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Abstract. On 4 June 2011, the volcanic complex Puyehue–
Cordon Caulle located in the Chilean Andes erupted, pro-
ducing a plume of gases and particles that eventually circled
the Southern Hemisphere, disrupting air travel and deposit-
ing ash in large quantities. On eight occasions, the plume
passed over the city of Buenos Aires, Argentina, leading lo-
cal authorities to close the two international airports.

The eruption occurred during an on-going field campaign
when measurements of the properties of atmospheric aerosol
particles were being made in Buenos Aires as part of a year-
long study of the concentration and optical properties of
aerosol at one site in the city. The suite of instruments de-
ployed in Buenos Aires were not tailored to measurements
of volcanic ash, but were designed to characterize urban con-
ditions. Nevertheless, these measurements were analysed for
periods when vertical profiles of aerosol backscatter, made
with a ceilometer, clearly showed the presence of the volcano
plume over the research site and resulted in airport closure.

Aerosol optical thickness derived from AERONET,
MODIS and a ceilometer at our research site, all show en-
hanced values clearly indicating that the three platforms
identified the volcanic plume simultaneously. However, a
quantitative comparison of the different estimates proves dif-
ficult, suggesting large spatial and temporal variability of the
plume.

Our results indicate that the number concentration of con-
densation nuclei (CN), the mass concentration of particle-
bound polycyclic aromatic hydrocarbons (PPAH) and the

light absorption coefficient exceeded the average background
values by more than one standard deviation during the events
of volcanic plume. The anomalous concentrations of CN sug-
gest new particle formation, presumably from the conversion
of SO2, while the anomalous concentrations of PPAH may
come from the uptake of PAHs on the plume particles or
from chemical reactions on the surface of plume particles.
The anomalous absorption coefficients indicate that plume
particles may contain certain compounds that can absorb ra-
diation at 550 nm. Another possible explanation consistent
with the observations is the scavenging of black carbon from
urban sources as the plume descends through the boundary
layer to the surface. In addition, the volcanic plume influ-
enced the local meteorology resulting in a decrease of the
temperature when compared to the average temperature dur-
ing days with no plume present.

1 Introduction

The volcanic complex Puyehue–Cordon Caulle in the
Chilean southern Andes erupted at 14:45 local time (LT)
on 4 June 2011 (SERNAGEOMIN, 2011) from a new
vent (“We Pillán” located 7 km NNW of the crater of
the Puyehue volcano, Collini et al., 2013) of the Cor-
don Caulle complex, located in the southern Andes vol-
canic zone (SAVZ) at 40.58◦ S and 72.13◦ W, and 2240 m
above mean sea level (a.m.s.l.). The sub-plinian eruption
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produced a large plume of gas and ash particles that reached
10 km above crater rim level and that eventually circled the
Southern Hemisphere disrupting air travel on several con-
tinents. By 13 June the plume had reached New Zealand,
extending in the vertical between 6 and 11 km above sea
level (http://earthobservatory.nasa.gov/NaturalHazards/view.
php?id=50985). The intensity of the eruptive process was not
constant in time, resulting in large variability of the height of
the top of the plume, which was monitored by cameras lo-
cated near the eruption. Large quantities of ash fell in the
nearby regions until the end of July, causing major problems
in villages and cities of the Patagonian Andes and perma-
nent closure of airports. Thousands of sheep eventually died
of starvation due to the heavy layer of ash that covered and
killed the vegetation that they consume. This complex had
previously erupted 51 yr earlier, on 24 May 1960, follow-
ing theMw 9.5 great Chilean earthquake about 240 km to the
west (Lara et al., 2004). Gerlach et al. (1988) and Lara et
al. (2006) presented a summary of recent eruptions of this
volcanic complex, while Singer et al. (2008) presented its
long-term history.

A couple of days after the 4 June 2011 eruption, the
ash was carried approximately 1400 km to the NE, reaching
Buenos Aires (34.54◦ S, 58.44◦ W) and resulting in major air
traffic disruption at the two international airports that service
the city: Aeroparque (AEP) and Ezeiza (EZE). The vent con-
tinued producing emissions hazardous to flight operations
until December 2011. The Volcanic Ash Advisory Center
(VAAC) for South America, hosted by the National Weather
Service of Argentina, is responsible for issuing warnings
based upon an ash dispersion model. This information is used
by the National Civil Aviation Administration to advise air-
lines on the atmospheric conditions related to the ash and is
the agency with authority to close down aircraft operations
at the airports. However, each airline and pilot evaluated the
situation and made the final decision to operate. Collini et
al. (2013) performed non-operational simulations of the vol-
canic ash plume trajectory by combining the Weather and
Research Forecasting model in conjunction with the disper-
sion model FALL3D (Folch et al., 2009) and concluded that
this combination of models provided reasonable results for
the forecast of plume trajectory and ash deposits.

