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Abstract. The study of extreme events has become of great
interest in recent years due to their direct impact on soci-
ety. Extremes are usually evaluated by using extreme indi-
cators, based on order statistics on the tail of the probability
distribution function (typically percentiles). In this study, we
focus on the tail of the distribution of daily maximum and
minimum temperatures. For this purpose, we analyse high
(95th) and low (5th) percentiles in daily maximum and min-
imum temperatures on the Iberian Peninsula, respectively,
derived from different downscaling methods (statistical and
dynamical). First, we analyse the performance of reanalysis-
driven downscaling methods in present climate conditions.
The comparison among the different methods is performed in
terms of the bias of seasonal percentiles, considering as ob-
servations the public gridded data sets E-OBS and Spain02,
and obtaining an estimation of both the mean and spatial
percentile errors. Secondly, we analyse the increments of fu-
ture percentile projections under the SRES A1B scenario and
compare them with those corresponding to the mean tempe-
rature, showing that their relative importance depends on the
method, and stressing the need to consider an ensemble of
methodologies.

1 Introduction

Extreme temperature events have increased over most re-
gions of the globe in the last decades (Alexander et al., 2006).
Their analysis can be approached by means of extreme value

indices or by extreme value distributions. Extreme value in-
dices are the most commonly used approach for this problem
and characterize extremes using percentiles and/or frequen-
cies of days exceeding certain thresholds. The Expert Team
on Climate Change Detection and Indices (ETCCDI;Tank
et al., 2009) defined a standard set of these indices, which
are now widespread in the literature and enable the com-
parison of the results obtained in different studies. Some of
these indices are based on the computation of high or low
percentiles as reference, linking the lowest minimum tem-
peratures to frost hazard risk and the highest maximum tem-
peratures to heat stress conditions. In this study, we focus
directly on extreme percentiles and their representation and
future projection according to an ensemble of state-of-the-art
regional climate downscaling techniques.

Climate downscaling techniques bridge the gap between
the large scale circulation simulated by global climate mod-
els (GCMs) and the climate information at regional scale,
which is modulated by local features (orography, coast-
lines, vegetation distribution, etc.) not resolved by the GCMs
(Giorgi and Mearns, 1991). In the early 1990s, the two
most common downscaling approaches were introduced: sta-
tistical and dynamical. Statistical downscaling (SD) con-
sists in building empirical models relating large-scale vari-
ables, which are well represented by GCMs, with local ob-
servations. The empirical model is then applied to future
large-scale fields simulated by GCMs. Dynamical downscal-
ing (DD) is commonly implemented as a regional climate
model (RCM), which solves the governing equations of the
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atmosphere at a higher resolution over a limited spatial do-
main, using the coarse GCM fields as boundary conditions.

One of the main limitations of SD methods is that they
might suffer from non-stationarity problems (i.e. being un-
able to represent altered climates other than that used during
the training period). RCMs are expected to respond realisti-
cally to the forcings and develop altered climates if required.
However, they might also suffer from non-stationarity prob-
lems due to the use of parameterizations to represent the ef-
fect of the smaller-scale processes. Some recent studies in-
dicate that non-stationarity might not be a major issue for
some SD methodologies for mean values (Fŕıas et al., 2006;
Gutiérrez et al., 2013), but the influence of this problem in
the extremes is still an open issue, in particular regarding the
extreme percentiles of the downscaled series.

The comparative studies of SD and DD reported in the li-
terature (Kidson and Thompson, 1998; Mearns et al., 1999;
Murphy, 1999, 2000; Hellstrom et al., 2001; Haylock et al.,
2006; Schmidli et al., 2007) demonstrated that both down-
scaling approaches have comparable skill in representing re-
gional climates, with the best-performing methods depend-
ing on the particular variables, season and region analysed.

