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Abstract. Several authors, according to different method-
ological approaches, have employed logistic Regression
(LR), a multivariate statistical analysis adopted to assess the
spatial probability of landslide, even though its fundamental
principles have remained unaltered.

This study aims at assessing the influence of some of
these methodological approaches on the performance of LR,
through a series of sensitivity analyses developed over a test
area of about 300 km2 in Calabria (southern Italy).

In particular, four types of sampling (1 – the whole study
area; 2 – transects running parallel to the general slope di-
rection of the study area with a total surface of about 1/3 of
the whole study area; 3 – buffers surrounding the phenom-
ena with a 1/1 ratio between the stable and the unstable area;
4 – buffers surrounding the phenomena with a 1/2 ratio be-
tween the stable and the unstable area), two variable coding
modes (1 – grouped variables; 2 – binary variables), and two
types of elementary land (1 – cells units; 2 – slope units) units
have been tested. The obtained results must be considered as
statistically relevant in all cases (Aroc values> 70 %), thus
confirming the soundness of the LR analysis which main-
tains high predictive capacities notwithstanding the features
of input data.

As for the area under investigation, the best performing
methodological choices are the following: (i) transects pro-
duced the best results (0< P(y) ≤ 93.4 %; Aroc= 79.5 %);
(ii) as for sampling modalities, binary variables (0< P(y) ≤

98.3 %; Aroc= 80.7 %) provide better performance than or-
dinated variables; (iii) as for the choice of elementary land
units, slope units (0< P(y) ≤ 100 %; Aroc= 84.2 %) have
obtained better results than cells matrix.

1 Introduction

According to the Centre for Research on the Epidemiology
of Disasters (CRED), the number of geomorphological catas-
trophes registered on a yearly basis has increased fivefold,
from 78 in 1975 to almost 450 in 2007. It has been esti-
mated that the average loss per year accounts for 0.25 %
of the global Gross Domestic Product (GDP). Over the last
20 yr, catastrophes registered in Europe have caused almost
90 000 casualties, 29 million injured people and economic
loss equalling 211 billion euros. In Europe, the number of
catastrophes caused by climate events has almost tripled:
from 1280 between 1978 and 1987 to 3435 between 1998
and 2007 (Scheuren et al., 2008; Vos et al., 2010; Guha-Sapir
et al., 2011).

This trend is essentially due to a greater exposure to hazard
for properties and people (Scheuren et al., 2008; Vos et al.,
2010; Guha-Sapir et al., 2011) and, very probably to the cli-
mate changes (AA.VV., 2009) accelerated by several factors
such as greenhouse gases in the atmosphere and environmen-
tal degradation.

In Italy, one of the most geomorphologically unstable
countries in Europe, slope instability phenomena are – im-
mediately after earthquakes – one of the main sources of risk
for individuals, built-up areas, infrastructures and architec-
tural heritage. Moreover, over the last few years, an increase
in extreme rainfalls (AA.VV., 2009), has determined a larger
number of slope instability events. Within this perspective,
assessment and mitigation of the risk implied by such phe-
nomena play a key role in the scientific research for their
impact. In particular, in terms of both civil defence against
landslides and land management.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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The assessment at a regional scale of the risk of mass
movement poses relevant problems because of the lack or
incompleteness of the historical series of events and the trig-
gering phenomena and – as a consequence – of models on
the trigger-event relationship, as well as the non-stationarity
of landsliding phenomena in general. On the contrary, stud-
ies on the probability of occurrence of mass movements in a
given area are at a good stage (Aleotti and Chowdhury, 1999;
Chung and Fabbri; 1999; Guzzetti et al., 1999, 2005, 2006;
Baeza and Corominas, 2001; Thiery et al., 2007; Van Westen
et al., 2008; Sorriso-Valvo et al., 2009; Rossi et al., 2010;
Yalcin et al., 2011; Choi et al., 2012); such probability, can
also be defined as spatial hazard. Some authors, like us, pre-
fer to employ the definition of susceptibility to mass move-
ment when independent variables are exclusively related to
the physical features of the land and do not include the trig-
gering factors.

Assessment of the potential existence of mass movements
is generally carried out by following a conceptual model
based on three fundamental steps: (a) landsliding inventory
maps on the study area or in one of its subunits (test area);
(b) thematic maps on territorial variables made up of instabil-
ity factors and elements considered as directly or indirectly
related to slope instabilities; (c) statistical multivariate mod-
els to estimate the contribution of each single variable to the
slope instability and to organise the study area into domains
with a different probability of being affected by mass move-
ment phenomena.

The first two steps are particularly delicate, since the qual-
ity of assessments depends on the quality of input data.