Table 1 shows the dates of the eight periods during which
ash affected the air space over Buenos Aires during June
and July forcing both airports to close for at least one day.
Also given in this table is our assessment, based on mea-
surements with a ceilometer (discussed below) of whether
the volcanic plume was present. Entries listed as “possi-
bly” indicate times when ash appeared to be present but
normal flight operations were underway. There was at least
one period when flight operations were cancelled but our
analysis of the ceilometer data indicated no volcanic plume
present. More than 5000 flights by the three largest air-
lines operating from AEP had to be cancelled and/or re-
scheduled during the period of two months considered in

this study. Visible images from MODIS on Terra and Aqua
with the volcanic plume covering central Argentina and
reaching Buenos Aires, have been featured in the NASA
website and can be found inhttp://www.nasa.gov/topics/
earth/features/20110606-volcano.htmlandhttp://www.nasa.
gov/topics/earth/features/20110615-volcano.html.

Following the Eyjafjallajökull volcanic eruption in Iceland
in April–May 2010, several European research groups made
ground-based measurements of the volcanic plume proper-
ties, using equipment similar to the one installed in Buenos
Aires. In Augsburg, Germany, Pitz et al. (2011) measured
the size distribution of aerosol particles in April 2010 report-
ing that the mass concentration of PM10 (particles with an
aerodynamic diameter less than 10 µm) exceeded the daily
limit of 50 µg m−3. Using positive matrix factorization, they
showed that this increase was a result of ash transported from
the volcano. A little farther to the south, in the Alpine re-
gion of Germany, during this same time period, on 19 and
20 April, PM10 was reported to exceed the daily threshold
value at nearly all monitoring stations of the northern Alpine
foothills as well as at mountain and valley stations in the
northern Alps (Schäfer et al., 2011). The entrainment of the
volcanic plume mainly affected the concentrations of coarse
particles (> 1 µm) – interpreted as volcanic ash – and ultra-
fine particles (< 100 nm) presumably produced from chemi-
cal processes that converted the sulfur dioxide in the plume to
new particles. In this same region, Flentje et al. (2010) mea-
sured the volcanic plume with a ceilometer, ozonesondes and
ground-based measurements that they could connect with the
presence of the ash. In southern France, Hervo et al. (2012)
made lidar and ground-based measurements while the plume
was detected over the Puy de Dôme and found a clear aug-
mentation of the normal background aerosol properties. Fi-
nally, even farther to the SE, Bukowiecki et al. (2011) made
measurements of the properties of the volcanic plume at the
high altitude research station Jungfraujoch (3580 m a.s.l.) as
the ash layer was advected further south.

The eruption on the Cordon Caulle complex took place
while a suite of instruments installed in Buenos Aires were
making measurements in a year-long study to characterize
the concentration and optical properties of aerosol particles
in the city. The project constituted the first such long-term
campaign in the city. The objective of our study is to analyse
particle characteristics at the surface measured on days when
the volcanic plume was above the research site in Buenos
Aires (the specific days analysed: 7, 8, 13 and 14 June and
1, 2, 7 and 8 July 2011). The next section discusses our
measurement system and analysis methodology. Section 3
presents the results of the selected case studies with descrip-
tions of the meteorological conditions, the vertical backscat-
tering profiles and the surface measurements. A discussion
of the results is given in Sect. 4 and the conclusions are sum-
marized in the final section.
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Table 1.List of all the eruptive episodes that led to shut downs of airport operations at Aeroparque (AEP) and Ezeiza (EZE) airports during
the months of June and July 2011.

Julian Calendar Episode Inferred by Listed in publication
day day No. ceilometer data “Lima Victor N◦ 35”

157 6 June 1 Yes Flight operations at EZE cancelled at night
158 7 June 1 Yes No flight operations at AEP and EZE during the morning. EZE re-opened at

noon, AEP at 4 p.m. LT
159 8 June 1 Yes Normal operations at AEP and EZE
160 9 June 2 Possibly (fog?) No flight operations AEP nor EZE
161 10 June 2 Yes Operations resume at AEP and EZE at 7 p.m. LT
162 11 June 2 No Normal operations at AEP and EZE
163 12 June 2 Possibly Normal operations at AEP and EZE
164 13 June 3 Yes No flight operations AEP nor EZE
165 14 June 3 Yes Flight operations at EZE resume at night
166 15 June 3 No-rain Flight operations at AEP resume in the morning
172 21 June 3 No Normal operations at AEP and EZE
173 22 June 3 Possibly Normal operations at AEP and EZE
175 24 June 4 Yes No flight operations AEP nor EZE. Operations at AEP resume at 5.30 p.m. LT.

