
Nat. Hazards Earth Syst. Sci., 13, 211–220, 2013
www.nat-hazards-earth-syst-sci.net/13/211/2013/
doi:10.5194/nhess-13-211-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences
O

pen A
ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

Real-time flood forecasting coupling different postprocessing
techniques of precipitation forecast ensembles with a distributed
hydrological model. The case study of may 2008 flood in western
Piemonte, Italy

D. Cane, S. Ghigo, D. Rabuffetti, and M. Milelli

Regional Agency for Environmental Protection – Arpa Piemonte, Torino, Italy

Correspondence to:D. Cane (daniele.cane@arpa.piemonte.it)

Received: 10 January 2012 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: –
Revised: 18 May 2012 – Accepted: 19 June 2012 – Published: 5 February 2013

Abstract. In this work, we compare the performance of an
hydrological model when driven by probabilistic rain fore-
cast derived from two different post-processing techniques.
The region of interest is Piemonte, northwestern Italy, a com-
plex orography area close to the Mediterranean Sea where
the forecast are often a challenge for weather models. The
May 2008 flood is here used as a case study, and the very
dense weather station network allows us for a very good de-
scription of the event and initialization of the hydrological
model. The ensemble probabilistic forecasts of the rainfall
fields are obtained with the Bayesian model averaging, with
the classical poor man ensemble approach and with a new
technique, the Multimodel SuperEnsemble Dressing. In this
case study, the meteo-hydrological chain initialized with the
Multimodel SuperEnsemble Dressing is able to provide more
valuable discharge ranges with respect to the one initialized
with Bayesian model averaging multi-model.

1 Introduction

High resolution spatiotemporal rainfall intensity forecasts are
the main input into rainfall-runoff models for flood forecast,
debris-flow and landslide triggering. For supporting deci-
sion makers in order to assure a good prevention act regard-
ing overflows or floods, environmental agencies implement
deterministic models returning hydro-meteorological predic-
tions on a regular grid with a certain spatial resolution. These
numeric models approximate mathematically the underlying

physical and chemical dynamics through complex non linear
differential equations. However, very few operational hydro-
meteorological chains provide an estimate of the uncertain-
ties of the results: rainfall forecasts, due to its complex na-
ture, are heavily affected by many sources of uncertainty. A
very exhaustive review on the different sources of uncertain-
ties in the meteo-hydrological chain can be found in Cloke
and Pappenberger (2009): they can arise from observations,
from NWP model initial conditions, from NWP model pa-
rameterizations, or from the hydrological model initialization
and design.

Forecast uncertainty due to the partial knowledge of the
initial conditions is usually tackled by ensemble predic-
tions systems (EPS), where a set of forecast runs are per-
formed from perturbed initial conditions: for instance, Zappa
et al. (2010) explore the propagation of uncertainty from ob-
serving systems and NWP into hydrological models, based
on global model EPS and limited area model EPS.

A second class of uncertainties arises from the choices
in model implementation (domain size, resolution, hydro-
static/non hydrostatic approach, physical parameterizations,
etc.: an interesting experiment on how changes on a single
model implementation can produce quite different rainfall
extimations can be found in Stensrud et al., 2000), and can
be targeted with multi-physics systems, like in Amengual et
al. (2008), where different parametrizations of a single model
are used to produce an ensemble of rainfall extimations to run
an hydrological model, or from multi-model EPS systems, as
proposed by Cloke and Pappenberger (2009).
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A further possibility is the use of already available op-
erational NWP models to obtain a multi-model set where
the final value may derive from an average, as in Raftery
et al. (2005), or from a selection procedure, as in Roulston
and Smith (2003), where the Best Member Dressing method
is proposed. Probabilistic forecasting is a relatively new ap-
proach which may properly account for all sources of uncer-
tainty. Recently, Sloughter et al. (2007) have extended the
Bayesian model averaging (BMA) framework of Raftery et
al. (2005) in order to derive probabilistic precipitation fore-
cast via a mixture distribution. BMA belongs to the method-
ologies of ensemble forecasting, that considers not only a
single deterministic forecast but joint forecasts coming from
different models and initial conditions.