Independent variables (either instability factors or features
indirectly associated to the phenomena under investigation)
that are used for these studies, are usually chosen based on
the authors’ direct experience, training and education.

Some authors, in fact, attach more importance to territorial
factors related to geological and geo-morphological features
(i.e. lithology, vegetation cover, type of soil, elevation, slope
angle, aspect and curvature). Others tend to consider more
quantitative factors and/or those factors related to geological-
technical features (such as topographic humidity index, dis-
tance of the area from rivers, roads and faults, density of
drainage, roads and faults, bedrock depth, soil porosity, etc.).

As for the number of variables to be employed, it is possi-
ble to recognise two main approaches: using a limited num-
ber of territorial variables considered as very relevant or in
any case related to mass movement events; or employing
as many variables as possible, so as not to exclude some of
them, which may display high, despite spurious, correlation
with the territorial distribution of mass movements.

Among the several statistical procedures adopted to assess
the susceptibility to mass-movements, Logistic Regression
(LR), has increasingly been adopted (Bernknopf et al., 1988;
Gorsevski et al., 2000; Dai and Lee, 2002; Ohlmacher and
Davis, 2003; Dai et al., 2004; Ayalew and Yamagishi, 2005;
Can et al., 2005; Chau and Chan, 2005; Yesilnacar and Topal,

Fig. 1.Location of Coastal Chain study area (769 500 cells).

2005; Van Den Eeckhaut et al., 2006; Greco et al., 2007;
Chen and Wang, 2007; Garcia-Rodriguez et al., 2008; Ne-
feslioglu et al., 2008; Mathew et al., 2009; Sorriso-Valvo et
al., 2009; Falaschi et al., 2009; Nandi and Shakoor, 2009;
Chauhan et al., 2010; Erener et al., 2010; Rossi et al., 2010;
Yalcin et al., 2011; Choi et al., 2012). Different procedures
of the LR application have been employed, and they mainly
differ in terms of sampling modalities, variables transforma-
tion, and selection of reference land units.

Some authors have carried out studies to compare the dif-
ferent modalities of assessment of spatial probabilities (Dis-
criminant Analysis, Logistic Regression, Artificial Neural
Networks, etc.), to evaluate their predictive capacities (Yesil-
nacar and Topal, 2005; Carrara et al., 2008; Van Den Eeck-
haut et al., 2010; Das et al., 2010; Rossi et al., 2010; Yal-
cin et al., 2011; Choi et al., 2012), while, less numerous are
the studies on the evaluation of the relevance of the sev-
eral methodological choices adopted in the implementation
of the procedure on LR performance (Guzzetti et al., 1999,
2006; Carrara et al., 2008; Sorriso-Valvo et al., 2009; Van
Den Eeckhaut et al., 2009). This study aims a providing a
contribution to fill this gap by means of a comparison of the
results from a series of analyses developed over a study area
of about 300 km2 in Calabria (southern Italy; Fig. 1).

The predictive capacities of carried out regressions have
been compared through the ROC analysis (Hosmer and
Lemeshow, 1989).

Nat. Hazards Earth Syst. Sci., 13, 2209–2221, 2013 www.nat-hazards-earth-syst-sci.net/13/2209/2013/
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2 Logistic regression in the assessment of susceptibility
to mass movements

Given for granted the theory of the LR analysis (Pampel,
2000), the numerous methodologies in the scientific litera-
ture on the application of Logistic Regression to assess sus-
ceptibility to mass movements differ in three main aspects:
(1) sampling modalities to select the reference sample in or-
der to calculate regression coefficients; (2) variables transfor-
mations; and (3) the type of land unit to carry out the analy-
sis.

2.1 Sampling

Sample collection is one of the most delicate steps of LR
analysis, as far as the sampled population is employed to cal-
culate regression coefficients (weights) of independent vari-
ables. It follows that the sample must be sufficiently repre-
sentative of the whole study area, and – in particular – it
must take into account all the territorial fields and contexts
that best summarise the relationships between the landslid-
ing phenomena and the predisposing factors.