With regard to the performance of the downscaling me-
thods for reproducing extreme percentiles,Kjellström et al.
(2007) studied the RCM bias in maximum and minimum
temperature percentiles against station data and obtained that
the models generally overestimate maximum temperatures in
southern Europe during summer. The RCMs in this study
were not driven by reanalysis data, and thus the biases could
arise from the driving GCM. They also found that the bi-
ases generally increase towards the tails of the probability
distributions and they reduce significantly when the ensem-
ble average is considered. In a more recent workKjellström
et al. (2010) evaluate the ENSEMBLES RCM database, ar-
riving at similar conclusions. On the other hand,Hertig et al.
(2010) assessed the performance of regression-based statis-
tical downscaling techniques to reproduce extreme tempe-
rature percentiles in the Mediterranean using different sets
of predictors. They conclude that, despite the similar perfor-
mance of the large-scale predictors in reproducing extreme
indicators in present climate, the downscaling of future pro-
jections vary considerably depending on the particular pre-
dictors used. They emphasize that changes in temperature ex-
tremes do not follow a simple shift of the whole distribution
to increased values.

However, as far as we know, there is no comparison study
on the relative benefits of each of those techniques in or-
der to reproduce extreme temperature percentiles. In this
work we analyse this problem considering a state-of-the-art
ensemble of dynamical and statistical downscaled data in
present climate conditions and future projections. The EU-
funded ENSEMBLES project (2005–2009;van der Linden
and Mitchell, 2009) has produced the largest database of
RCM simulations over Europe to date. Despite that SD was
also pursued in the project, to our knowledge there has not

been any systematic comparison of the SD and RCM results.
The recently finished ESTCENA project (http://www.meteo.
unican.es/projects/estcena), funded by the Spanish R&D pro-
gramme, provides an opportunity for such a comparison over
Spain since several SD techniques developed within the EN-
SEMBLES project were trained with the same reanalysis
(ERA-40) used in the evaluation runs of the ENSEMBLES
RCMs and applied to the same GCMs which provided the
boundary conditions in that project.

Finally, when evaluating extremes, it is of great impor-
tance to take into account the errors introduced by the ob-
servations used as reference. For instance, some studies us-
ing the state-of-the-art gridded observational data set for Eu-
rope (E-OBS, Haylock et al., 2008; Hofstra et al., 2009)
as reference data set to evaluate RCM results have reported
that large model biases are found in regions with low sta-
tion density (Garćıa-D́ıez et al., 2013; Kjellström et al., 2010;
Nikulin et al., 2011). Note that this problem is critical for ex-
tremes since the actual extremes could be underestimated in
the gridded observational data due to the interpolation pro-
cess (see, e.g.Hofstra et al., 2010; Lenderink, 2010). To test
the sensitivity of the results to the observational data set,
we compare the simulated extremes at regional scale against
two different data sets: E-OBS and Spain02 (Herrera, 2011;
Herrera et al., 2012).

This work is organized as follows. In Sect.2 we present
the data used in this study. Section3 presents the methodol-
ogy followed to assess the performance of the downscaling
methods with respect to extreme percentiles. The results are
given in Sect.4. Finally, the conclusions of this work are
given in Sect.5.

2 Data

Two high-resolution gridded data sets (E-OBS and Spain02)
have been considered as reference observations to compare
the downscaled results.

The E-OBS data set is the state-of-the-art daily freely
available high-resolution gridded observational data set for
Europe (Haylock et al., 2008; Hofstra et al., 2009). This
data set has been developed within the EU-funded ENSEM-
BLES Project (http://www.ensembles-eu.org) and provides
daily values of mean, maximum and minimum temperatures
and accumulated precipitation for the period 1950–2010 (in
version 5.0, used in this study). It has been obtained by the
interpolation of more than 2300 observational stations over
Europe. It presents advantages with respect to previous prod-
ucts considering higher spatial resolution and coverage, pe-
riod of study and number of stations. In particular, version
5.0 increases the number of stations in Spain and Germany
with respect to the previous one.