The Multimodel SuperEnsemble technique is another
powerful statistical method for a better estimation of weather
forecast parameters with weights calculated in a training pe-
riod, originally proposed by Krishnamurti et al. (1999). Cane
and Milelli (2006) have already applied it in Piemonte re-
gion (north-western Italy), a complex orographic area, to
provide a more accurate forecast of several weather parame-
ters, including precipitation (Cane and Milelli, 2010a). Fur-
thermore, Cane and Milelli (2010b) proposed a probabilistic
quantitative precipitation forecasting (QPF) evaluation with
the use of a new Multimodel SuperEnsemble Dressing tech-
nique. This new approach, providing an estimation of the
probability density function (PDF) of precipitation, widens
our knowledge of the precipitation field characteristics, is
a support for operational weather forecast and can also be
used as input for the hydrological forecast chain, propagat-
ing the QPF uncertainty to the evaluation of its effects on
the territory. The probabilistic scores of this technique are
proven better than the Multimodel probabilistic technique
originally proposed by Stefanova et al. (2002) (Cane and
Milelli, 2010b).

In this paper, our purpose is to compare the performance
of hydrological real-time forecasts when rainfall fields are re-
alized as ”ensemble prediction” which consider jointly pre-
dicted rainfall fields provided by several numerical models
or different initial status in the same model. In particular, we
focus on three different post-processing techniques of deter-
ministic precipitation forecasts. Firstly, following Sloughter
et al. (2007), Bayesian model averaging (BMA) will be taken
into account using asymmetric distributions, which char-
acterized rainfall data. Therefore, mixture models are em-
ployed where first the probability of rain is modelled and
then, conditionally on the former event (it does not rain or
it rains), a continuous skewed distribution is used for rain-
fall. Secondly Multimodel SuperEnsemble Dressing (MSD)
is applied on the same data, providing adjusted probability
density functions of the rainfall fields. As a benchmark, we
explore the poor man ensemble (PME) technique, that con-
sists in a merely arithmetic mean of deterministic data in-
stead. Therefore, this methodology does not take into account
uncertainty. Once forecast rainfall amounts are obtained, they

are used as input for the hydrological water-balance model
FEST-WB, implemented by the environmental agency Arpa
Piemonte, in order to assess flood formation and propagation
in hydrographical network.

We applied this simulation exercise to the case study of
May 2008 flood in western Piemonte, Italy. Far from being
exhaustive for a sound statistical validation of the conclusion,
the results obtained shows the feasibility of a real time appli-
cation of the hydrometeorological chain proposed and offer
a starting point for further investigation.

The paper is organized as follows. The three different
post-processing techniques and the hydrological model are
explained in Sect. 2. Section 3 outlines the detail of the
hydro-meteorological coupling and of the application, while
in Sect. 4, we provide a description of the analysed catch-
ments and event. In Sect. 5, we illustrate the results of the hy-
drological model using as input rainfall amounts forecasted
by means of the three different post-processing techniques
concerning the case study of May 2008 flood. Finally, Sect. 6
includes discussion on findings.

2 Model description

The forecasts of rainfall fields are usually performed by
means of deterministic models, characterized however by
two main sources of uncertainty: errors connected with start-
ing conditions and model errors. The standard “ensemble
forecasting” method requires many runs of a single model
with perturbed starting values, trying to cover all the spread
of the initial conditions and tackle the error coming from the
first source of uncertainty. The Multimodel approach tries to
solve the uncertainty coming from the incomplete represen-
tation of reality by the models. In this paper we explore three
different multi-model post-processing techniques of deter-
ministic precipitation forecasts in order to estimate the fore-
cast rainfall probabilities: Bayesian model averaging, Multi-
model SuperEnsemble Dressing and poor man ensemble: we
review here some theory and set the notation for each pro-
cedure. Moreover, since we want to evaluate flood formation
and propagation using as input these three different forecasts,
here we give some essential information about the hydrolog-
ical water-balance model FEST-WB.