In this perspective, the approaches adopted by the several
authors are very different: some employ samples made up
of the same number of stable and landsliding prone cells
(0/1 = 1) (Dai and Lee, 2002; Dai et al., 2004; Chau and
Chan, 2005; Yesilnacar and Topal, 2005; Garcia-Rodriguez
et al., 2008; Nefeslioglu et al., 2008; Mathew et al., 2009;
Nandi and Shakoor, 2009). Among this group, the majority
of authors employs a sample population randomly extracted
from the whole study area (Dai and Lee, 2002; Dai et al.,
2004; Chau and Chan, 2005; Yesilnacar and Topal, 2005;
Garcia-Rodriguez et al., 2008; Mathew et al., 2009; Choi et
al., 2012), other researchers select only a portion of the sur-
face to be used (Nefeslioglu et al., 2008; Nandi and Shakoor,
2009). Further approaches consist in using a different num-
ber of stable and landslide prone cells (0/1 6= 1), consid-
ering as a sample population either the whole study area
(Bernknopf et al., 1988; Ohlmacher and Davis, 2003; Ayalew
and Yamagishi, 2005; Chen and Wang, 2007; Falaschi et al.,
2009; Chauhan et al., 2010; Erener et al., 2010; Rossi et al.,
2010; Yalcin et al., 2011) or a part of the same (Gorsevski et
al., 2000; Can et al., 2005; Van Den Eeckhaut et al., 2006;
Greco et al., 2007; Sorriso-Valvo et al., 2009).

2.2 Coding of variables

LR allows researchers to employ also categorical variables
which, indeed, have to be codified to allow the interpola-
tion algorithm to calculate the regression coefficients. Conse-
quently, variables transformation is a common aspect of the
application of Logistic Regression analyses.

The dependent variable is always coded according to the
logit model proposing two potential values for a dichotomic

variable, i.e. 1= existing (or true) and 0= non existing (or
false).

Coding of independent variables has been dealt with by
several authors according to two different approaches; the
first approach, which is used by the vast majority of authors
(Bernknopf et al., 1988; Dai and Lee, 2002; Ohlmacher and
Davis, 2003; Dai et al., 2004; Ayalew and Yamagishi, 2005;
Can et al., 2005; Chau and Chan, 2005; Van Den Eeckhaut
et al., 2006; Chen and Wang, 2007; Garcia-Rodriguez et al.,
2008; Nefeslioglu et al., 2008, Mathew et al., 2009; Falaschi
et al., 2009; Chauhan et al., 2010; Rossi et al., 2010), creates
layers having binary variables (dummy variables) for all the
categories or classes of each dependent variable (a variable
having ten categories or classes, generates the same number
of binary variables). Such approach is sensible when a lim-
ited number of independent variables is available and when
such variables are – in turn – articulated in a few categories
or classes. When analyses imply a high number of indepen-
dent variables and consequently of categories, the risk is to
produce a too long regression equation which may generate
calculation problems. For this reason, some authors (Yesil-
nacar and Topal, 2005; Greco et al., 2007; Sorriso-Valvo et
al., 2009; Nandi and Shakoor, 2009; Erener et al., 2010; Yal-
cin et al., 2011; Choi et al., 2012), have adopted an approach
according to an ascending ordination of the different classes
of variables, based on the observed frequency of mass move-
ment in sampling zones (grouped variables). Values of such
relative-scale variables are grouped into classes. Such an ap-
proach avoids calculation problems generated by too long
equations and operates a linearization of independent vari-
ables.

2.3 Elementary land units

Land units (described in the scientific literature) employed in
studies on diffused mass movements can be ascribed to four
main types:

– geo-morphologic units: morphologic units representing
a territory, such as slopes, talweg, flat valley floors,
basin heads, ridges, noses, etc.;

– cells matrix: land units generated by sorting the area
into similar or different cells in terms of shape and di-
mension;

– homogeneous land units: units that are generated start-
ing from a series of thematic maps on the relevant insta-
bility factors, where each factor is described trough few
classes that are sufficient to express internal variability;
the intersection among thematic maps points out homo-
geneous land sections in terms of instability factors.

– slope units: territorial units automatically derived from
high definition digital land models.

www.nat-hazards-earth-syst-sci.net/13/2209/2013/ Nat. Hazards Earth Syst. Sci., 13, 2209–2221, 2013
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Among these units, except for a less number of authors who
make use of slope units (Carrara et al., 1991, 1995; Ko-
mac, 2006; Rossi et al., 2010) and homogeneous land units
(Can et al., 2005; Falaschi et al., 2009), cells matrix is the
most widely used land unit by the authors considered (Bern-
knopf et al., 1988; Gorsevski et al., 2000; Dai and Lee, 2002;
Ohlmacher and Davis, 2003; Dai et al., 2004; Ayalew and Ya-
magishi, 2005; Chau and Chan, 2005; Yesilnacar and Topal,
2005; Van Den Eeckhaut et al., 2006; Greco et al., 2007;
Chen and Wang, 2007; Garcia-Rodriguez et al., 2008; Ne-
feslioglu et al., 2008; Mathew et al., 2009; Sorriso-Valvo et
al., 2009; Nandi and Shakoor, 2009; Chauhan et al., 2010;
Erener et al., 2010; Yalcin et al., 2011; Choi et al., 2012).

