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Abstract. The study of extreme events has become of greaindices or by extreme value distributions. Extreme value in-
interest in recent years due to their direct impact on soci-dices are the most commonly used approach for this problem
ety. Extremes are usually evaluated by using extreme indiand characterize extremes using percentiles and/or frequen-
cators, based on order statistics on the tail of the probabilitycies of days exceeding certain thresholds. The Expert Team
distribution function (typically percentiles). In this study, we on Climate Change Detection and Indices (ETCCTdnk
focus on the tail of the distribution of daily maximum and et al, 2009 defined a standard set of these indices, which
minimum temperatures. For this purpose, we analyse higtare now widespread in the literature and enable the com-
(95th) and low (5th) percentiles in daily maximum and min- parison of the results obtained in different studies. Some of
imum temperatures on the Iberian Peninsula, respectivelythese indices are based on the computation of high or low
derived from different downscaling methods (statistical andpercentiles as reference, linking the lowest minimum tem-
dynamical). First, we analyse the performance of reanalysisperatures to frost hazard risk and the highest maximum tem-
driven downscaling methods in present climate conditions.peratures to heat stress conditions. In this study, we focus
The comparison among the different methods is performed irdirectly on extreme percentiles and their representation and
terms of the bias of seasonal percentiles, considering as olduture projection according to an ensemble of state-of-the-art
servations the public gridded data sets E-OBS and SpainO2ggional climate downscaling techniques.

and obtaining an estimation of both the mean and spatial Climate downscaling techniques bridge the gap between
percentile errors. Secondly, we analyse the increments of futhe large scale circulation simulated by global climate mod-
ture percentile projections under the SRES A1B scenario anels (GCMs) and the climate information at regional scale,
compare them with those corresponding to the mean tempewhich is modulated by local features (orography, coast-
rature, showing that their relative importance depends on théines, vegetation distribution, etc.) not resolved by the GCMs
method, and stressing the need to consider an ensemble @Biorgi and Mearns1997). In the early 1990s, the two
methodologies. most common downscaling approaches were introduced: sta-
tistical and dynamical. Statistical downscaling (SD) con-
sists in building empirical models relating large-scale vari-
ables, which are well represented by GCMs, with local ob-
1 Introduction servations. The empirical model is then applied to future

large-scale fields simulated by GCMs. Dynamical downscal-

gions of the globe in the last decadééeixander etal2008.  model (RCM), which solves the governing equations of the
Their analysis can be approached by means of extreme value
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atmosphere at a higher resolution over a limited spatial dobeen any systematic comparison of the SD and RCM results.
main, using the coarse GCM fields as boundary conditions. The recently finished ESTCENA projedit{p://www.meteo.

One of the main limitations of SD methods is that they unican.es/projects/estcgntunded by the Spanish R&D pro-
might suffer from non-stationarity problems (i.e. being un- gramme, provides an opportunity for such a comparison over
able to represent altered climates other than that used durin§pain since several SD techniques developed within the EN-
the training period). RCMs are expected to respond realist-SEMBLES project were trained with the same reanalysis
cally to the forcings and develop altered climates if required.(ERA-40) used in the evaluation runs of the ENSEMBLES
However, they might also suffer from non-stationarity prob- RCMs and applied to the same GCMs which provided the
lems due to the use of parameterizations to represent the eboundary conditions in that project.
fect of the smaller-scale processes. Some recent studies in- Finally, when evaluating extremes, it is of great impor-
dicate that non-stationarity might not be a major issue fortance to take into account the errors introduced by the ob-
some SD methodologies for mean valuEgds et al, 2006 servations used as reference. For instance, some studies us-
Gutiérrez et al. 2013, but the influence of this problem in ing the state-of-the-art gridded observational data set for Eu-
the extremes is still an open issue, in particular regarding theope (E-OBS, Haylock et al, 2008 Hofstra et al. 2009
extreme percentiles of the downscaled series. as reference data set to evaluate RCM results have reported