EZE resumes at night
176 25 June 4 Yes Normal operations at AEP and EZE in the morning
182 1 July 5 Yes At 2 p.m. LT both AEP and EZE stop operations.
183 2 July 5 Yes Operations resume after 8 a.m. LT
184 3 July 5 No Normal operations at AEP and EZE
188 7 July 6 Yes Operations at AEP and EZE stop at 6 p.m. LT
189 8 July 6 Yes Normal operations resume in the afternoon
191 10 July 7 No No operations from around local noon at AEP and EZE
192 11 July 7 No Operations resume after 11 a.m. LT
207 26 July 8 Yes Operations stop at AEP and EZE around noon
208 27 July 8 Yes Operations resume mid-morning at EZE and mid-afternoon at AEP

2 Methodology

2.1 Instrumentation

A suite of instruments was installed on the roof of one of
the buildings of the Facultad de Ciencias Exactas y Natu-
rales, Universidad de Buenos Aires (FCEN, UBA) located at
34.54◦ S, 58.44◦ W and at an altitude of approximately 30 m
above sea level, as part of a year-long campaign to char-
acterize the concentration and optical properties of aerosol
particles. The measurements included the number concentra-
tion of condensation nuclei (CN) larger than approximately
20 nm, the mass concentration of particle-bound polycyclic
aromatic hydrocarbons (PPAH), the scattering (Bscat) and
absorption (Babs) coefficients at 530 nm and the vertical pro-
files of backscattered light from aerosols at a wavelength of
910 nm. In addition, a weather station recorded the meteoro-
logical state of the atmosphere (see Table 2 for detailed in-
strument characteristics). Measurements began in April 2011
and continued until December. All the data were averaged
into ten-minute intervals for the analysis discussed below.

Additional information on aerosol optical properties was
obtained from the AERONET sun-photometer (Holben et al.,
1998), maintained and operated by researchers at CEILAP

(Centro de Investigaciones en Láseres y Aplicaciones) and
located approximately four kilometers west of the UBA mea-
surement site. While the AERONET sun-photometer mea-
sures at multiple wavelengths, only the aerosol optical thick-
ness (AOT) at 500 nm was selected for analysis. This wave-
length is closest to the 530 nm wavelength used by the PSAP
and nephelometer and the 550 nm wavelength used by the
Moderate Resolution Imaging Spectroradiometer (MODIS)
that is carried on the Aqua (Parkinson, 2003) and Terra satel-
lites and whose data we also used to evaluate the AOT. Fi-
nally, note that the AEP airport is located three kilometres
south of the research site, while the EZE airport is 31 km to
the SW.

The meteorological conditions during the event were stud-
ied using the reanalysis dataset from the National Centers of
Environmental Prediction, National Center for Atmospheric
Research (Kalnay et al., 1996).

2.2 Analysis strategy

The ceilometer records a range-corrected intensity of light
that is backscattered from an ensemble of aerosols in in-
tervals of 20 m up to 7 km. Hence, the CL-31 ceilometer
functions as a light detection and ranging (LIDAR) sensor
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Table 2.Description of instrumentation deployed at the research site at the Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires (FCEN, UBA). The acronym UNAM corresponds to Universidad Nacional Autónoma de México.

Parameter Instrument Institute Detection limit Accuracy Frequency

Temperature,
RH,
pressure

Davis Inc.
Weather Station

UBA −50◦ to +50◦

0 to 100 %
100 to 1024

±1◦

±5 %
±1 mb

1 Hz

Horizontal
winds

Davis Inc.
Weather Station

UNAM 0 to 50 m s−1 1 Hz

Condensation
nuclei

TSI CPC 3010 UNAM 0.02 µm ±15 % 1 Hz

Particle-bound
polycyclic
aromatic hy-
drocarbons

EcoChem PAS 1000
photoelectric
aerosol sensor

UNAM 0.3 Hz

Absorption co-
efficient

Radiance research
particle soot
absorption
photometer (PSAP)

UNAM 1 M m−1
±25 % 1 Hz

Scattering
coefficient

Radiance research
nephelometer

UNAM 1 M m−1
±25 % 1 Hz

Backscattering
vertical profile

Vaisala ceilometer
CL-31

UNAM 20 m to 7000 m,
with 20 m
resolution

0.5 Hz

(Münkel and Räsänen, 2004) and is useful for measuring
boundary layer height and structure (Münkel et al., 2007;
van der Kamp and McKendry, 2010; Tsaknakis et al., 2011).
Recently, a ceilometer network in Europe was used to track
the plume from the eruption of the Eyjafjallajökull volcano
(Flentje et al., 2010). As discussed below, the plume from
the Puyehue volcano was obvious in the ceilometer measure-
ments at our research site. Furthermore, we used the ceilome-
ter profiles to compare with the AOT measured with MODIS
and with the AERONET sun photometer (see Sect. 3). In
order to carry out this comparison, we converted the non-
dimensional units of power recorded by the ceilometer to di-
mensions of extinction, as follows.