Spain02 (Herrera, 2011; Herrera et al., 2012) is
a freely available (http://www.meteo.unican.es/datasets/
spain02) daily gridded precipitation and maximum and
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minimum temperature data set covering continental Spain
and the Balearic Islands with 0.2◦ resolution. The interpola-
tion of temperature follows the same procedure as in E-OBS,
but the product is based on a larger number of surface sta-
tions (thousands of stations) which have been selected using
a stringent quality control to cover the whole period (1950–
2008) with few missing data. This data set is able to repro-
duce the intensity and spatial variability of the typical ob-
served extremes. Although extremes are more sensitive to
interpolation, the dense station coverage was crucial to get
an accurate reproduction of these events.

The SD data used in this study was generated within the
ESTCENA project (2008–2011), which aimed at generat-
ing regional climate change scenarios over Spain using SD
methods (Gutiérrez et al., 2013). In particular, five SD me-
thods were applied in this project: a non-linear analogue
method considering the Euclidean distance to obtain a sin-
gle nearest neighbour (S1, hereafter), three multiple linear
regression methods, the first one considering the principal
components (PCs) of the predictors explaining 95 % of their
variance up to a maximum of 30 PCs (S2), another method
considering 15 PCs plus the nearest gridbox values (S3), the
third one a combination of weather types (WTs) by k-means
and the S3 method (S4) and, finally, a pure weather-typing
method (100 WTs) combined with a Gaussian weather gen-
erator for each WT (S5). These five methods cover the sta-
tistical methodologies with the best results for the Iberian
Peninsula according toGutiérrez et al.(2013). Bear in mind
that S2, S3 and S4 are connected since they are based on
multiple regression models. Table1 summarizes these me-
thods and the variables considered as predictors in the down-
scaling. In most of the experiments, sea level pressure (SLP)
and daily mean temperature (T2m) were selected as predic-
tors. The SD models were trained in perfect prog condi-
tions using the 40 yr reanalysis from the European Centre for
Medium Range Weather Forecasts (ERA-40;Uppala et al.,
2005) as large-scale predictor for the Spain02 surface pre-
dictands. The calibrated SD models were then applied to two
GCMs, ECHAM5 and HADCM3Q0, considering the SRES
A1B scenario.

The RCM data used in this study were generated in the
ENSEMBLES project. This project was a collaborative ef-
fort of different European meteorological institutions, and it
focused on the generation of climate change scenarios over
Europe. ENSEMBLES studied the climate change in Europe
from different perspectives and considering different spatial
and temporal scales. In particular, dynamical downscaling of
GCM simulations was performed using nine different RCMs
run by different institutions over a common area covering
the entire continental European region with a common reso-
lution of 25 km. Within ENSEMBLES, an initial RCM eval-
uation experiment was carried out using the ERA-40 reanal-
ysis as “perfect” boundary conditions. All RCM evaluation
runs cover the common period 1961–2000 (although some
of them simulated longer periods). In this study we focus on

the simulations from the five RCMs shown in Table2, here-
after labelled as D1–D5, which performed best in a previ-
ous analysis over this area (Herrera et al., 2010). The GCM
boundary conditions (ECHAM5 or HADCM3Q0) and sce-
nario (A1B) are exactly those considered in the SD models,
thus enabling a systematic comparison of the statistical and
dynamical approaches.

3 Methodology

Our analysis for the evaluation of the different downscaling
models focuses on the biases of the maximum and minimum
temperature percentiles (5th percentile of minimum tempe-
rature and 95th percentile of maximum temperature) in the
period 1971–2000. This 30 yr period is common to all ob-
servational databases used in all downscaling estimates. The
same period is used as present-climate reference for the com-
putation of “delta” changes (Räis̈anen, 2007), which is also
considered in order to compare the different estimates under
a future climate change scenario. We considered near (2021–
2050) and far (2070–2099) future periods. Notice that the
driving GCMs in all future projections considered are forced
by the SRES A1B emissions scenario.