Authors almost homogeneously perform the fitting and
weight assessment steps for independent variables and for
the variables of analysis application (assessment ofP(y)).

To facilitate readability of the results, the probability val-
ues obtained are then grouped in classes with ranges varying
according to the aim of the analysis. In this studyP(y) val-
ues are re-classified in five different susceptibility classes:
Null (P (y) ≤ 5 %); Low (5 %< P(y) ≤ 25 %); Medium
(25 %< P(y) ≤ 50 %); High (50 %< P(y) ≤ 75 %); Very
high (P(y) > 75 %).

3 Study area

The data necessary to carry out this study have been drawn
from a study area of about 308 km2 in the southwest area of
the Coastal Chain, Calabria, Italy (Fig. 1).

In this area, we have collected data relevant to indepen-
dent and dependent variables. These are mainly geological
and geo-morphological variables. Such variables have been
recognised as associated through a cause-effect relation with
landsliding phenomena. Given the extension of potentially
target-study areas, selected variables fulfil the fundamental
requisite of being cheap in terms of variables collection.

The data relevant to independent variables and the depen-
dent variable have been obtained from pre-existing thematic
maps, ad hoc survey and the processing of other variables
(DEM).

A 1 : 10 000 (Fig. 2) mass movement map has been pro-
duced with the aim of both characterising sample areas and
assessing performance. This map, which represents the de-
pendent variable, has been generated though photo inter-
pretation carried out on both 1: 33 000 aerial photos (IGM
flights) and on field surveys. As a whole, 1206 phenomena
covering a surface of about 122 km2, i.e. 39 % of the study
area, have been mapped.

Nine independent variables have been identified. Two of
them are of categorical type: lithology and land use. Lithol-
ogy (LTU) has been obtained digitalizing a pre-existing the-
matic map (Carta Geologica della Calabria, Burton, 1971);
land use (LUS) has been obtained by means of the interpre-
tation of aerial photos shot in 2006 on a 1: 5000 scale. Such

Fig. 2.Mass movement inventory map of study area.

photos have been corrected in plane projection and are avail-
able on the Portale Cartografico Nazionale (PCN), i.e. the na-
tional cartographic portal, in the section WMS-Server of the
Ministero dell’Ambiente e Territorio (Italian Ministry for the
Environment and Territory).

Seven variables are parametric; six of them have been de-
rived from a 20 m-square cells DTM, i.e. elevation (ELEV),
slope (SLO), aspect (ASP), curvature of land surfaces calcu-
lated both perpendicularly (ACUR) and in parallel (DCUR)
to the maximum slope, and topographic wetness index (TWI)
(Moore et al., 1991); one variable, the distance to the closest
fault (FDIST), has been obtained by applying Euclidean Dis-
tance Operator (an Arc-Info tool) to a tectonic lineation map
detected by interpreting aerial photographs and field surveys
(Gullà et al., 2010). Parametric territorial factors have been
classified according to personal experience gained in previ-
ous studies (Greco et al., 2007; Sorriso-Valvo et al., 2009).
Table 1 shows the distribution of the territorial variables con-
sidered in the study area. All acquired variables, that have
been georeferenced according to the Gauss-Boaga reference
system (Monte Mario Italy 2), have been stored in grid for-
mat (20 m square cells) in an Arc-Info database (ver. 9.3),
through which all operations of data management, process-
ing and graphic outline have been carried out.

Nat. Hazards Earth Syst. Sci., 13, 2209–2221, 2013 www.nat-hazards-earth-syst-sci.net/13/2209/2013/
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Table 1. Frequency of territorial factors categories or classes and
relative dummy variables.

Factors Category (%) Dummy
or class variable

Lithological Unit CDS 8.22 LTU1
GS 17.51 LTU2
CA 12.07 LTU3
CL 6.82 LTU4
LD 7.45 LTU5
LGMR 39.00 LTU6
HGMR 7.65 LTU7
IR 1.29 LTU8

Land Use UA 4.47 LUS1
BB 4.67 LUS2
PF 21.52 LUS3
PA 10.95 LUS4
OFV 4.67 LUS5
FOR 53.73 LUS6

Elevation <100 m 11.85 ELEV1
100–400 m 34.15 ELEV2
400–800 m 30.98 ELEV3
800–1200 m 22.27 ELEV4
>1200 m 0.74 ELEV5

Slope angle <8◦ 16.10 SLO1
8◦–15◦ 18.06 SLO2
15◦–30◦ 46.31 SLO3
30◦–45◦ 18.45 SLO4
45◦–60◦ 1.04 SLO5
>60◦ 0.04 SLO6

Aspect Flat 0.58 ASP1
North 9.41 ASP2
East 6.72 ASP3
South 11.60 ASP4
West 17.23 ASP5