The comparative studies of SD and DD reported in the li-that large model biases are found in regions with low sta-
terature Kidson and Thompsqri998 Mearns et a.1999 tion density Garda-Diez et al, 2013 Kjellstrom et al, 201Q
Murphy, 1999 200Q Hellstrom et al. 2001, Haylock et al, Nikulin et al,, 2011). Note that this problem is critical for ex-
2006 Schmidli et al, 2007 demonstrated that both down- tremes since the actual extremes could be underestimated in
scaling approaches have comparable skill in representing rethe gridded observational data due to the interpolation pro-
gional climates, with the best-performing methods depend-cess (see, e.¢ofstra et al.201Q Lenderink 2010. To test
ing on the particular variables, season and region analysed.the sensitivity of the results to the observational data set,

With regard to the performance of the downscaling me-we compare the simulated extremes at regional scale against
thods for reproducing extreme percentilggglistrom et al.  two different data sets: E-OBS and Spainé(rera 2011,
(2007 studied the RCM bias in maximum and minimum Herrera et al.2012.
temperature percentiles against station data and obtained that This work is organized as follows. In Se@we present
the models generally overestimate maximum temperatures ithe data used in this study. Sectidpresents the methodol-
southern Europe during summer. The RCMs in this studyogy followed to assess the performance of the downscaling
were not driven by reanalysis data, and thus the biases coulthethods with respect to extreme percentiles. The results are
arise from the driving GCM. They also found that the bi- given in Sect4. Finally, the conclusions of this work are
ases generally increase towards the tails of the probabilitygiven in Sect5.
distributions and they reduce significantly when the ensem-
ble average is considered. In a more recent Wjgklstrom
et al. (2010 evaluate the ENSEMBLES RCM database, ar-2 Data
riving at similar conclusions. On the other hahtgrtig et al.

(2010 assessed the performance of regression-based stati$wo high-resolution gridded data sets (E-OBS and Spain02)
tical downscaling techniques to reproduce extreme tempehave been considered as reference observations to compare
rature percentiles in the Mediterranean using different setshe downscaled results.

of predictors. They conclude that, despite the similar perfor- The E-OBS data set is the state-of-the-art daily freely
mance of the large-scale predictors in reproducing extremeavailable high-resolution gridded observational data set for
indicators in present climate, the downscaling of future pro-Europe Haylock et al, 2008 Hofstra et al. 2009. This
jections vary considerably depending on the particular pre-data set has been developed within the EU-funded ENSEM-
dictors used. They emphasize that changes in temperature eBLES Project fittp://www.ensembles-eu.gr@nd provides
tremes do not follow a simple shift of the whole distribution daily values of mean, maximum and minimum temperatures
to increased values. and accumulated precipitation for the period 1950-2010 (in

However, as far as we know, there is no comparison studyersion 5.0, used in this study). It has been obtained by the
on the relative benefits of each of those techniques in orinterpolation of more than 2300 observational stations over
der to reproduce extreme temperature percentiles. In thig€urope. It presents advantages with respect to previous prod-
work we analyse this problem considering a state-of-the-aructs considering higher spatial resolution and coverage, pe-
ensemble of dynamical and statistical downscaled data imiod of study and number of stations. In particular, version
present climate conditions and future projections. The EU-5.0 increases the number of stations in Spain and Germany
funded ENSEMBLES project (2005-200¢an der Linden  with respect to the previous one.
and Mitchel|] 2009 has produced the largest database of Spain02 Herrera 2011 Herrera et al. 2012 is
RCM simulations over Europe to date. Despite that SD wasa freely available Http://www.meteo.unican.es/datasets/
also pursued in the project, to our knowledge there has nospain02 daily gridded precipitation and maximum and
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minimum temperature data set covering continental Spairthe simulations from the five RCMs shown in TaBlehere-
and the Balearic Islands with@ resolution. The interpola- after labelled as D1-D5, which performed best in a previ-
tion of temperature follows the same procedure as in E-OBSpus analysis over this areblérrera et al.2010. The GCM

but the product is based on a larger number of surface staboundary conditions (ECHAMS5 or HADCM3QO0) and sce-
tions (thousands of stations) which have been selected usingario (A1B) are exactly those considered in the SD models,
a stringent quality control to cover the whole period (1950-thus enabling a systematic comparison of the statistical and
2008) with few missing data. This data set is able to repro-dynamical approaches.

duce the intensity and spatial variability of the typical ob-

served extremes. Although extremes are more sensitive to

interpolation, the dense station coverage was crucial to ge8 Methodology

an accurate reproduction of these events.