The performance of the different downscaling methods
varies seasonally (see, e.g.Fowler and Ekstrom, 2009).
Therefore, we considered separately the biases and deltas in
winter (DJF) and summer (JJA). For the bias computations,
the downscaling estimates were interpolated to the corre-
sponding observational grid by means of a nearest neighbour
approach. This preserves the extreme values better than, for
instance, bilinear interpolation, which smoothes the extremes
by averaging them with nearby values.

The direct comparison of the raw output from statisti-
cal and dynamical downscaling methods against observa-
tions is not fair, since SD methods use observations during
their training stage. In some methods, such as the analogue
search, the downscaled estimate is a re-sample of the obser-
vations. Thus, SD methods tend naturally to reproduce the
observed probability distribution of the variables (and hence
their mean or percentiles). RCMs do not include any infor-
mation of the surface variables, and simulate them from dis-
tant boundary conditions out of physical principles. In or-
der to put both methods on equal footing we (1) compared
the results against an additional observational database (E-
OBS) not used in the SD model training, and (2) we per-
formed a bias correction in the mean and standard devia-
tion of all downscaling estimates. With the latter approach
we incorporate knowledge on the mean and standard devia-
tion of the observations in both downscaling strategies. These
corrections have been applied to the downscaled time series
of maximum and minimum temperatures, and then the new
percentiles (5th for minimum and 95th for maximum tem-
perature) were computed in the corrected distributions. The
analysis of the bias under different corrections will provide
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Table 1. Statistical downscaling methods and predictors. The second column is the label inGutiérrez et al.(2013), which provides further
details of the different methods.

Label G13 label Downscaling method Predictor variables

S1 M1a Nearest neighbour (1 analogue) T2m and SLP
S2 M3a Linear regression with 30 PCs T2m and SLP
S3 M3c Linear regression with 15 PCs + nearest grid box T2m and SLP
S4 M4a S3 conditioned on 10 WTs (k-means) T2m (SLP for WT)
S5 M2c Gaussian on 100 WTs (k-means) T2m and SLP

Table 2.Summary of the ENSEMBLES RCM simulations used in the study.

Label RCM GCM Institution Reference

D1 CLM HADCM3Q0 Swiss Institute of Technology Jaeger et al.(2008)
D2 HadRM3 Q0 HADCM3Q0 Hadley Centre/UK Met Office Collins et al.(2006)
D3 RACMO ECHAM5 Koninklijk Nederlands Meteorologisch Instituutvan Meijgaard et al.(2008)
D4 M-REMO ECHAM5 Max Planck Institute for Meteorology Jacob et al.(2001)
D5 PROMES HADCM3Q0 Universidad de Castilla la Mancha Sánchez et al.(2004)

information about the kind of defects that these methods
present and which part of the errors in the extreme percentiles
can be ascribed to biases in the mean and/or the standard de-
viation. The correction of these two moments of the probabil-
ity density function (PDF) also happen to be the simplest and
most widely used bias correction methods. Our work does
not aim to introduce any improvement to the existing bias
correction literature, which is currently pursuing the correc-
tion of more sophisticated bias features, such as temperature-
dependent biases (see, e.g.Christensen and Boberg, 2012).

The correction of the mean of the distribution was com-
puted as

xm
i

′
=

(
xm
i − xm

s(i)

)
+ xo

s(i), (1)

wherexi is the value of a daily variable at timei. Superscripts
o and m refer to observed and model values, respectively, and
s(i) is the season corresponding to dayi.

If the correction of the bias in the mean of the distribution
does not improve the bias in a percentile, that could imply
that the variability is wrongly represented. Thus, after cor-
recting the mean, a second-order bias correction can be done
considering the standard deviation (σ ). This correction was
computed as

xm
i

′′
=

(
xm
i − xm

s(i)

) σ o
s(i)

σm
s(i)

+ xo
s(i), (2)

whereσ is the standard deviation for each seasons(i) corre-
sponding to dayi.