The extinction coefficient was derived from the sum of the
in situ measurements of light scattering and absorption by the
nephelometer and PSAP, respectively. As the ceilometer data
does not provide a quantitative measure of the extinction co-
efficient, which is needed for the estimation of the AOT, we
proceeded to correlate the in situ extinction coefficient and
the ten-minute averages of the low level ceilometer data (be-
tween 20 and 60 m) for selected periods when the boundary
layer appeared well mixed up to at least 60 m. The extinction
coefficient derived from the in situ measurements is fit to the
averaged backscattered power between 20–60 m with a lin-
ear regression constrained to pass through zero. As shown in
Fig. 1, the amount of dispersion is sufficiently small to obtain

a reasonable relationship between the backscattered power
and extinction coefficient. The best-fit equation presented in
the figure was used to convert the backscattered power from
the ceilometer to the extinction coefficient:

AOTceilometer=

z=7000 m∑
z=20 m

0.553· Ci · 1Z (1)

where1Z = 20 m andCi are the raw counts in theith chan-
nel of the ceilometer.

As Buenos Aires is a megacity with high levels of an-
thropogenic emissions (Alonso et al., 2010; D’Angiola et
al., 2010), the influence of the particles in the volcanic
plume has to be distinguished from the normal (background),
daily trends in particle measurements. In order to do this,
we calculated hourly, diurnal averages and standard devia-
tions from 15 April 2011, when the measurements began, to
31 July 2011. We have combined the measurements made
during all the days without volcanic influence: before the first
episode, in between episodes and after the last episode, to
estimate the background urban conditions. The different in-
struments acquire data at different frequencies, as listed in
Table 2; therefore, ten-minute averages of the different vari-
ables were constructed to homogenize the dataset.

The diurnal variation of the typical urban conditions in
Buenos Aires was determined in the manner described above,
indistinct from the day of the week. This typical diurnal
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Fig. 1. Shown here is the extinction coefficient, derived from the
nephelometer and PSAP measurements as a function of the raw
backscattering, range-corrected counts from the ceilometer aver-
aged between 20 and 60 m. Each point represents a ten minute av-
erage.

evolution is characterized by the average of the different vari-
ables and their respective standard deviation. No distinction
was made between working and weekend days, assuming
that the variability between them is captured by the standard
deviation. The ten-minute averages of the particle measure-
ments during days with volcanic influence are then compared
with the background average estimates of the diurnal evolu-
tion of the typical urban conditions, as described above.

Finally, to complement our measurements, we have
analysed also the mass concentration of the coarse fraction
of aerosol particles with aerodynamic diameter smaller
than 10 micrometres (PM10). The hourly PM10 mass
concentrations are estimated using an automatic equip-
ment (TEOM with PM10 inlet, THERMO Scientific)
installed in an air quality monitoring station (Estacion
Cordoba), funded by the city government of Buenos
Aires. As the data were not available as text files, for
the analysis the data were digitized from the graphs dis-
played on the web page of the city environmental agency
(http://www.buenosaires.gob.ar/areas/med_ambiente/apra/
calidad_amb/red_monitoreo/index.php?menu_id=34232).

3 Results

Four case studies were identified in our dataset from 15 April
to 31 July, when the volcanic plume affected Buenos Aires.
The case studies were: 7 and 8 June (episode 1 on Table 1);

13 and 14 June (episode 3 on Table 1); 1 and 2 July (episode
5 on Table 1); and 7 and 8 July (episode 6 on Table 1). For
brevity, we present in this paper only one of the case studies
in detail (1–2 July); all the other cases were analysed sim-
ilarly. After the initial, more important eruption on 4 June,
the vent continued to be active for many months. The period
from 20 June up to 1 July (before the case study presented
here) was characterized by continuous emissions only up to
4–5 km above the level of the crater rim. There was rain/snow
at the location of the volcanic complex on several of the days
during this period, which would have scavenged most of the
large ash particles in the vicinity. However, during periods
with no precipitation, gases and small particles would have
been advected by the predominant winds. The synoptic situ-
ation in all four cases studied was analysed and consistently
showed conditions in which the volcanic plume would have
reached Buenos Aires.