Across slope curvature Concave 37.88 ACUR1
Plane 20.00 ACUR2
Convex 42.12 ACUR3

Down slope curvature Concave 41.17 DCUR1
Plane 17.89 DCUR2
Convex 40.95 DCUR3

Topographic wetness index <2 5.79 TWI1
2–3 15.86 TWI2
3–5 27.55 TWI3
>5 50.79 TWI4

Distance to fault <20 m 16.07 FDIST1
20–80 m 30.96 FDIST2
80–200 m 36.28 FDIST3
>200 m 16.70 FDIST4

Key to the acronyms. Lithological unit: CDS= colluviums, debris and soil;
GS= gravel and sand; CA= conglomerate and arenite; CL= clay; LD= limestone
and dolomite; LGMR= low grade metamorphic rock; HGMR= high grade
metamorphic rock; IR= igneous rock. Land Use: UA= urban areas; BB= bare rocks
and beaches; PF= plowing field; PA= pastures; OFV= olive groves, fruit
plantations and vineyards; FOR= forests.

4 Evaluation of the effectiveness of methodological
approaches

4.1 Premise

To test which methodological choices concerning sampling,
variable transformation and adopted land units, provide the
best results in terms of assessment of susceptibility, a certain
number of LR analyses have been carried out by processing
data according to the several approaches proposed.

The results obtained through the different applications
have been assessed by means of ROC (Receiver Operat-
ing Characteristics) analysis (Hosmer and Lemeshow, 1989).
ROC analysis consists in plotting, on a binary diagram, in
the y-axis the Sensitivity value [sensitivity= number of land
units correctly assessed as unstable (true positive)/total num-
ber of land units really unstable (true positive+ false nega-
tive)], and in the x-axis the values of 100-Specificity [speci-
ficity = number of land units correctly assessed as stable
(true negative)/total number of really stable territorial units
(true negative+ false positive)].

LR and ROC analyses have been performed in the IBM-
SPSS ver. 19 statistical package.

4.2 Sampling modes

In order to verify which mode provides the best results, four
different types of sampling modes have been tested (Fig. 3a–
d). These are:

1. The whole study area (Fig. 3a).

2. A series of transects covering a surface of about 1/3
of the whole study area (Fig. 3b). The study area has
a westward prevailing aspect. The same trend charac-
terises territorial distribution of lithology (LTU), land
use (LUS) and distance to fault (FDIST). Thus, tran-
sect are set orthogonal to the N–S trend of the topo-
graphic relief of the study area, i.e. in a way that al-
most the whole range of elevation and its eventual trend
be followed. Such arrangement criterion for transects
is commonly adopted in geological and geomorpho-
logical studies, when it is not possible to survey com-
pletely the study area. In our field of interest, tran-
sect with different arrangements were tested by Guaras-
cio et al. (2005) confirming tradition geological proce-
dure. Transects are representative for categorical vari-
ables (Lithology – LTU and Land Use – LUS) perspec-
tive.

3. Buffers surrounding the detected phenomena with a 1/1
ratio between the stable and the unstable area (Fig. 3c).

4. Buffers with a 1/2 ratio between the stable and the un-
stable area (Fig. 3d).

These last two sampling modes consists in generating a
buffer around each landslide of the training set. The width

www.nat-hazards-earth-syst-sci.net/13/2209/2013/ Nat. Hazards Earth Syst. Sci., 13, 2209–2221, 2013
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Fig. 3.Tested sampling area:(A) All area;(B) Transects;(C) Buffer
1/1; (D) Buffer 1/2.

of the buffer around each landslide was set so that the ratio
between unstable and stable cells is 1/1 or 1/2.

By using these four sampling modes as a training set,
a series of LR analyses has been performed. Cells matrix
and grouped variables, that have been adopted also in previ-
ous studies on performance assessment (Greco et al., 2007;
Sorriso-Valvo et al., 2009), are also in subsequent assessment
sessions.

By employing the training sets resulting from the different
sampling modes, the susceptibility to phenomena has been
evaluated; this has, in turn, produced four maps that are il-
lustrated in Fig. 4.

The susceptibility maps obtained from the regressions
have been validated through the ROC analysis. The results
obtained after the validation step are shown in Fig. 5a–d and
Table 2a. The results of these LR analyses highlight that the
sampling with transects allow more accurate assessment.

4.3 Variables coding

In order to be able to compare the results obtained by means
of grouped variables with those obtained through binary vari-
ables, we have generated a binary variable for each class

Fig. 4. Susceptibility maps obtained with square cells and grouped
variables for tested sampling area:(A) All area; (B) Transects;
(C) Buffer 1/1; (D) Buffer 1/2.

of independent variables; we have thus obtained 44 binary
dummy variables (Table 1).