A final correction was applied to the RCMs to account for
the difference in altitude between the RCM grid point and the
observational record (Chadwick et al., 2011). The correction
was simply computed by means of a constant lapse rate of

6.5 Kkm−1:

xmh
i = xm

i − 0.0065·
(
ho

− hm)
, (3)

whereh is the corresponding height in metres. This bias cor-
rection is not necessary in the statistical methods, since pre-
dictions are done in the points where observational data are
collected. For RCMs, our results were not significantly af-
fected by this correction (not shown), which is very small in
most places. Therefore, the sensitivity of the results to this
correction is not shown in the following.

Bias corrections in Eqs. (1) and (2) were only applied in
the present climate evaluation. However, in the future climate
analysis no information about the observations was trans-
ferred to the models.

4 Results

The spatial distribution of high percentiles for maximum
temperature (90th and 95th) and low percentiles for the min-
imum temperature (5th and 10th) over the Iberian Peninsula
are shown in Fig.1 for winter (DJF) and summer (JJA) sea-
sons according to Spain02. A similar spatial distribution ap-
pears with the E-OBS data set, which shows slightly lower
values (not shown). In general, the maps for the 90th and
95th percentiles are similar for maximum temperature (four
left panels) with higher values in the south for both seasons
and also along the Mediterranean coast in winter and in the
northeast in summer. The spatial patterns for the 5th and 10th
percentiles for minimum temperature (four right panels) are
also very similar, with lower values over the central Iberian
Plateau in both seasons. Given the similarity of the percentile
distribution we focus on the analysis of the 95th and 5th per-
centiles for maximum and minimum temperatures, respec-
tively. Notice that these percentiles are “extreme” in the sense
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Fig. 1. Observed percentiles for maximum (90th and 95th) and minimum (5th and 10th) temperature in winter and summer according to the
Spain02 data set.

that they sample the tails of the probability distribution. How-
ever, they are not associated with rare events, since their val-
ues are reached on average once every 20 days (i.e. more than
4 days per season). Note also that higher percentiles (e.g.
99th) would lead to unreliable estimates due to the small
sample size.

4.1 Evaluation in present climate conditions

The downscaling methods are first evaluated in present cli-
mate conditions, using reanalysis-driven simulations in the
period 1971–2000. To this end, downscaled values from
ERA-40 reanalysis (considered as “perfect” GCM output;
Brands et al., 2012) are compared to the two reference ob-
served data sets, Spain02 and E-OBS. Figure2 shows the
spatially averaged biases in summer (JJA) and winter (DJF)
for the 5th (upper panels) and 95th (lower panels) percentiles
using Spain02 (left) and E-OBS (right) reference data sets.
This figure allows comparing the biases of both statistical and
dynamical downscaling values, considering both the original
and the unbiased downscaled values. Each line in this plot
corresponds to a downscaling method: in black for dynamical
downscaling and in red for statistical downscaling techniques
(see the caption for details). For example, the rightmost line
in Fig. 2a corresponds to the dynamical (black line) down-
scaling method 4 (according to the label), i.e. D4 or REMO
model, and shows an averaged bias in the 5th percentile of
minimum temperature with respect to Spain02 (this is the
bias shown in all lines in this panel) of about +3.5◦C in win-
ter and +2◦C in summer. After the correction of the seasonal
mean bias, the labelled end of the line shows the remaining
bias in the 5th percentile: +1.5◦C in winter and –0.4◦C in
summer. These biases are due to deviations in higher-order
moments of the PDF. Finally, the spatial variability of the
bias pattern in REMO is larger in winter than in summer (the
horizontal section of the cross is longer than the vertical sec-
tion). This spatial variability is reduced when the seasonal

mean correction is applied (the cross at the origin is larger
than the cross at the labelled end of the line).