2.1 Bayesian model averaging

Bayesian model averaging is a statistical method for com-
bining forecasts from different models conditioning, not on a
single “best” model, but on the entire ensemble of statistical
models first considered. Despite the basic paradigm for this
technique was introduced by Leamer (1978), the approach
was basically ignored until the late 1990s and 2000s when
there was an enormous amount of literature on the use of
BMA (e.g. Clyde, 1999, Hoeting et al., 1999, Raftery et al.,
2005, and Sloughter et al., 2007).
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Let F1,. . . ,FK be a set ofK deterministic forecasts un-
der consideration: the idea is that among these ensemble
members, there is a model that comes near observations more
than the others and BMA measures the uncertainty about the
“best” member. Asy is the quantity to be forecasted on the
basis of training observationsyT and usingK deterministic
models, the forecast PDFp(y) is given by

p(y) =

K∑
k=1

p(y/Fk)p(Fk/y
T ), (1)

wherep(y/Fk) is the forecast PDF only based on model
Fk, while p(Fk/y

T ) is the posterior probability of modelFk

given the training datayT ; this term tells us how modelFk

fits yT . Since the sum of all the posterior model probabilities
is equal to one, they can be viewed as weights. Moreover, to
quantify the uncertainty about the best member in the ensem-
ble, the forecastFk is associated with a conditional PDF, that
is the conditional PDF ofy given thatFk is the “best” ensem-
ble member (gk(y/Fk)). Then, the BMA predictive model is

p(y/Fk) =

K∑
k=1

wkgk(y/Fk), (2)

wherewk is the posterior probability of forecastFk, that is
the best one and takes into accountFk performance during
the training period. Beingwk ’s probabilities, they add up to
1.

The normal distribution is not appropriate to fit the precip-
itation conditional PDF because rain height is zero in a large
number of time points; where it is not zero, the distributions
are very skewed. Thus a mixture model for the predictive
PDF, as

p(y/Fk) =

K∑
k=1

wkP(y = 0/Fk)

I [y = 0] + P(y > 0/Fk)gk(y/Fk)I [y > 0] , (3)

is implemented.P(y > 0/Fk) is the probability of nonzero
precipitation given the forecastFk, if Fk is the best ensem-
ble member for that time point. The PDF of precipitation
amount (given that it is not zero) is fitted through a gamma
distribution.

2.2 Poor man ensemble

Since the 1970s the advantage of ensemble forecasting
over single-run deterministic forecasting was shown by
Leith (1974), proving how ensemble averaging can reduce
the forecast error variance for an initial sample of normal,
random initial analyses. In recent years the ensemble average
has repeatedly been shown to give a more accurate forecast
than a single realization of the forecast model (e.g. Du et al.,
1997, Ziehmann, 2000 and Ebert, 2001). The ensemble aver-
aging or poor man ensemble procedure provides a value for

each time point, that is obtained through the arithmetic mean
of ensemble members at each point. Thus,

y =
1

K

K∑
k=1

Fk, (4)

wherey is the forecasted rain height andFk, k=1,. . . , K,the
used deterministic model forecasts, as above mentioned. This
technique does not take into account any information given
by observations and uncertainty given by different sources.

2.3 Multimodel SuperEnsemble Dressing

The Multimodel SuperEnsemble Dressing is a new tech-
nique, firstly proposed in Cane and Milelli (2010b). They
evaluated probabilistic forecasts of average and maximum
precipitation on Piemonte warning areas, here it is extended
to station values.

In the training period the observed precipitation probabil-
ity density function (PDF), conditioned to the forecasts of
each model, is calculated: for a large set of model forecast
values, we evaluate the observed precipitation that occurred
in reality and we built a set of empirical PDFs from the fre-
quency of occurrence of observed rainfall over a wide spec-
trum of possible values. The moments (mean value and vari-
ance) of the so-obtained QPFs correlate strongly (r2 > 0.98),
as expected, and allow for a interpolation/extrapolation of
the empirical relationship among them. This fitted relation
is used to evaluate numerically theλ and k parameters of
a Weibull (Weibull, 1951) distribution, fitting the observed
QPFs in a very suitable way.

The calculated QPFs of the given model deterministic
forecasts are used to weight them with weights obtained as
the inverse of the continuous rank probability score (CRPS)
evaluated in the training period for each model.

A full PDF for the Multimodel dressed (super) Ensemble
is thus obtained. A scheme of the procedure is depicted in
Fig. 1.