The SD data used in this study was generated within theDur analysis for the evaluation of the different downscaling
ESTCENA project (2008-2011), which aimed at generat-models focuses on the biases of the maximum and minimum
ing regional climate change scenarios over Spain using SRemperature percentiles (5th percentile of minimum tempe-
methods Gutiérrez et al.2013. In particular, five SD me- rature and 95th percentile of maximum temperature) in the
thods were applied in this project: a non-linear analogueperiod 1971-2000. This 30yr period is common to all ob-
method considering the Euclidean distance to obtain a sinservational databases used in all downscaling estimates. The
gle nearest neighbour (S1, hereafter), three multiple lineasame period is used as present-climate reference for the com-
regression methods, the first one considering the principaputation of “delta” changesRaisanen 2007, which is also
components (PCs) of the predictors explaining 95 % of theirconsidered in order to compare the different estimates under
variance up to a maximum of 30 PCs (S2), another methoda future climate change scenario. We considered near (2021—
considering 15 PCs plus the nearest gridbox values (S3), th2050) and far (2070-2099) future periods. Notice that the
third one a combination of weather types (WTs) by k-meansdriving GCMs in all future projections considered are forced
and the S3 method (S4) and, finally, a pure weather-typingoy the SRES A1B emissions scenario.
method (100 WTs) combined with a Gaussian weather gen- The performance of the different downscaling methods
erator for each WT (S5). These five methods cover the stavaries seasonally (see, e.owler and Ekstrom2009.
tistical methodologies with the best results for the IberianTherefore, we considered separately the biases and deltas in
Peninsula according tGutiérrez et al(2013. Bear in mind  winter (DJF) and summer (JJA). For the bias computations,
that S2, S3 and S4 are connected since they are based dime downscaling estimates were interpolated to the corre-
multiple regression models. Tablesummarizes these me- sponding observational grid by means of a nearest neighbour
thods and the variables considered as predictors in the dowrapproach. This preserves the extreme values better than, for
scaling. In most of the experiments, sea level pressure (SLPinstance, bilinear interpolation, which smoothes the extremes
and daily mean temperature (T2m) were selected as predidy averaging them with nearby values.
tors. The SD models were trained in perfect prog condi- The direct comparison of the raw output from statisti-
tions using the 40 yr reanalysis from the European Centre focal and dynamical downscaling methods against observa-
Medium Range Weather Forecasts (ERA-Wppala et al.  tions is not fair, since SD methods use observations during
2005 as large-scale predictor for the Spain02 surface pretheir training stage. In some methods, such as the analogue
dictands. The calibrated SD models were then applied to twsearch, the downscaled estimate is a re-sample of the obser-
GCMs, ECHAM5 and HADCM3QO, considering the SRES vations. Thus, SD methods tend naturally to reproduce the
A1B scenario. observed probability distribution of the variables (and hence

The RCM data used in this study were generated in theheir mean or percentiles). RCMs do not include any infor-
ENSEMBLES project. This project was a collaborative ef- mation of the surface variables, and simulate them from dis-
fort of different European meteorological institutions, and it tant boundary conditions out of physical principles. In or-
focused on the generation of climate change scenarios oveater to put both methods on equal footing we (1) compared
Europe. ENSEMBLES studied the climate change in Europethe results against an additional observational database (E-
from different perspectives and considering different spatialOBS) not used in the SD model training, and (2) we per-
and temporal scales. In particular, dynamical downscaling offormed a bias correction in the mean and standard devia-
GCM simulations was performed using nine different RCMs tion of all downscaling estimates. With the latter approach
run by different institutions over a common area coveringwe incorporate knowledge on the mean and standard devia-
the entire continental European region with a common resotion of the observations in both downscaling strategies. These
lution of 25 km. Within ENSEMBLES, an initial RCM eval- corrections have been applied to the downscaled time series
uation experiment was carried out using the ERA-40 reanal-of maximum and minimum temperatures, and then the new
ysis as “perfect” boundary conditions. All RCM evaluation percentiles (5th for minimum and 95th for maximum tem-
runs cover the common period 1961-2000 (although someerature) were computed in the corrected distributions. The
of them simulated longer periods). In this study we focus onanalysis of the bias under different corrections will provide
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Table 1. Statistical downscaling methods and predictors. The second column is the |&hetiérrez et al(2013, which provides further
details of the different methods.