When considering the original data (unlabelled crosses), it
is shown that the dynamical methods (black) show larger bi-
ases than the statistical ones (red), in particular for the 95th
percentile. For the dynamical approach, after bias correction
(crosses labelled with numbers), the resulting percentile bi-
ases become smaller, moving in general towards the origin
(zero bias). This pattern is found with both reference data sets
(Spain02 and E-OBS) for both summer and winter. The spa-
tial dispersion (given by the length of the crosses) is similar
for both Spain02 and E-OBS, being larger in winter than in
summer for the 5th percentile, whereas the opposite is found
for the 95th percentile. In both cases, the differences are re-
duced with the correction in the seasonal mean.

For the statistical approaches (red crosses) both the mean
biases and the spatial variability are larger in the E-OBS case,
thus indicating that spatial variability is clearly affected by
the baseline climate data set used to fit/compare the empirical
models. Biases found for the statistical methods are smaller
than for the dynamical ones and they do change only slightly
with the bias correction (except for 95th percentile). Statisti-
cal methods seem to be separated into two clusters: one com-
posed of methods based on linear regressions S2–4, and a
second cluster composed of S1 based on analogues and S5
based on a combination of a Gaussian weather generator with
the k-means weather typing. Moreover, for methods S2–4 the
bias correction in the mean leads to larger biases in the per-
centiles, e.g. for the 95th percentile in winter. This indicates
a good result for the wrong reason, probably caused by an er-
ror cancellation between the mean and the variability of the
statistically downscaled data using these methods.

Results for the direct reanalysis output (blue line) show the
largest bias, with slightly larger magnitudes and variability of
results for E-OBS . The bias and the dispersion (blue crosses)
also decrease with the correction in the seasonal mean. The
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Fig. 2. Spatially averaged bias (in◦C) of 5th percentile of daily minimum (upper panels) and 95th percentile of daily maximum (lower
panels) temperature with respect to Spain02 (left panels) and E-OBS (right panels). Each panel is a Cartesian (scatter) plot of the summer
(JJA,y axis) bias against the winter (DJF,x axis) one. The origin (the unlabelled end) of a line represents the seasonal biases in the percentile
when no correction is applied. The end of each line (the labelled end) represents the biases when the seasonal mean bias is corrected (Eq.1).
The line of each method is labelled according to Tables1 and2; note that the “D” (“S”) initial letters have been dropped for visual clarity.
RCM (SD) lines are depicted in black (red). The lines corresponding to the reanalysis (blue) and to E-OBS (pink) are also depicted for
reference. Finally, crosses at each end represent the spatial standard deviation of the biases. For clarity,σ values are rescaled; the value
σref = 3◦ C is shown as reference.

pink line in Fig.2a and c shows the biases (mean differences)
from E-OBS with respect to Spain02. In the case of the 95th
percentile the average difference over the Iberian Peninsula
is 0.5◦C, whereas it is negligible for the 5th percentile. These
differences vanish when considering the bias-corrected data.

In order to better assess the spatial structure of percentile
biases, Figs.3 and 4 represent the spatial bias of the 5th
and 95th percentiles in winter and summer for minimum and
maximum temperatures, respectively. In each figure, the first
five rows show the percentile biases for the five statistical
(left panel) and the five dynamical (right panel) methods with
respect to Spain02, whereas the last row corresponds to the
biases of E-OBS (left panel) and ERA-40 (right panel) with
respect to Spain02. The first column of each panel represents
the corresponding bias without doing any correction; the sec-
ond and third columns represent the biases when the first-
(mean) and, additionally, second- (standard deviation) order
corrections are applied to the predictions. Maps for the five
statistical methods exhibit a negligible bias decrease when

the correction in the mean is applied (second column). As
pointed out above, similar warm/cold bias patterns are ob-
served for S2–4 for the 5th and 95th percentiles, respectively.
On the other hand, the S5 method presents a slight cold/warm
bias pattern and the S1 method a small spatially changing
bias pattern. For all these methods the bias at all grid points
is below 0.5◦C when the second-order correction is applied.