A careful evaluation of the Multimodel performances ver-
sus the observations in terms of Brier skill score, roc area
skill score, ignorance skill score was performed, showing a
significant improvement of this technique versus the poor
man ensemble probabilistic forecasts (please refer to Cane
and Milelli, 2010b for a more detailed description).

2.4 Flash – flood event spatially based distributed
rainfall – runoff transformation – including water
balance (FEST-WB)

The distributed hydrological water-balance model FEST-WB
computes the main processes of the hydrological cycle: evap-
otranspiration, infiltration, surface runoff, flow routing, sub-
surface flow and snow dynamics (Mancini, 1990; Montaldo
et al., 2007; Rabuffetti et al., 2008). The computation domain
is meshed with a net of regular square cells, within which

www.nat-hazards-earth-syst-sci.net/13/211/2013/ Nat. Hazards Earth Syst. Sci., 13, 211–220, 2013
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Fig. 1. Scheme of the Multimodel SuperEnsemble Dressing tech-
nique.

Fig. 2.Scheme of the hydro-meteorological coupling.

water fluxes are calculated. The model needs spatially dis-
tributed meteorological forcing. The observed data at ground
stations are interpolated to a regular grid using the inverse
distance weighting technique.

The snow model includes the snow melt and the snow ac-
cumulation dynamics. The partitioning of total precipitation,
in liquid and solid phases is a function of air temperature.
The snow melt simulation is based on the classical degree
day model.

Soil moisture evolution for the generic cell at positioni, j ,
is described by the water balance equation:

∂θi,j

∂t
=

1

Zi,j

(
Pi,j − Ri,j − Di,j − ETi,j

)
, (5)

whereP is the liquid precipitation rate,R is runoff flux,D is
drainage flux,ET is evapotranspiration rate andZ is the soil
depth.

Fig. 3. Analysis of the geopotential height at 500 hPa (dam) from
ECMWF on 29 May at 12:00 UTC.

Runoff is computed according to a modified SCS-CN
method extended for continuous simulation (Ravazzani et al.,
2007) where the potential maximum retention,S, is updated
at the beginning of a storm as a linear function of the degree
of saturation,ε.

S = S1 · (1− ε) (6)

whereS1 is the maximum value ofS when the soil is dry
(AMC 1).

The actual evapotranspiration,ET, is computed as a frac-
tion of the potential rate tuned by the beta function that,
in turn, depends on soil moisture content (Montaldo et
al., 2003). Potential evapotranspiration is computed with a
radiation-based equation (Priestley and Taylor, 1972).

The surface and subsurface flow routing is based on the
Muskingum-Cunge method in its non-linear form with the
time variable celerity (Montaldo et al., 2007).

3 Hydro-meteorology coupling

The information we are going to use in order to estimate
rainfall heights consists of output of observed data gath-
ered from 278 automatic weather stations of the monitor-
ing network in Piemonte and the surrounding area run by
ARPA Piemonte, and two different deterministic models:
the ECMWF IFS model and three versions of the COSMO
limited area model (COSMO-I7, COSMO-7, COSMO-EU:
please see www.cosmo-model.org for more details about the
Consortium and the model). The rain gauge network is dense
enough to achieve a very good description of the study area
(Fig. 4). The resolution of the IFS model grid was approx-
imately 40 km (0.25◦) , while the COSMO models had a
resolution around 7 km (0.0625◦). The global model has a
resolution quite coarse for the considered basins (Chisone:
560 km2, Dora Riparia: 740 km2, Pellice: 1015 km2), while
the limited area models are representative enough, but the use

Nat. Hazards Earth Syst. Sci., 13, 211–220, 2013 www.nat-hazards-earth-syst-sci.net/13/211/2013/
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Fig. 4. On the right: total rainfall from 27 to 30 May 2008. On the left a detail of the studied area (map obtained with CAE Maps & View©)
with the Dora Riparia, Chisone and Pellice catchments, where the most important damages occurred. Triangles show the hydrometers closing
the three catchments, circles represent the rain gauges.

of both a global model and limited area model gave quite suc-
cessful results when combined in multi-models in Piemonte
region (Cane and Milelli, 2010a).