3.1 Synoptic description

The synoptic situation in each of the four case studies iden-
tified, while somewhat different, explains how the volcanic
plume travelled about 1400 km to reach Buenos Aires. On
1 July most of the country was under the influence of an
extended high pressure system, with low level flow from
the S–SW associated with a cold air incursion, clearly de-
picted by the 500/1000 hPa thickness field (Fig. 2a). While
this situation persisted during the following day (Fig. 2b),
it evolved near the volcano and led to a change in wind di-
rection near the surface. At 850 hPa southerly winds are ob-
served over Patagonia and SW winds over Buenos Aires on
1 July (Fig. 3a), again leading to a change in direction by
2 July (Fig. 3b), which probably transported the newly re-
leased material towards Chile and the Pacific. Higher up in
the atmosphere (700 hPa, not shown) the winds advected the
volcanic plume over Buenos Aires, but at 500 hPa the winds
were from the W.

3.2 Meteorology and particle measurements

Figure 4 presents time series (in local time LT) of the differ-
ent observed parameters for the period 1–2 July (Julian days
182 and 183, respectively, corresponding to the fifth plume
episode over Buenos Aires, listed in Table 1). The bottom
panel (Fig. 4a) presents the vertical profile of aerosol light
extinction derived from the ceilometer backscattering mea-
surements using the relationship discussed in Sect. 2.2 and it
is shown twice to facilitate relating it with the other parame-
ters. The other panels present a black solid line with vertical
bars that correspond to the average values and standard de-
viations, estimated from all the days when there was no vol-
canic influence detected. The green lines correspond to the
10 min average observations for 1 and 2 July.

Note that on 1 July there is a very inhomogeneous yet
thick aerosol layer extending at times up to 3000 m (Fig. 4a)
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Fig. 2.Sea level pressure (in hPa, black contours) and 500/1000 thickness fields (in dam, green dotted contours) for 06:00 UTC on(a) 1 July
2011 and(b) 2 July 2011. The blue line corresponds to 540 dam and the red line to 570 dam. The square indicates the location of the Puyehue
volcano and the dot corresponds to the location of Buenos Aires. Terrain elevations greater than 1500 m are shaded.

Fig. 3. 850 hPa horizontal wind (in m s−1, vectors) and equivalent adiabatic potential temperature (in K, contours) for 06:00 UTC on(a)
1 July 2011 and(b) 2 July 2011. The square indicates the location of the Puyehue volcano and the dot corresponds to the location of Buenos
Aires. Terrain elevations greater than 1500 m are shaded.

and showing undulations throughout the two-day period sug-
gesting that the volcanic plume was likely meandering over
the area. The period from 18:00 LT on 1 July, lasting until
08:00 on 2 July, shows lower concentration of aerosols and
a subsiding air mass where we can see the volcanic layer
descending, associated with increasing light extinction. At
this time the local wind velocity is close to zero (Fig. 4h) in-
hibiting any dispersal of the falling volcanic particles. Calm
conditions are consistent with the meteorological situation
described above. As Buenos Aires is under the influence of
a high pressure system, the low level flow is characterized
by light winds and variable directions. The filament of ash
merges into the boundary layer at 10:00 at which time there
is a significant increase in the extinction coefficient through-
out the mixed layer up to an altitude of about 1000 m. This
likely represents not only the volcanic plume that is descend-
ing from an upper layer but possibly the incursion of a lower
level plume arriving from farther away.

The time series of CN (Fig. 4b), PPAH (Fig. 4c) and ab-
sorption coefficient (Fig. 4d) in this 2 day period all show
values above one standard deviation, related to the presence
of the volcanic plume in the boundary layer. In the mornings
of each day, all three of these particle parameters exceeded
the background averages by almost a factor of four, and in
the afternoons they were greater than factors of two to three.
The hourly PM10 mass concentrations (Fig. 4e), show an in-
crease around 13:00 LT and almost constant values during
the remaining hours in this 2 day period. The values are a
factor of two or three greater than the background average
considered in this study.

The ambient temperature on both days was almost 4◦C
lower than the background average, well below one standard
deviation, and the humidity was also much lower than the
background average. While this may be partially an artefact
due to the fact that the background averaging period hap-
pens during the transition of fall to winter, there appears to
be a spatial coherency between the near surface temperature
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Fig. 4. Time series for the period 1–2 July, 2011 showing(a) the vertical profile of aerosol extinction (in M m−1, red indicates the highest
values),(b) CN concentration,(c) PPAH concentration,(d) absorption coefficient,(e) PM10, (f) temperature,(g) relative humidity and(h)
wind velocity. The black solid lines are the daily average background from days with no volcanic ash and the vertical bars are one standard
deviation. The green lines show the ten-minute averages observed those days. The tick marks in the horizontal axes correspond to 2 h.