Results for the five dynamical methods are also repre-
sented in Figs.3 and 4 (right panel, first five rows). As
indicated in Fig.2a, biases are larger than for the statisti-
cal methods. However, in this case, biases are strongly re-
duced when the seasonal mean is corrected, yielding results
comparable with the statistical downscaling methods in most
of the cases. Moreover, all the RCMs – except D4 for the
5th percentile – show biases below 1.5◦C after the second-
order correction; the pattern for the D4 model is still be-
tween 2 and 3◦C. This remaining bias is due to higher-order
moments, not explored in this work. The different patterns
found between the methods D1 and 2 and D3–5 for the 95th
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panel) methods with respect to Spain02 in winter. The first column of each panel represent the bias without doing any correction. The second
column represents the bias when the correction in the seasonal mean is done. The third column represents the bias when the second-order
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percentile are remarkable. D1 and D2 show a strong warm
bias, whereas D3–5 show a cold bias. In all cases, the RCMs
tend to be warmer over coastal areas. This warm/cold be-
haviour is kept, with lower intensity, even after the first-order
correction. Only after the variability correction do the RCMs
reduce their biases.

The spatial distribution of the differences between E-OBS
and Spain02 is also shown in Figs.3 and 4 (last row, left
panel), exhibiting large differences when no correction is
applied (up to 3–4◦C). Differences in the mean values of
a similar magnitude have also been reported byGómez-
Navarro et al.(2012). The bias is largely reduced with the
first-order correction in both cases, with an additional reduc-
tion with the standard deviation correction for the 5th per-
centile. Results for ERA40 (right panels, last row) present
positive/negative biases higher than 4◦C in magnitude in a
huge part of the Iberian Peninsula for 5th/95th percentiles.
For maximum temperature (95th percentile), the bias pattern
is clearly related to the orography, unlike the continentality-
driven pattern found in the RCMs.

4.2 Mean and percentile changes in future climate

In this section we apply the standard “delta method” to anal-
yse the climate change signal for extreme percentiles and
also to analyse the level of uncertainty according to the re-
sults of the previous section. To this aim, the difference of the
21st century (A1B emission scenario) and control (20C3M)
downscaled simulations is computed considering two future
periods (2021–2050 and 2070–2099) and the same control
one (1971–2000), and two different GCMs: ECHAM5 and
HADCMQ0. Moreover, the increments obtained for the 95th
and 5th percentiles are here compared with those correspond-
ing to the mean values, in winter and summer, for each down-
scaling method. The idea is to assess whether the climate
change signal is higher for the extremes than for the mean
values.

Figures5 and6 show the spatially averaged delta values
(and the spatial variability, represented by the crosses) over
the Iberian Peninsula for the two periods considered, respec-
tively. Colours of lines and labels are the same as in the
previous cases. However, now, the labelled end shows the
delta values for the percentiles, whereas the unlabelled end
indicates the delta for the mean values. The crosses repre-
sent the standard deviation of the increments over the Iberian
Peninsula, which has been rescaled between 0 and 1◦C, as
shown in the figures. Results for the 5th percentile for mini-
mum temperature are shown in the left panels of the figures
and results for the 95th percentile for maximum temperature
are shown in the right panel; in all cases winter values are
represented in thex axis and summer values in they axis.
Values from the statistical downscaling methods are plotted
in red (light red for those using ECHAM5 GCM and dark
red for those considering the HADCM3Q0) and from the
dynamical downscaling in grey (light grey for those nested

into ECHAM5 and dark grey — black – for those nested in
HADCM3Q0).