The models are interpolated bi-linearly on station loca-
tions to allow a fair comparison with observations and to
provide a model input at the same nominal resolution of the
observed fields. The interpolation can of course introduce
systematic errors, nevertheless the interpolated model data
comparison with the observations for the whole training pe-
riod of both BMA and MSD, favour the bias correction; bi-
ases can still influence the PME results. In this paper we take
into account the 3-hourly cumulated precipitation concern-
ing the flood event that from 27 to 30 May 2008 affected
Piemonte region.

Concerning BMA, we choose to employ a training period
of 24 data, or rather 3 days, performing model runs at dif-
ferent lags (1, 2, 3 and 4 steps) in order to fit the model and
obtain a forecast for the following 12 h.

Both BMA and MSD provide the predictive probability
density function for each forecast time point. Since it is not
possible to implement a hydrological model for each rain
quantile because it is too time-consuming, we choose as in-
put the 50th and 90th quantiles: thus we can observe if the
flood trend is more or less well-included inside the range ob-
tained using these quantiles as rainfall input.

 18 

 1 

Figure  5:  Observed and FEST simulated discharge for May 29-30, 2008 in San Martino Chisone station 2 

starting from BMA forecast of 50th and 90th quantiles and lags of 1, 2, 3 and 4 time points. 3 

 4 

Figure  6:  Observed and FEST simulated discharge for May 29-30, 2008 in San Martino Chisone station 5 

starting from MSD forecast of 50th and 90th quantiles. 6 

Fig. 5. Observed and FEST simulated discharge for 29–
30 May 2008 in San Martino Chisone station starting from BMA
forecast of 50th and 90th quantiles and lags of 1, 2, 3 and 4 time
points.

We are not assuming here a continuous 50th/90th quan-
tile precipitation for a very long time (of course leading to a
much less probable event), because the hydrological model is
re-calculated every 3-h run from the observed data and for a
time range of the forecast is only 12 h. This assumption cor-
respond to consider a “median” and a “severe” scenario for
the precipitation of the whole basin for every 3-h run of the
hydrological model.

www.nat-hazards-earth-syst-sci.net/13/211/2013/ Nat. Hazards Earth Syst. Sci., 13, 211–220, 2013
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 1 

Figure  5:  Observed and FEST simulated discharge for May 29-30, 2008 in San Martino Chisone station 2 

starting from BMA forecast of 50th and 90th quantiles and lags of 1, 2, 3 and 4 time points. 3 

 4 

Figure  6:  Observed and FEST simulated discharge for May 29-30, 2008 in San Martino Chisone station 5 

starting from MSD forecast of 50th and 90th quantiles. 6 Fig. 6. Observed and FEST simulated discharge for 29–
30 May 2008 in San Martino Chisone station starting from MSD
forecast of 50th and 90th quantiles.
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 1 

Figure  7:  Observed and FEST simulated discharge for May 29-30, 2008 in San Martino Chisone station 2 

starting from PME forecast. 3 

 4 

Figure  8:  Observed and FEST simulated discharge for May 29-30, 2008 in Susa Dora Riparia station 5 

starting from BMA forecast of 50th and 90th quantiles and lags of 1, 2, 3 and 4 time points. 6 

Fig. 7. Observed and FEST simulated discharge for 29–
30 May 2008 in San Martino Chisone station starting from PME
forecast.

Moreover, using the PME technique, an arithmetic mean
of the five deterministic rainfall fields is done as introduced
above, the forecast is characterized by one deterministic
value for each time horizon.

