy under relatively light rainfall conditions,
such as the rainfall during Typhoon Krosa.

Furthermore, 611 landslides with new areas greater than
100 m2 were caused by Typhoon Krosa. The cumulative per-
centages of landslide areas are presented in Fig. 10. A total of
296 landslides had areas greater than 1000 m2, which consti-
tuted 48.4 % of all landslides and was less than the predicted
58.3 %. The probability that landslides had areas greater than
1000 m2, caused by a relatively low rainfall event such as Ty-
phoon Krosa, was less than 58.3 % predicted using the prob-
ability density function. This result indicated that there was
a higher than expected proportion of landslides with areas
less than 1000 m2. As a consequence, a hazard model based
on a Pearson type 5 (3P) probability density function would
overestimate the probability of landslides with a certain size
under conditions of relatively light rainfall. However, con-
cerning hazard assessment, this situation could be considered
a conservation result, and the model could still facilitate the
identification of problem areas.

5 Results of annual landslide probability

Rainfall data from 24 rain gauge stations were collected and
used to perform a frequency analysis. Then, landside prob-
abilities corresponding to rainfall events with various recur-
rence intervals, including 2, 5, 10, 20, 50, 100 and 200 yr,
were derived. Exceedance probabilities for particular rainfall
events were used as occurrence probabilities. The landslide
probabilities of each slope unit with various recurrence in-
tervals and the corresponding exceedance probabilities were
drawn as a frequency curve. The area under the curve was
integrated as the annual landslide probability for each slope
unit.

5.1 Landslide ratio in rainfall events with various recur-
rence intervals

The rainfall data of 24 rain gauge stations in the vicinity
of the study area collected from 1987 to 2009 was used to
analyze rainfall amounts of rainfall events with various du-
rations and various recurrence intervals. Subsequently, the
maximum 1 h rainfall and maximum 24 h rainfall with var-
ious recurrence intervals, including 2, 5, 10, 20, 50, 100 and
200 yr, were obtained. Geostatistical methods were sequen-
tially used to estimate the maximum 1 h rainfall and max-
imum 24 h rainfall throughout the entire area with differ-
ent recurrence intervals. These results were used in conjunc-
tion with the already-determined intrinsic causative factors

 36

 1 

 2 

Fig. 10. Cumulative percentage of landslide area for the landslides caused by Typhoon Krosa 3 

in 2007. 4 
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Fig. 10.Cumulative percentage of landslide area for the landslides
caused by Typhoon Krosa in 2007.

to calculate landslide probability maps for the entire area.
These maps demonstrated the landslide probabilities with 2,
5, 10, 20, 50, 100 and 200 yr recurrence intervals, respec-
tively. However, because the maximum values at each rain
gauge station were used to estimate the spatial distribution of
maximum 1 and 24 h rainfall, the resulting landslide suscep-
tibilities simultaneously reflected the maximum rainfall val-
ues for all stations. These could be regarded as “worst case”
prediction results.

5.2 Annual landslide ratio

The landslide probabilities derived from rainfall events with
various recurrence intervals represented the landslide proba-
bility of each slope unit following such an event. However,
it was difficult to derive the occurrence probabilities of the
events. In these circumstances, the analysis of the occurrence
probability of triggering factors could be used as an alterna-
tive method. Therefore, the exceedance probability of rain-
fall events with various recurrence intervals was used as the
occurrence probability of the events. Additionally, the land-
slide probabilities of each slope unit with 2, 5, 10, 20, 50, 100
and 200 yr recurrence intervals, as well as the corresponding
exceedance probabilities were drawn as a frequency curve.
The area under the curve was integrated as the annual land-
slide probability for each slope unit, and the annual landslide
probability map in the study area was drawn (Fig. 11). The
highest landslide probability (the annual landslide probabil-
ity of approximately 40 %) was distributed over the Taigang
River watershed, the south of this watershed, compared to a
probability of less than 10 % in most areas.

5.3 Validation of temporal probability

The multi-year landslide inventory was used to calculate the
temporal probability of landslide occurrence in each slope
unit using the Poisson probability model. After assuming that
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Fig. 11. Annual landslide probability obtained conjugating the results of rainfall events with 3 

various recurrence intervals. 4 
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Fig. 11. Annual landslide probability obtained conjugating the re-
sults of rainfall events with various recurrence intervals.

landslides will occur at the same rate over the next 15 yr as
over the past 15 yr, the probability of landslide occurrence
for each slope unit during the next 1 yr period were obtained
(Fig. 8). In addition, annual landslide probabilities were ob-
tained using the landslide probabilities of each slope unit
with various recurrence intervals, as well as the correspond-
ing exceedance probabilities as demonstrated in Fig. 11. The
difference between these two was calculated using the annual
landslide probability minus the Poisson landslide probability
for each slope unit (Fig. 12).