(from NCEP Reanalysis-2) and the spatial distribution of
AOT observed by MODIS (on Terra and Aqua, for more de-
scription, see Sect. 3.4) for the period 1–2 July, as can be
seen in Fig. 5. The panels in this figure show a noteworthy
overall spatial coherence; nevertheless, they do not necessar-
ily imply cause and effect. Okazaki and Heki (2012) anal-
ysed temperature anomalies at the 250 hPa level for the 2010
Icelandic and 2011 Chilean cases, but did not present any
measurements at the surface. Their results did not indicate a
temperature decrease observed after the 2011 Chilean case,
which is not consistent with our results. Their study showed
a bias observed in the NCEP reanalysis dataset at 250 hPa
before the eruption and as they state in their study, it is possi-
ble that this may have affected their estimates of temperature
after the eruption.

3.3 Analysis of all days under volcanic influence

Frequency distributions were derived for the observations of
all days with volcanic influence and compared with the cor-
responding distributions for all days without such influence.
Figure 6 presents the frequency distributions of the average
background concentration (black line) and for the 8 days (7,
8, 13 and 14 June and 1, 2, 7 and 8 July) when volcanic
influence was detected (red line), for the CN concentration
(Fig. 6a), the absorption coefficient (Fig. 6b), the PM10 con-
centration (Fig. 6c) and the PPAH concentration (Fig. 6d).

Note that for all parameters, the distributions present much
higher frequencies for large values corresponding to the days
with volcanic influence over Buenos Aires. It is clear that the
observations of those 8 days are not typical of urban pollu-
tion and represent enhanced conditions due to the volcanic
ash plume present over the city.

Another evidence of non-typical urban conditions can be
derived from the dispersion diagrams for pairs of variables,
such as is presented in Fig. 7. The correlation between PPAH
and CN is shown in Fig. 7a, where the black dots correspond
to the average background pollution and the red dots show
the observed values during the volcanic influence over the
city. Note that for average background conditions the corre-
lation is quite good between these 2 variables, indicative of
common sources or formation processes in the atmosphere
from precursor gases. In contrast, the measurements show
much less correlation during the 8 days with the volcanic
influence. The same behaviour is observed in Fig. 7b, for
the correlation between CN and the aerosol absorption co-
efficient. Very little correlation is seen, suggesting that the
processes that give rise to the very small particles and their
optical properties are likely very different.

3.4 Aerosol optical thickness

Given the usefulness of satellites for providing images and
optical depth measurements that can be used to track and
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Fig. 5. Spatial distribution of the near surface temperature (K) at 18Z for 1 and 2 July 2011 (top panels). Spatial distribution of Aerosol
Optical Thickness derived from MODIS for 1–2 July 2011, from Terra (bottom left panel) and Aqua (bottom right panel).

possibly estimate the atmospheric loading of the volcanic
ash (such as is presented in Fig. 5), we evaluated the AOT
derived from the measurements with the MODIS sensor that
is mounted on the Aqua and Terra satellites. The AOT from
MODIS is provided at a wavelength of 550 nm and the Terra
and Aqua satellites make overpasses of the Buenos Aires
region every day at approximately 14:00 and 18:00 UTC
(11:00 and 15:00 LT), respectively. While satellite observa-
tions provide valuable information on regional and global
scales, ground-based measurements are representative of
only small areas. However, it should be noted that aerosol
measurements from space might have errors in the derived
aerosol products in areas where the surface reflectance is
high. The AERONET sun photometer measurements during
this same period, using the 500 nm channel, were also in-
cluded in the evaluation because they are considered as the
“ground truth” for satellite product validation (Levy et al.,
2010). As described in Sect. 2.2, we estimate the extinction

coefficient at 550 nm from the raw, range-corrected ceilome-
ter backscatter measurements and subsequently derive the
AOT.

The two airports in Buenos Aires were closed on a num-
ber of occasions due to the threat of volcanic ash to aircraft
as discussed in the introduction. These days are listed in
Table 1, along with our assessment of the presence of vol-
canic ash from the ceilometer profiles. We have chosen the
days in this table to compare the AOTs from the two satel-
lites with those from the ceilometer and the AERONET sun
photometer. The ceilometer and AERONET AOTs were av-
eraged over one hour intervals before and after each of the
satellite overpasses to provide a single value from each to
compare with the satellite data.

Figure 8 summarizes these comparisons for the volcanic
episodes over Buenos Aires during the months of June and
July, where the black, green, red and blue bars represent
the AOT from MODIS-Aqua, MODIS-Terra, the ceilometer
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Fig. 6. Frequency distribution of the average background concen-
tration (black line) and for the 8 days when volcanic influence was
detected (red line), for:(a) CN concentration,(b) absorption coeffi-
cient,(c) PM10 and(d) PPAH concentration.

and AERONET, respectively. The standard deviations around
the means were calculated over the averaging interval from
the ceilometer and the AERONET and are shown as vertical
bars. The uncertainty in the MODIS values was estimated
from the number of pixels that were used to compute the
AOT from these data. The vertical bars on the Aqua and Terra
measurements were calculated as

σ = (
√

N/N)AOT (2)

whereN is the number of pixels.
A large amount of variation is observed in this figure.