The coupling of the quantitative rainfall forecast with the
hydrological model is addressed in a “real time” setting. The
hydrological model is run every three hours updating the
rainfall observations series up to the time of forecast and
the rainfall forecast. The grid resolution used in this work is
1 km, the same used for the whole Po catchment operational
flood forecast. This resolution is a good compromise between
hydrological model needs and rainfall field estimation from
the gauge network while it is of course a challenge for de-
terministic quantitative rainfall forecast. The post-processing
techniques here proposed are tested in the general framework
to overcome this dichotomy in characteristic scales in meteo-
rology and mountain catchment hydrology. A scheme of the
hydro-meteorological coupling can be found in Fig. 2.
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 1 

Figure  7:  Observed and FEST simulated discharge for May 29-30, 2008 in San Martino Chisone station 2 

starting from PME forecast. 3 

 4 

Figure  8:  Observed and FEST simulated discharge for May 29-30, 2008 in Susa Dora Riparia station 5 

starting from BMA forecast of 50th and 90th quantiles and lags of 1, 2, 3 and 4 time points. 6 Fig. 8. Observed and FEST simulated discharge for 29–
30 May 2008 in Susa Dora Riparia station starting from BMA fore-
cast of 50th and 90th quantiles and lags of 1, 2, 3 and 4 time points.
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 2 

Figure  9:  Observed and FEST simulated discharge for May 29-30, 2008 in Susa Dora Riparia station 3 

starting from MSD forecast of 50th and 90th quantiles. 4 

 5 

 6 

Fig. 9. Observed and FEST simulated discharge for 29–
30 May 2008 in Susa Dora Riparia station starting from MSD fore-
cast of 50th and 90th quantiles.

4 Description of the catchments and the event

From 27 to 30 May 2008, the Piemonte region (North-
Western Italy) was affected by heavy precipitation that trig-
gered a number of effects on the slopes and along the rivers.
An Atlantic through was stationary on the west Mediter-
ranean and produced warm and humid southerly fluxes on
Piemonte causing precipitation from 27 May in the northern
part of the region. On 29 May, the minimum slowly started
moving eastward onto the Ligurian sea (Fig. 3). This pro-
duced a cold air advection in the upper levels, making the
humid atmosphere unstable. Precipitation intensity increased
in the north with peaks in Anza and Orco valleys in the early
morning. The successive rotation of the winds to the east,
and their intensification, enhanced the orographic effect on
the precipitation over the Western Alps, which were hit hard-
est from the late morning to the late afternoon, from Susa to
Pellice and finally to Grana valleys.

The freezing level stayed above 3000 m a.s.l during the
whole period so that the snow accumulation was negligible

Nat. Hazards Earth Syst. Sci., 13, 211–220, 2013 www.nat-hazards-earth-syst-sci.net/13/211/2013/
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 2 

Figure  9:  Observed and FEST simulated discharge for May 29-30, 2008 in Susa Dora Riparia station 3 

starting from MSD forecast of 50th and 90th quantiles. 4 

 5 

 6 

Fig. 10. Observed and FEST simulated discharge for 29–
30 May 2008 in Susa Dora Riparia station starting from PME fore-
cast.

 21 

Figure  10:  Observed and FEST simulated discharge for May 29-30, 2008 in Susa Dora Riparia station 1 

starting from PME forecast. 2 

3 

Figure  11:  Observed and FEST simulated discharge for May 29-30, 2008 in Pellice Villafranca station 4 

starting from BMA forecast of 50th and 90th quantiles and lags of 1, 2, 3 and 4 time points. 5 

 6 

Fig. 11. Observed and FEST simulated discharge for 29–
30 May 2008 in Pellice Villafranca station starting from BMA fore-
cast of 50th and 90th quantiles and lags of 1, 2, 3 and 4 time points.

while the melting of the antecedent snow cover below that el-
evation strongly contributed to amplify the total precipitation
volume. Most of the alpine rain gauges records were over
200 mm, and, in the hardest hit areas, rainfall height reached
337 mm and 425 mm during the entire event respectively in
the Pellice and Germanasca valleys (Fig. 4) with maximum
of 24 h accumulation over 200 mm corresponding to a return
period of 20–50 yr.

Very important floods were observed along the main rivers
from Dora Riparia to Grana in the western Alps and pro-
duced serious damages to streets and bridges. Flood waves
propagated into the Po river which reached high danger lev-
els upstream Torino. Shallow landslides occurred in many
areas in the upstream parts of the valleys. In the northern
part: Orco and Anza. In the western part: Pellice, Germasca,
Po and Grana. For more details please refer to the report by
Arpa Piemonte (2008).