Using dummy variables, four different regressions have
been performed by considering the four previously illustrated
sampling methodologies, which have produced the suscepti-
bility maps illustrated in Fig. 6.

Also in this case, we have validated the results of the re-
gressions by means of the ROC analysis. This second series
of regressions confirms a better performance of the sampling
with transects and indicates that binary variables provide the
best results (Fig. 5e–h, Table 2b).

4.4 Reference land units

Once the best performance with transects sampling and bi-
nary variables has been established, the results obtained
through a GIS system based on a cells matrix employed in all
the above-mentioned regressions, have been compared with
the results obtained through the employment of slope units.

Slope units have been generated for the study area by using
the 20 m square cells DEM. Thanks to the hydrological func-
tions of Arc-Info (Flowdir, Flowacc, Stream order, Stream

Nat. Hazards Earth Syst. Sci., 13, 2209–2221, 2013 www.nat-hazards-earth-syst-sci.net/13/2209/2013/
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Fig. 5. ROC curves obtained with: square cells and grouped variables for tested sampling area,(A) All area;(B) Transects;(C) Buffer 1/1;
(D) Buffer 1/2; square cells and dummy variables for tested sampling area,(E) All area;(F) Transects;(G) Buffer 1/1; (H) Buffer 1/2; slope
units and dummy variables for tested landslide frequency thresholds (Flt),(I) Flt > 5 %; (J) Flt > 20 %;(K) Flt > 40 %.

link, Basin, Watershed) both the Horton ordering of branches
of drainage network and the related watershed have been
generated. I and II order branches have been excluded since
the hydrological functions of Arc-Info generate a drainage
network continuously covering the topographic surface, thus
only by using branches with order greater than II a network
fairly similar to the real one could be produced.

Slope units have been defined by extending the drainage
branches up to the watershed. Thus, two slope units have
been defined for each basin (Fig. 7). By means of this proce-
dure, and combining among themselves the 769 500 square
cells of the GIS system, 1,860 slope units have been ob-
tained (Fig. 8); one of these units is made up by merging
coastal plains with alluvial valley floors. This unit has been
excluded from the susceptibility assessment test, as its con-
stituent units are not slope units and landslide incidence is
nearly null. In the development of a regression analysis em-
ploying slope units, it is necessary to define the minimum
percentage of surface affected by mass movements for which
a unit is considered unstable. In this study, three relevant dif-
ferent thresholds have been heuristically considered, respec-
tively 5 %, 20 % and 40 % (Fig. 9).

Once the landsliding threshold has been defined, we have
detected – for each slope units – the class prevailing in
the unit itself for the categorical land variables (LTU, LUS,
ELEV, ASP) and the average value for the parametric vari-
ables (SLO, ACUR, DCUR, TWI, FDIST). Such procedure
can be easily applied by means of an overlay analysis be-
tween the layer of the slope units and those of the land vari-
ables. The prevailing classes and the average values detected
have been assigned to the slope units (Table 3).

Through this approach, the layers of the independent land
variables have been regenerated, and the independent vari-
ables are no longer distributed according to cells matrix, but
according to slope units. By the binary recoding of such lay-
ers we have obtained 44 binary variables to be employed
in this analysis; in the following analyses, binary variables
only are used as they turned out to be more performing than
grouped variables (see Sect. 4.3). The sample population
upon which the regression coefficients had to be calculated
has been drawn from 782 sampling slope units, completely or
prevalently located in the previously tested transects (Fig. 8).

By employing the slope units and binary variables three
regressions for the three different landsliding threshold
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Table 2.Synthesis ofP(y) values and validation of RL performed:
(A) with square cells and grouped variables for all tested sampling
area; (B) with square cells and dummy variables for all tested sam-
pling area; (C) with slope units and dummy variables for all tested
landslide frequency threshold (Lft): (A) Lft> 5 %; (B) Lft > 20 %;
(C) Lft > 40 %.

(A) P(y) ROC
Sampling (%) (%)

All area 0–85.0 76.4
Transects 0–93.4 79.5
Buffer 1/1 0–87.2 71.2
Buffer 1/2 0–86.7 72.6

(B) P(y) ROC
Sampling (%) (%)

All area 0–92.1 77.9
Transects 0–98.3 80.7
Buffer 1/1 0–94.3 72.8
Buffer 1/2 0–98.3 73.7

(C) P(y) ROC
Lft (%) (%)

>5 % 0–100 80.5
>20 % 0–100 84.2
>40 % 0–100 83.4

Lft = Landslide frequency threshold.

Table 3.Criteria for assigning values of territorial variables to slope
units.