Label G13label Downscaling method Predictor variables
S1 Mla Nearest neighbour (1 analogue) T2m and SLP
S2 M3a Linear regression with 30 PCs T2m and SLP
S3 M3c Linear regression with 15 PCs + nearest grid box T2m and SLP
S4 M4a S3 conditioned on 10 WTs (k-means) T2m (SLP for WT)
S5 M2c Gaussian on 100 WTs (k-means) T2m and SLP

Table 2. Summary of the ENSEMBLES RCM simulations used in the study.

Label RCM GCM Institution Reference
D1 CLM HADCM3QO0 Swiss Institute of Technology Jaeger et a(2009
D2 HadRM3 Q0 HADCM3QO0 Hadley Centre/UK Met Office Collins et al.(2006
D3 RACMO ECHAM5 Koninklijk Nederlands Meteorologisch Instituutvan Meijgaard et ali2008
D4 M-REMO ECHAMS5 Max Planck Institute for Meteorology Jacob et al(2001)
D5 PROMES HADCM3QO0 Universidad de Castilla la Mancha Sanchez et al(2004)

information about the kind of defects that these methods5.5 Kkm1:

resent and which part of the errors in the extreme percentiles my, m o m
gan be ascribed to%iases in the mean and/or the sr'zandard dge. =~ —0.0065 (h® = 7). )
viation. The correction of these two moments of the probabil-wherer is the corresponding height in metres. This bias cor-
ity density function (PDF) also happen to be the simplest and'ection is not necessary in the statistical methods, since pre-
most widely used bias correction methods. Our work doegdlictions are done in the points where observational data are
not aim to introduce any improvement to the existing biascollected. For RCMs, our results were not significantly af-
correction literature, which is currently pursuing the correc- fected by this correction (not shown), which is very small in
tion of more sophisticated bias features, such as temperaturénost places. Therefore, the sensitivity of the results to this

dependent biases (see, eCristensen and Boberg012. correction is not shown in the following.
The correction of the mean of the distribution was com- Bias corrections in Egqs1) and @) were only applied in
puted as the present climate evaluation. However, in the future climate
analysis no information about the observations was trans-
o = (xim _ x%) +3%,, (1)  ferred to the models.

wherey; is the value of a daily variable at timieSuperscripts 4 Results
o and m refer to observed and model values, respectively, and
s(i) is the season corresponding to day The spatial distribution of high percentiles for maximum
If the correction of the bias in the mean of the distribution temperature (90th and 95th) and low percentiles for the min-
does not improve the bias in a percentile, that could implyimum temperature (5th and 10th) over the Iberian Peninsula
that the variability is wrongly represented. Thus, after cor-are shown in Figl for winter (DJF) and summer (JJA) sea-
recting the mean, a second-order bias correction can be dorgbns according to Spain02. A similar spatial distribution ap-
considering the standard deviation)( This correction was pears with the E-OBS data set, which shows slightly lower
computed as values (not shown). In general, the maps for the 90th and
95th percentiles are similar for maximum temperature (four
left panels) with higher values in the south for both seasons
and also along the Mediterranean coast in winter and in the
northeast in summer. The spatial patterns for the 5th and 10th
whereo is the standard deviation for each seas@n corre-  percentiles for minimum temperature (four right panels) are
sponding to day. also very similar, with lower values over the central Iberian
A final correction was applied to the RCMs to account for Plateau in both seasons. Given the similarity of the percentile
the difference in altitude between the RCM grid point and thedistribution we focus on the analysis of the 95th and 5th per-
observational recorddhadwick et al.2011). The correction  centiles for maximum and minimum temperatures, respec-
was simply computed by means of a constant lapse rate dfively. Notice that these percentiles are “extreme” in the sense