 21 

Figure  10:  Observed and FEST simulated discharge for May 29-30, 2008 in Susa Dora Riparia station 1 

starting from PME forecast. 2 

3 

Figure  11:  Observed and FEST simulated discharge for May 29-30, 2008 in Pellice Villafranca station 4 

starting from BMA forecast of 50th and 90th quantiles and lags of 1, 2, 3 and 4 time points. 5 

 6 

Fig. 12. Observed and FEST simulated discharge for 29–30
May 2008 in Villafranca Pellice station starting from MSD forecast
of 50th and 90th quantiles.
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Figure  12:  Observed and FEST simulated discharge for May 29-30, 2008 in Villafranca Pellice station 1 

starting from MSD forecast of 50th and 90th quantiles. 2 

 3 

Figure  13:  Observed and FEST simulated discharge for May 29-30, 2008 in Villafranca Pellice station 4 

starting from PME forecast. 5 
Fig. 13. Observed and FEST simulated discharge for 29–
30 May 2008 in Villafranca Pellice station starting from PME fore-
cast.

5 Results

Figures 5–13 represent simulated discharge trends for differ-
ent forecasted time points in three station mainly stricken by
May 2008 event. The blue line represents the observed dis-
charge, while the red one is simulated discharge using as in-
put in the hydrological model the rain height observations.
The other simulated discharges are obtained starting from
rain heights provided by the three studied post-processing
models.

Figures 5–7 show San Martino Chisone flood discharge
and can be compared. All the techniques produce a quite
good forecast of flood wave: indeed in 3–6 h short run it is
possible to forecast the flood wave evolution and instant.
Looking at the second peak, hydrological model starting
from BMA rain heights (Fig. 5) provides a range so large
that any interpretation becomes very hard. Moreover, even if
for each subsequent time point BMA decrease precipitation
forecast, the figure induces to think that the second peak is
bigger than the first and so it makes a much higher alarmism.

www.nat-hazards-earth-syst-sci.net/13/211/2013/ Nat. Hazards Earth Syst. Sci., 13, 211–220, 2013



218 D. Cane et al.: Real-time flood forecasting coupling different postprocessing techniques of precipitation forecast

Table 1. Error in the forecast of flood discharge between observed and FEST simulated data for each time point and each post-processing
tecniques in Susa Dora Riparia station.

Post-processing techniques
29 May, 29 May, 29 May, 29 May, 29 May, 29 May, 29 May, 29 May, 30 May,
00:00 UTC 03:00 UTC 06:00 UTC 09:00 UTC 12:00 UTC 15:00 UTC 18:00 UTC 21:00 UTC 00:00 UTC

Peak discharge error [m3 s−1]

BMA: sim q50 462.97 255.83 163.91 42.48 46.92 84.85 161.91 253.26 310.40
BMA: sim q90 324.99 236.46 138.52 63.32 46.92 272.72 365.64 264.12 209.93
MSD: sim q50 404.80 238.94 147.47 49.86 46.92 84.85 161.91 253.25 310.60
MSD: sim q90 107.44 112.17 112.60 123.22 174.15 218.95 124.85 13.21 129.24
PME 34.39 230.03 138.42 54.19 46.92 14.08 97.58 50.12 72.07

Table 2. Error in the forecast of flood discharge between observed and FEST simulated data for each time point and each post-processing
tecniques in San Martino Chisone station.

Post-processing techniques
29 May, 29 May, 29 May, 29 May, 29 May, 29 May, 29 May, 29 May, 30 May,
00:00 UTC 03:00 UTC 06:00 UTC 09:00 UTC 12:00 UTC 15:00 UTC 18:00 UTC 21:00 UTC 00:00 UTC

Peak discharge error [m3 s−1]

BMA: sim q50 108.76 6.41 60.71 197.14 150.92 184.85 110.22 48.81 26.72
BMA: sim q90 93.53 71.40 123.23 197.12 203.68 332.76 366.16 314.91 274.04
MSD: sim q50 301.82 241.93 157.64 42.86 87.76 55.15 129.78 191.18 213.25
MSD: sim q90 51.80 57.86 52.56 100.05 108.45 130.11 67.69 9.27 141.61
PME 22.68 239.63 147.12 42.87 76.93 55.18 116.90 135.85 109.94

Table 3. Error in the forecast of flood discharge between observed and FEST simulated data for each time point and each post-processing
tecniques in Villafranca Pellice station.