Sometimes all four estimates of the AOT are in very good
agreement, e.g. days 183 and 188, while on other days 2 out
of the 4 estimates of AOT might be in close agreement while
the other 2 could be significantly larger or smaller. No sys-
tematic order is apparent between the different estimates and
probably reflects the inhomogeneity of the aerosols in the at-
mospheric column, in general, and the large variability in the
location of the volcanic plume, in particular. One of the con-
tributing factors to the large variation is the difference in the
volume of atmosphere sampled. The MODIS has a footprint
of 10 km× 10 km, whereas the ceilometer and AERONET
sun photometer, with very small viewing angles, sample a
narrow column of air.

The figure also shows colored blocks along the top
axis that represent how the decision of the authorities to
shut down airport operations (or airlines to cancel flights)
matched what the ceilometer indicated about the presence
of volcanic ash in the region. A red block shows that there
were no flights when the ceilometer also indicated a volcanic

Fig. 7. Correlation between(a) PPAH and CN concentrations and
(b) absorption coefficient and CN concentrations, for the average
background day (black dots) and days when the volcanic influence
was detected (red dots).

plume, an orange block shows that there were flights but
that the ceilometer possibly detected a volcanic plume in the
vicinity of the airport and the green block is the case of no
flights when the ceilometer also indicated no volcanic plume
above it.

4 Discussion

The synoptic situations observed during all the episodes of
the volcanic plume affecting Buenos Aires explain the advec-
tion of the plume from its emission point about 1400 km SW
of the city. The plume was injected at an altitude of around
10 km above the level of the crater rim on the initial eruption
(but only reaching lower altitudes in subsequent eruptions)
and, during its transit, it underwent vertical settling and was
subjected to synoptic scale descending motions. Eventually,
the plume reached the top of the city’s boundary layer and
was entrained and mixed with near-surface air, resulting in
ash deposition at the surface. The descent rate observed was
too rapid to be the result of particle sedimentation so dynamic
forcing must have been responsible for the subsidence. In
fact, the synoptic maps all showed that Buenos Aires was
always under a high-pressure system of varying magnitude,
with its associated subsidence, when the ash was present (e.g.
Fig. 2). The vertical profiles of aerosol backscatter indicated
that the ash layer was already mixing downward by the time
it reached the measurement site. Although the evidence is not
decisive, some of the thermodynamic profiles analyzed (but
not shown here) suggest that the volcanic particles absorbed
solar radiation, transferred the heat to the local environment
and raised the temperature within the layer producing small
inversions at the level of the observed plume. The presence of
these mainly hygroscopic volcanic particles also caused the
drying of the atmospheric layer. Furthermore, the presence of
the volcanic plume appears to have lowered the temperature
and relative humidity at the surface (as seen in Fig. 4f and g).

The measurements of particle characteristics at the sur-
face allowed us to determine the natural variability of the
urban emissions under many synoptic conditions before the
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Fig. 8. The aerosol optical thickness (AOT) is shown here from the
MODIS instrument on the Aqua (black) and Terra (green) satellites
and derived from the ceilometer (red) and AERONET (blue). The
ceilometer and AERONET AOT are averages made over the time
periods of Aqua and Terra overpasses. The vertical bars represent
the uncertainties, derived for the satellite measurements from the
number of pixels from which the AOT was derived, and the com-
puted standard deviations from the averaged values of ceilometer
and AERONET. The days shown are taken from Table 1 and the
color-coding indicates how the ceilometer identified volcanic ash
compared with the decision to close an airport. VA corresponds to
volcanic ash.

volcanic ash arrived in Buenos Aires. Our results indicate
that all of the aerosol properties at the surface were elevated
with respect to the background average when the ash layer
was identified overhead, in most instances observations are
more than one standard deviation above the average back-
ground, and showed enhancements of factors of 2 to 4 above
the background average.

The enhanced CN concentration observed was likely re-
lated to the formation of new particles within the plume as
it was being advected away from the source, similar to what
was found by Schäfer et al. (2011). When this type of vol-
cano erupts, it will emit not only ash but also a variety of
gases, including water vapor and sulfidric acid (SH2) and sul-
fur dioxide (SO2) (Andres and Rose, 1995). The conversion
of SO2 to sulfate particles in the presence of water vapor has
been well documented in other cases (e.g. for the Popocate-
petl volcano in Mexico City; Raga et al., 1999; Jimenez et al.,
2004) and may explain the observed local increases of very
small particles at the surface. These small particles would be
inefficiently removed by the sedimenting larger particles.