Variable Criterion

LTU Prevalence
LUS Prevalence
ELEV Prevalence
SLO Average
ASP Prevalence
ACUR Average
DCUR Average
TWI Average
FDIST Average

considered have been performed. The three susceptibility
maps obtained are shown in Fig. 10.

Like for the previous regressions, we have validated the
results of the regressions by means of the ROC analysis. Fig-
ure 5i–k and Table 2c display the results of the validation.

5 Discussion and conclusions

RL is a multivariate statistical analysis widely employed
in the assessment of the risk from mass movements based
on a set of land variables. In most cases, susceptibility
to mass movements is determined by means of different

Fig. 6. Susceptibility maps obtained with square cells and dummy
variables for tested sampling area:(A) All area; (B) Transects;
(C) Buffer 1/1; (D) Buffer 1/2.

methodological approaches for those aspects of the pro-
cedure, which have not been rigorously standardized. In
particular, procedural differences involve different sampling
modes and variable management, as well as different types
of reference land units.

With the aim to compare the effectiveness of the dif-
ferent methodological approaches, a series of regressions
have been performed by using different procedures on a
test area located in Calabria (southern Italy Fig. 1). Predic-
tive capacities of the regressions carried out have been vali-
dated and compared by means of the ROC analysis (Hosmer
and Lemeshow, 1989), and they have also been integrated
with the visual analysis of the obtained susceptibility maps
(Fig. 11).

A first series of regressions illustrated in Sect. 4.2, has
been performed to test four different sampling types: (1) the
whole study area (Fig. 3a); (2) transects running parallel
to the general slope direction of the study area (Fig. 3b);
(3) buffers surrounding the phenomena with a 1/1 ratio be-
tween the stable and the unstable area (Fig. 3c); (4) buffers
with a 1/2 ratio between the stable and the unstable area
(Fig. 3d).

Nat. Hazards Earth Syst. Sci., 13, 2209–2221, 2013 www.nat-hazards-earth-syst-sci.net/13/2209/2013/



R. Greco and M. Sorriso-Valvo: Influence of management of variables, sampling zones and land units on LR 2217

Fig. 7.Scheme of Slope Unit generation.

By means of ROC analysis the results obtained for the four
regressions have been estimated (Fig. 5a–d and Table 2a). As
it can be inferred from Table 2a the results obtained, both
in terms of range of probability (P(y)max> 85 %) and in
terms of assessment accuracy (Aroc> 70 %) must be con-
sidered statistically acceptable in all cases. However, the re-
gression employing transects (Fig. 3b) for the selection of the
training set, provided the best results (0< P(y) ≤ 93.4 %;
Aroc= 79.5 %).

The best performance obtained from the sample derived
from transects is probably due to a greater representative-
ness of transects of the whole survey area, as compared to the
buffers. On the other hand, transects are one of the sampling
modalities making the LR more practical, thereby avoiding
to sample the whole study area. Moreover, even the ratio
between stable/unstable cells is similar to the values of the
whole study area. Finally, the unexpected lower performance
obtained through the analysis carried out by means of the
sample derived from the whole study area resulted also in
others studies (Greco et al., 2007), and it may be attributed
to redundancy problems (excessive size of the population).
A further reason for this result could be the fact (difficult to
demonstrate) that mass movement has not affected some sus-
ceptible land units, so far.

The second methodological approach tested, regards the
management modalities of independent variables. As for the
use of binary variables, four extra regressions have been

Fig. 8.Slope unit and sampling slope unit map of study area.

performed, by reconsidering the four different sample areas
and using the 44 variables obtained from the binary reclas-
sification of each category or class of predisposing land fac-
tors (Table 1). In this case too the validation (Fig. 5e–h and
Table 2b) points out statistically acceptable results for all re-
gressions (P(y)max> 92 %; Aroc> 72 %). The use of the
training set obtained by transects (Fig. 3b) provides once
again the best results (0< P(y) ≤ 98.3 %; Aroc= 80.7 %),
definitively confirming that such sampling modality allows
a better performance of the LR analysis. The comparison
between the sections A and B of Table 2, points out that,
notwithstanding the sampling type, the use of binary vari-
ables provides, in any case, assessment that is more accurate.

The best performance of the regressions carried out by
means of binary variables must be probably attributed to
a greater associative capacity of the algorithm of regres-
sion between presence/absence of the phenomenon and pres-
ence/absence of the independent binary variable as compared
to the variables ordered with increasing values according to
the frequency of slope instability.

Finally, as regards the influence of the type of land units
on the results, we have compared the results obtained by
means of the employment of the slope units with those ob-
tained by means of the square cells. By using the slope units
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Fig. 9. Stable and unstable slope unit maps related to tested land-
slide frequency threshold (Lft):(A) Lft > 5 %; (B) Lft > 20 %; (C)
Lft > 40 %.