Post-processing techniques
29 May, 29 May, 29 May, 29 May, 29 May, 29 May, 29 May, 29 May, 30 May,
00:00 UTC 03:00 UTC 06:00 UTC 09:00 UTC 12:00 UTC 15:00 UTC 18:00 UTC 21:00 UTC 00:00 UTC

Peak discharge error [m3 s−1]

BMA: sim q50 892.14 683.06 495.47 228.09 76.95 84.40 198.81 310.15 372.16
BMA: sim q90 656.82 639.82 461.93 199.74 71.44 84.40 300.25 159.67 109.83
MSD: sim q50 782.28 651.34 479.67 215.74 76.71 84.40 198.81 310.15 372.16
MSD: sim q90 64.40 57.77 19.96 22.91 119.15 182.15 128.64 76.28 306.71
PME 301.18 627.91 465.10 211.11 74.07 84.40 135.59 163.26 66.81

In Fig. 6 MSD succeeds to correct the precipitation forecast
better than BMA, while PME (Fig. 7) provides for the second
peak a quite constant value in each simulation at the same
level of the first.

In Figs. 8–10 flood wave estimation at Dora Riparia Susa
section is shown. Simulation done using BMA precipita-
tion forecast (Fig. 8) identifies the 22:00 UTC peak of 29
May and another one straight after; but forecast of this one
(02:00 UTC peak of 30 May) is bigger then the real dis-
charge also in short term. Discharge in Fig. 9 seems to join
these two peaks (10:00 p.m. of 29 May and 02:00 a.m. of
30 May). Forecast obtained by PME precipitations (Fig. 10)
comes near to the rain observation one, under evaluating a lot
10:00 p.m. peak of 29 May.

Flood discharge trend in Pellice Villafranca section is
showed in Figs. 11–13. Figure 11 presents the two peaks:
looking at the forecast, it seems reach the highest peak at 6
am of 30 May, while the real flood wave is at 02:00 a.m. of
29 May. Discharge obtained starting from MSD rain heights
reflects quite well the observed one, proving a good forecast

in the short run (3 h). Also in Fig. 13 the second peak is big-
ger than the observed one, but discharge levels are lower than
BMA one.

Tables 1–3 provide difference between observed and sim-
ulated flood discharge for each forecast time point. Concern-
ing BMA and MSD, peack discharge errors refer to 50th and
90th quantiles respectively.

6 Conclusions

On this note we intend to compare the performance of the hy-
drological model when the input forecasted rain height come
from three different post-processing techniques. In particular,
firstly Bayesian model averaging is implemented to obtain
more accurate ensemble probabilistic forecasts for rainfall
fields by taking into account the particular distribution (not
Gaussian) of the variables under study. Indeed, meteorologi-
cal variables such as rainfall data are characterized by asym-
metric distributions. Thus, full modelling is performed by
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means of mixture models, where first the probability of rain
is modelled and then, conditionally on the former event (it
does not rain), a continuous skewed distribution is used for
rainfall.

For the given test case of May 2008 flood in western
Piemonte, the probabilistic discharge forecasts obtained with
the Multimodel SuperEnsemble Dressing provide a good es-
timation of the true observed discharges in the evolution of
the event, while the results obtained with BMA and poor man
ensemble are unsatisfactory.

Finally, poor man ensemble provides a mean value of de-
terministic models for each time point, without taking into
account observations.

The case study of May 2008 flood in western Piemonte
makes a response providing an indicative information about
the flood wave evolution only for short run (3 or 6 h before).
Moreover, while FEST model starting from all the three post-
processing techniques well estimates the first flood wave, it
seems to be hard well forecast the second peak. MSD, more
than BMA, seems to be able to correct its estimate making a
forecast at the following time points.

Even though this work examines one singular case study
with the analysis of two different and independent catch-
ments, the results obtained shows the feasibility of a real time
application of the hydrometeorological chain proposed and
offer a starting point for further investigation addressed to a
sound statistical validation of the conclusion of this memory
accounting for the reanalysis of a sufficient series of different
case studies.
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