Figure 12 demonstrates that the absolute values of the
probability differentials were nearly less than 0.15, which
indicate a ratio exceeding 91.9 %. This result indicated that
the estimated annual landslide probabilities were extremely
close to the estimated 1 yr landslide probabilities. Addition-
ally, the feasibility of the use of exceedance probability as the
basis to determine the temporal probability of event-based
landslides was verified.
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Fig. 12. The difference between the annual landslide probability (Fig. 11) and Poisson 3 

Landslide Probability (Fig. 8). 4 
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Fig. 12. The difference between the annual landslide probability
(Fig. 11) and Poisson landslide probability (Fig. 8).

5.4 Annual probability of landslides exceeding a certain
area

The annual probability of landslides exceeding a certain area
in any slope unit could be derived with further analysis of
the annual landslide probability and landslide area probabil-
ity in the Shihmen watershed. For instance, Fig. 13 demon-
strates the annual probability of landslides with areas ex-
ceeding 3000 m2 in each slope unit. The resulting landslide
probability model can be used as a basis for future land-
slide risk analyses. Furthermore, the annual risk can be es-
timated based on the annual landslide probability instead of
a scenario-based probability. Thus, the annual benefit of a
risk reduction program can be evaluated as the reduced an-
nual risk, and the benefit–cost analysis of the program can
be successively conducted. In addition, future research could
analyze the sediment delivery ratio of each slope unit to esti-
mate the volume of sediment transported downstream during
landslide events.
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Fig. 13. Annual landslide probability for landslide with area exceeding 3,000m2 in each slope 3 

unit. 4 

Fig. 13. Annual landslide probability for landslides with area ex-
ceeding 3000 m2 in each slope unit.

6 Conclusions

Climate change enlarges bare land areas and therefore also
the number of landslides in Taiwan. In view of a grow-
ing emphasis on risk management, the quantitative assess-
ment of landslide risk is becoming increasingly important.
Scenario-based risks can be estimated using scenario-based
landslide probability models, but few annual landslide proba-
bility models existed for Taiwan. Therefore, a landslide haz-
ard model that can be used to estimate the annual landslide
probability, and perform an annual landslide risk analysis
was established in this study.

The landslide spatial, temporal and size probabilities were
analyzed based on the landslide inventory caused by ty-
phoons from 1996 to 2009, 13 variables of landslide sus-
ceptibility factors, and rainfall data of those events. These
probabilities were integrated to estimate the annual probabil-
ity of each slope unit with a landslide area exceeding a cer-
tain threshold in the Shihmen watershed. The results demon-
strated that the south of this watershed is especially prone
to landslides and should therefore be the primary target of
future soil conservation efforts.

An overall accuracy rate of 75.3 % and an AUC value of
0.788 confirmed the applicability of the landslide susceptibil-
ity model. The AUC value was far greater than the AUC val-
ues of the various landslide thematic variables, which high-
lighted that the ability of this landslide susceptibility model
to predict landslides was more efficient than a model based
on only one variable. The validation result of Typhoon Krosa
demonstrated that this landslide susceptibility model could
be used to predict the spatial probability of landslides caused
by rainfall events with various recurrence intervals, including
2, 5, 10, 20, 50, 100 and 200 yr. The landslide area probabil-
ity was analyzed using the Pearson type 5 probability density
function based on all new landslides from 1996 to 2009. The
results suggested that when a landslide occurs in any slope
unit within the Shihmen watershed, the probability that the
landslide area will exceed 10 000 m2 is approximately 6.8 %.

The difference between the annual landslide probability
and the Poisson landslide probability for each slope unit
was compared to verify the feasibility of the use of ex-
ceedance probability to determine the temporal probability of
event-based landslides. The newly established annual land-
slide probability model could be used for future landslide
risk analysis. This method avoids inconsistencies that exist
between the assumptions of the Poisson probability model
and the real situation. Especially when the landslide inven-
tory relies on a limited time period, the assumption that land-
slides will occur with the same rate over the next few years
as over the past can result in a future landslide probability
of 0 in a slope unit if it did not have landslides in the past.
The advantages of this annual landslide probability model
are the ability to estimate the annual landslide risk instead
of a scenario-based risk, and the need of landslide data from
few events instead of a long-term inventory. Furthermore, the
annual benefit of a risk reduction program can be evaluated
as the reduced annual risk, and the benefit–cost analysis of
the program can be successfully conducted in Taiwan. The
resulting model is feasible to estimate the annual probability
of each slope unit with a landslide area exceeding a certain
threshold. We suggest it may be further developed so that
the location where a landslide will most likely occur in each
slope unit could be included.
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