(o]
Us(i) JR—

= (=) i+ X0, )
s(i)
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Fig. 1. Observed percentiles for maximum (90th and 95th) and minimum (5th and 10th) temperature in winter and summer according to the
Spain02 data set.

that they sample the tails of the probability distribution. How- mean correction is applied (the cross at the origin is larger
ever, they are not associated with rare events, since their vathan the cross at the labelled end of the line).

ues are reached on average once every 20 days (i.e. more thanWhen considering the original data (unlabelled crosses), it
4 days per season). Note also that higher percentiles (e.dgs shown that the dynamical methods (black) show larger bi-
99th) would lead to unreliable estimates due to the smallases than the statistical ones (red), in particular for the 95th

sample size. percentile. For the dynamical approach, after bias correction
o _ - (crosses labelled with numbers), the resulting percentile bi-
4.1 Evaluation in present climate conditions ases become smaller, moving in general towards the origin

(zero bias). This pattern is found with both reference data sets
The downscaling methods are first evaluated in present C"(Spainoz and E-OBS) for both summer and winter. The spa-
mate conditions, using regnalysis—driven simulations in thegjg) dispersion (given by the length of the crosses) is similar
period 1971-2000. To this end, downscaled values fronor hoth Spain02 and E-OBS, being larger in winter than in
ERA-40 reanalysis (considered as “perfect” GCM output; symmer for the 5th percentile, whereas the opposite is found
Brands et a].2012 are compared to the two reference ob- for the 95th percentile. In both cases, the differences are re-
served data sets, Spain02 and E-OBS. Figushows the  qgyced with the correction in the seasonal mean.
spatially averaged biases in summer (JJA) and winter (DJF) For the statistical approaches (red crosses) both the mean
for the 5th (upper panels) and 95th (lower panels) percentileg)iases and the spatial variability are larger in the E-OBS case,
using Spain02 (left) and E-OBS (right) reference data setsyys indicating that spatial variability is clearly affected by
This figure allows comparing the biases of both statistical andne paseline climate data set used to fit'‘compare the empirical
dynamical downscaling values, considering both the originalmodels. Biases found for the statistical methods are smaller
and the unbiased downscgled vaIues._Each line in this _plofhan for the dynamical ones and they do change only slightly
corresponds to a downscaling method: in black for dynamicalyith the bias correction (except for 95th percentile). Statisti-
downscaling and in red for statistical downscaling techniques:a| methods seem to be separated into two clusters: one com-
(see the caption for details). For example, the rightmost "”eposed of methods based on linear regressions S2—4, and a
in Fig. 2a corresponds to the dynamical (black line) down- second cluster composed of S1 based on analogues and S5
scaling method 4 (according to the label), i.e. D4 or REMO pased on a combination of a Gaussian weather generator with
model, and shows an averaged bias in the 5th percentile ofe k-means weather typing. Moreover, for methods S2—4 the
minimum temperature with respect to Spain02 (this is thepjas correction in the mean leads to larger biases in the per-
bias shown in all lines in this panel) of about +3Ginwin- centiles, e.g. for the 95th percentile in winter. This indicates
ter and +2C in summer. After the correction of the seasonal 4 good result for the wrong reason, probably caused by an er-
mean bias, the labelled end of the line shows the remainingor cancellation between the mean and the variability of the
bias in the 5Sth percentile: +1°& in winter and -0.4C in gtatistically downscaled data using these methods.
summer. These biases are due to deviations in higher-order Resylts for the direct reanalysis output (blue line) show the
moments of the PDF. Finally, the spatial variability of the |argest bias, with slightly larger magnitudes and variability of
bias pattern in REMO is larger in winter than in summer (the resylts for E-OBS . The bias and the dispersion (blue crosses)

tion). This spatial variability is reduced when the seasonal
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Fig. 2. Spatially averaged bias (itC) of 5th percentile of daily minimum (upper panels) and 95th percentile of daily maximum (lower

panels) temperature with respect to Spain02 (left panels) and E-OBS (right panels). Each panel is a Cartesian (scatter) plot of the summe

(JJA,y axis) bias against the winter (DJFaxis) one. The origin (the unlabelled end) of a line represents the seasonal biases in the percentile

when no correction is applied. The end of each line (the labelled end) represents the biases when the seasonal mean bias is crected (Eq.