(Fig. 8), three regressions for different landsliding thresh-
old (Lft) (Fig. 9) have been performed. As for sampling
and transformation modalities of independent variables for
these regressions, we have made recourse to the choices that
had produced the best results in previous tests, i.e. transects
(Fig. 8) and binary variables. The validation step (Fig. 5i–
k and Table 2c) has shown more than acceptable results for
the three threshold considered (P(y)max= 100 %; Aroc>
80 %). However, the landsliding threshold of 20 % for the
slope unitsP(y) = 1, provides a realistic probability range
0 < P(y) ≤ 100 %, and high performance (Aroc= 84.2 %).

If we compare the ROC curves of all illustrated regressions
(Fig. 5a–k), it is evident that those related to the regressions
based on slope units (Fig. 5i–k) display a subtended area,
which is always higher than those based on cells matrix.

It is therefore evident that the features of the slope units,
derived from the prevalence or the average of the values of
the cells composing the unit themselves, are those that best
represent the associations between characteristic elements
of the areas affected by mass movement phenomena, while
the estimate ofP(y) based on the cells, cannot physically

Fig. 10. Susceptibility maps obtained with slope units and
dummy variables for tested landslide frequency threshold (Lft):
(A) Lft > 5 %; (B) Lft > 20 %;(C) Lft > 40 %.

represent the features of areas much wider than the cell itself,
since thisP(y) estimate is expressed for each single cell.

Once a “positive” land unit has been determined by LR,
this is then considered as being completely affected by the
mass movement, while actually it is affected for surface rates
higher than 50 % in the case of cells, and for a percent greater
than the selected threshold in the case of the slope units. The
contrary occurs for “negative” units. In any case, uncertainty
results on the exact spatial location of the predicted event
within the land unit. As the slope units on average contain
380 cells, it is evident that the topographic accuracy of the
cells is greater than that of the slope units, while the accuracy
of the prediction (ROC analysis) is greater by using slope
units. To conclude, in the application of the LR the choice
lies in what type of territorial units has to be adopted for the
GIS based on the purposes of the survey.

The visual comparison among the best maps obtained by
means of each methodological choice and the actual situa-
tion in situ (Fig. 11), points out that the map obtained by
slope units and binary variables is the one being more sim-
ilar to the actual situation, also in terms of sizes of unstable
areas, above all in the central and southern part of the study
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Fig. 11. Visual comparison between best susceptibility maps ob-
tained with:(A) square cells and grouped variables,(B) square cells
and dummy variables,(C) slope units and dummy variables; and
ground truth(D).

area., The comparison between observed landslide frequency
in true positive land units of the best susceptibility maps (Ta-
ble 4), provides a further confirmation of the best predictive
ability of the analysis performed using dummy variables and
slope units. The correspondence is greater in areas of esti-
mated high susceptibility and effectively unstable areas. Such
correspondence, which is implicit in the high percentage of
correctly estimated cases, adds a direct check, which is im-
mediately useful for the transmission of the results to users
who may not be familiar with statistic land analyses.

To conclude, it is particularly important to ascertain that all
LR analyses carried out have shown at least adequate predic-
tive capacities (Table 2), with Aroc values in any case higher
than 70 %, and with a maximum of 84.2 %. Such values are in
line with the results obtained by other authors who have dealt
with the susceptibility analysis trough LR in different land
contexts (Nandi et al., 2009; Chauhan et al., 2010; Erener et
al., 2010; Rossi et al., 2010). Such aspect suggests that Logis-
tic Regression is a robust analytical method, which maintains
high predictive capacities also when the features of input data
are modified.

Table 4. Observed landslide frequency (%) in true positive land
units of the best susceptibility maps obtained: (A) with square cells
and grouped variables; (B) with square cells and dummy variables;
(C) with slope units and dummy variables.

Susceptibility A B C

Null 3.3 2.7 7.2
Low 19.3 17.7 11.7
Medium 34.8 35.9 41.3
High 56.5 57.3 61.6
Very high 73.4 79.8 85.5

Finally, considered the results of the analyses as a whole,
we can state that the choice made in terms of sampling
modalities, variables transformation and reference land units
providing more accurate estimates of susceptibility, are based
on transects sampling, binary reclassification of variables and
the using slope units as GIS land units.

The values obtained are useful for land management on a
medium-high territorial scale (whole municipalities or larger
areas) but not for detailed actions such as the planning of the
municipal housing sector, projects for lifelines, single build-
ings etc. This is particularly true if slope units are used, given
the uncertainty of what parts are truly involved in slope in-
stability phenomena by predicted phenomena.
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