The increase in the polycyclic aromatic hydrocarbons
(PAHs) determined in the particles by our instrumentation
is more puzzling, since clearly PAHs are not emitted by the
volcanic source. This increase had to be the result of the in-
teraction of the normal urban emissions with the particles in
the volcanic plume. At this point, we can only hypothesize
that perhaps gaseous PAH were adsorbed onto the particles

in the volcanic plume or that chemical reactions were occur-
ring at the surface of these particles resulting in an increased
concentration of PPAH.

The increase in the signal of the absorption coefficient
must be related to the composition of the particles in the
volcanic plume. Under normal urban conditions, the mea-
surement of absorption coefficient is directly linked to pri-
mary black carbon (BC) from combustion sources. The par-
ticles in the volcanic plume may have contained some met-
als that would also absorb light at a wavelength of 550 nm.
The newly formed particles from the gas-to-particle conver-
sion that appeared as enhanced CN concentrations, may have
also contributed to this enhanced absorption signal. Another
possible explanation would be that the volcanic particles de-
scending from the elevated plume were scavenging the urban
BC particles, mixed throughout the boundary layer, resulting
in an enhanced absorption coefficient measured at the surface
by our measurement system.

The analysis of the frequency distributions shows that dur-
ing days influenced by volcanic ash, all parameters are much
higher than for days that correspond to average background
pollution in Buenos Aires. Moreover, the observations pre-
sented in Fig. 6 suggest that the parameters in the days influ-
enced by the volcanic ash are not part of the same distribution
associated with the typical urban pollution.

Furthermore, dispersion diagrams between the observed
variables (Fig. 7) indicate that the nature of the processes
that relate them is very different during average background
urban pollution and during those days with volcanic influ-
ence. Variables that in an urban setting would be correlated
(e.g. CN and absorption coefficient, associated with emis-
sions from diesel vehicles such as buses) are not correlated
at all during the days with volcanic influence.

An attempt at a quantitative comparison of all the different
estimates of AOT (from satellite and ground-based) suggests
that it is a very difficult task to accomplish (Fig. 8). Esti-
mates from MODIS on Terra and Aqua correspond to “in-
stantaneous” measurements at two different times of the day
and they varied from 50 % to factors of 2 for the same day.
This would be indicative of the transient nature of the plume
over the selected area. Differences between AOT values de-
termined at the AERONET site (located about 4 km from our
research site) and our estimate from the ceilometer would in-
dicate spatial variability of the plume and in most cases the
ceilometer values were smaller than AERONET ones. The
largest estimate from AERONET was 1.2 on 13 June, while
the largest value from MODIS-Aqua was 1.05 on 14 June,
suggesting that the bulk of the plume arrived after the over-
pass of Aqua on 13 June. AERONET values were usually
higher than the other three estimates.
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5 Summary and conclusions

A suite of instruments deployed on the roof of one of the
buildings of the FCEN, UBA, initially installed to make ur-
ban pollution measurements, was used to detect and charac-
terize several intrusions of volcanic ash that affected the city
during June and July 2011.

We have presented here a variety of remote and in situ
measurements and the synoptic conditions prevalent during
one of the case studies when both airports in Buenos Aires
were closed to air traffic due to the presence of an ash cloud.
While not presented here for brevity, all the other case studies
showed similar results. The measurements by remote sensing
and corresponding analysis allow us to make the following
conclusions:

– The ceilometer clearly identified the volcanic plume
aloft and the measurements showed the descent of the
plume into the boundary layer.

– Quantitative AOT estimates are possible from the
ceilometer measurements based on an algorithm re-
lating the raw backscatter with the extinction derived
from in situ measurements under well-mixed condi-
tions in the boundary layer.

– The estimates of AOT derived from AERONET,
ceilometer and MODIS, indicate that all three plat-
forms were able to identify the volcanic ash plume si-
multaneously.

– Quantitative comparison of the different estimates of
AOT is difficult, suggesting large spatial and temporal
variability of the plume.

– AOT estimates by the ceilometer are smaller than those
from AERONET.

The analysis of the in situ measurements during the pe-
riods when volcanic ash was present over the research
site leads to the following conclusions:

– All the particle measurements increased beyond the
average background by at least one standard devia-
tion, demonstrating the sensitivity of the instruments
to identify the plume signature at the surface.

– The anomalous concentrations of CN suggest new par-
ticle formation, presumably from the conversion of
SO2.

– The anomalous concentrations of PPAH may come
from the uptake of PAHs on the plume particles or
from chemical reactions on the surface of plume parti-
cles.

– The anomalous absorption coefficients indicate that
plume particles may contain certain compounds that

can absorb radiation at 550 nm. Another possible ex-
planation consistent with the observations is the scav-
enging of black carbon from urban sources as the
plume descends through the boundary layer to the sur-
face.

– The presence of the ash layer may have led to a de-
crease in temperature and relative humidity at the sur-
face.
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