The line of each method is labelled according to Talllesnd?2; note that the “D” (“S”) initial letters have been dropped for visual clarity.

RCM (SD) lines are depicted in black (red). The lines corresponding to the reanalysis (blue) and to E-OBS (pink) are also depicted for

reference. Finally, crosses at each end represent the spatial standard deviation of the biases. Forwlardy, are rescaled; the value

oref = 3° C is shown as reference.

pink line in Fig.2a and c shows the biases (mean differences)}he correction in the mean is applied (second column). As
from E-OBS with respect to Spain02. In the case of the 95thpointed out above, similar warm/cold bias patterns are ob-
percentile the average difference over the Iberian Peninsulaerved for S2—4 for the 5th and 95th percentiles, respectively.
is 0.5°C, whereas it is negligible for the 5th percentile. These On the other hand, the S5 method presents a slight cold/warm
differences vanish when considering the bias-corrected datébias pattern and the S1 method a small spatially changing
In order to better assess the spatial structure of percentilbias pattern. For all these methods the bias at all grid points
biases, Figs3 and 4 represent the spatial bias of the 5th is below 0.5°C when the second-order correction is applied.
and 95th percentiles in winter and summer for minimum and Results for the five dynamical methods are also repre-
maximum temperatures, respectively. In each figure, the firssented in Figs3 and 4 (right panel, first five rows). As
five rows show the percentile biases for the five statisticalindicated in Fig.2a, biases are larger than for the statisti-
(left panel) and the five dynamical (right panel) methods with cal methods. However, in this case, biases are strongly re-
respect to Spain02, whereas the last row corresponds to thduced when the seasonal mean is corrected, yielding results
biases of E-OBS (left panel) and ERA-40 (right panel) with comparable with the statistical downscaling methods in most
respect to Spain02. The first column of each panel representsf the cases. Moreover, all the RCMs — except D4 for the
the corresponding bias without doing any correction; the secbth percentile — show biases below 1G after the second-
ond and third columns represent the biases when the firsterder correction; the pattern for the D4 model is still be-
(mean) and, additionally, second- (standard deviation) ordetween 2 and 3C. This remaining bias is due to higher-order
corrections are applied to the predictions. Maps for the fivemoments, not explored in this work. The different patterns
statistical methods exhibit a negligible bias decrease whetiound between the methods D1 and 2 and D3-5 for the 95th
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(right panel) methods with respect to Spain02 in summer. The first column of each panel represent the bias without doing any correction.
The second column represents the bias when the correction in the seasonal mean is done. The third column represents the bias when tt
second-order correction is done. E-OBS and ERA-40 biases with respect Spain02 are also included in the last row.
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percentile are remarkable. D1 and D2 show a strong warninto ECHAMS5 and dark grey — black — for those nested in
bias, whereas D3-5 show a cold bias. In all cases, the RCMBADCM3Q0).
tend to be warmer over coastal areas. This warm/cold be- The resulting values for both periods (Fi§sand6) show
haviour is kept, with lower intensity, even after the first-order an increase in both the mean and percentile values (note that
correction. Only after the variability correction do the RCMs the axes only show positive values), with higher values in
reduce their biases. the second period for both the mean and the percentiles, in
The spatial distribution of the differences between E-OBSagreement withFischer and Scir (2010. However, there
and Spain02 is also shown in Figs.and 4 (last row, left  is no consistent indication that the change in percentiles is
panel), exhibiting large differences when no correction ishigher than changes in the mean; this varies from case to
applied (up to 3—-4C). Differences in the mean values of case, depending onthe GCM or the downscaling approach. In
a similar magnitude have also been reported@fymez-  general, increments are higher in summer than in winter for
Navarro et al(2012. The bias is largely reduced with the both percentiles. The increases for minimum temperatures in
first-order correction in both cases, with an additional reduc-winter show more consistency among the different methods
tion with the standard deviation correction for the 5th per- compared to the changes for maximum temperatures in sum-
centile. Results for ERA40 (right panels, last row) presentmer. This resultis in agreement wittertig et al.(2010. The
positive/negative biases higher thafCGlin magnitude in a  most remarkable result is the anomalous behaviour obtained
huge part of the Iberian Peninsula for 5th/95th percentilesfor the statistical downscaling methods 1 and 5 (analogues
For maximum temperature (95th percentile), the bias patterrand weather-typing methods, see Tabléor maximum tem-
is clearly related to the orography, unlike the continentality- perature in summer. In this case, the methods are clear out-

driven pattern found in the RCMs. liers with respect to the rest of methodologies — particularly
in the final period 2070-2099; see F&.where the problem
4.2 Mean and percentile changes in future climate also affects the minimum temperature — due to a large under-

estimation of both the mean and percentile values, more pro-
In this section we apply the standard “delta method” to anal-nounced in the latter case. This result is in agreement with
yse the climate change signal for extreme percentiles and@utiérrez et al.(2013, where these two methods were re-
also to analyse the level of uncertainty according to the reported to be non-robust in climate change conditions, parti-
sults of the previous section. To this aim, the difference of thecularly for maximum temperature in summer, since they have
21st century (A1B emission scenario) and control (20C3M)no extrapolation capabilities. Our results show that this prob-
downscaled simulations is computed considering two futurelem is even more pronounced for high/low percentiles. Apart
periods (2021-2050 and 2070-2099) and the same contrdtom this anomalous behaviour, the results for the different
one (1971-2000), and two different GCMs: ECHAM5 and GCM and downscaling method combinations for the near fu-
HADCMQO. Moreover, the increments obtained for the 95th ture period (2021-2050) cluster first according to the parti-
and 5th percentiles are here compared with those correspondular election of GCM, and then by the downscaling family
ing to the mean values, in winter and summer, for each down<{either statistical or dynamical), being that the variability of
scaling method. The idea is to assess whether the climatthe different statistical (or dynamical) downscaling methods
change signal is higher for the extremes than for the mearis the smallest source of uncertainty. However, this does not
values. hold by the end of the century (2070-2099), when the contri-

Figures5 and 6 show the spatially averaged delta values bution to the total variability is shared similarly by all factors.

(and the spatial variability, represented by the crosses) over Both in the near (Fig5) and far (Fig.6) future periods,
the Iberian Peninsula for the two periods considered, respedhe differences between the percentiles and the mean tempe-
tively. Colours of lines and labels are the same as in therature values are, in general, higher in summer than in winter
previous cases. However, now, the labelled end shows thand thus also the spatial variability of the results. Finally, the
delta values for the percentiles, whereas the unlabelled endpatial variability of the climate change signal (the delta) for
indicates the delta for the mean values. The crosses repreéhe percentiles is of the same order of the error committed
sent the standard deviation of the increments over the Iberiawhen reproducing percentiles in perfect conditions, consi-
Peninsula, which has been rescaled between 0 &@j &s  dering the case where the mean is corrected (note that the
shown in the figures. Results for the 5th percentile for mini- delta method does implicitly perform an approximate can-
mum temperature are shown in the left panels of the figurecellation of the mean).
and results for the 95th percentile for maximum temperature
are shown in the right panel; in all cases winter values ares Conclusions
represented in the axis and summer values in theaxis.
Values from the statistical downscaling methods are plottedn this study we analysed the strengths and weaknesses of dy-
in red (light red for those using ECHAM5 GCM and dark namical and statistical downscaling methods in terms of tem-
red for those considering the HADCM3QO0) and from the perature percentiles, taking into account 5 RCM simulations
dynamical downscaling in grey (light grey for those nestedfrom the ENSEMBLES project and the data from 5 statistical
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downscaling methods generated @Gytiérrez et al(2013.
We focused on the 5th percentile for winter and the 95th personal percentiles with respect to two observational data sets:
centile for summer in order to explore the tails of the mini- E-OBS and Spain02. The percentile increments according to
mum and maximum temperature distributions, respectivelyfuture climate projections were also analysed and compared
We evaluated all the methods over continental Spain andvith those corresponding to the mean temperature.
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