The resulting values for both periods (Figs.5 and6) show
an increase in both the mean and percentile values (note that
the axes only show positive values), with higher values in
the second period for both the mean and the percentiles, in
agreement withFischer and Scḧar (2010). However, there
is no consistent indication that the change in percentiles is
higher than changes in the mean; this varies from case to
case, depending on the GCM or the downscaling approach. In
general, increments are higher in summer than in winter for
both percentiles. The increases for minimum temperatures in
winter show more consistency among the different methods
compared to the changes for maximum temperatures in sum-
mer. This result is in agreement withHertig et al.(2010). The
most remarkable result is the anomalous behaviour obtained
for the statistical downscaling methods 1 and 5 (analogues
and weather-typing methods, see Table1) for maximum tem-
perature in summer. In this case, the methods are clear out-
liers with respect to the rest of methodologies – particularly
in the final period 2070–2099; see Fig.6, where the problem
also affects the minimum temperature – due to a large under-
estimation of both the mean and percentile values, more pro-
nounced in the latter case. This result is in agreement with
Gutiérrez et al.(2013), where these two methods were re-
ported to be non-robust in climate change conditions, parti-
cularly for maximum temperature in summer, since they have
no extrapolation capabilities. Our results show that this prob-
lem is even more pronounced for high/low percentiles. Apart
from this anomalous behaviour, the results for the different
GCM and downscaling method combinations for the near fu-
ture period (2021–2050) cluster first according to the parti-
cular election of GCM, and then by the downscaling family
(either statistical or dynamical), being that the variability of
the different statistical (or dynamical) downscaling methods
is the smallest source of uncertainty. However, this does not
hold by the end of the century (2070–2099), when the contri-
bution to the total variability is shared similarly by all factors.

Both in the near (Fig.5) and far (Fig.6) future periods,
the differences between the percentiles and the mean tempe-
rature values are, in general, higher in summer than in winter
and thus also the spatial variability of the results. Finally, the
spatial variability of the climate change signal (the delta) for
the percentiles is of the same order of the error committed
when reproducing percentiles in perfect conditions, consi-
dering the case where the mean is corrected (note that the
delta method does implicitly perform an approximate can-
cellation of the mean).

5 Conclusions

In this study we analysed the strengths and weaknesses of dy-
namical and statistical downscaling methods in terms of tem-
perature percentiles, taking into account 5 RCM simulations
from the ENSEMBLES project and the data from 5 statistical
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Fig. 6.As in Fig.5, but for the period 2070–2099.

downscaling methods generated byGutiérrez et al.(2013).
We focused on the 5th percentile for winter and the 95th per-
centile for summer in order to explore the tails of the mini-
mum and maximum temperature distributions, respectively.
We evaluated all the methods over continental Spain and

the Balearic Islands in present time using the biases of sea-
sonal percentiles with respect to two observational data sets:
E-OBS and Spain02. The percentile increments according to
future climate projections were also analysed and compared
with those corresponding to the mean temperature.
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Large local differences were found for the spatial patterns
of the 95th and 5th percentiles from Spain02 and E-OBS data
sets, of similar magnitude to those found in the mean val-
ues byGómez-Navarro et al.(2012). Still, dynamical down-
scaling methods show large biases against both observational
data sets. Dynamical methods cluster for the upper tail of
maximum temperature, and they can be classified either as
“warm models” or “cold models”. As expected, statistical ap-
proaches show smaller biases, especially against the Spain02
database, which was used in the training of the methods.

The seasonal mean correction strongly reduced the per-
centile biases for the dynamical methods and caused a negli-
gible reduction, or even a worsening effect, on the small bias
of the statistical ones. In general, for all methods the biases
are reduced to values close to zero after the second-order cor-
rection (based on the standard deviation). Results show that
seasonality influences the bias distribution being larger for
the 5th percentile of minimum temperature in winter and for
the 95th percentile of maximum temperature in summer in-
dependently of the bias correction.

Future projections were analysed in terms of delta changes
in the percentiles and the mean values for all the downscal-
ing methods using two GCMs (ECHAM5 and HADCM3Q0)
and two future periods (2021–2050 and 2070–2099). As ex-
pected, results show an increase of both the mean and per-
centile values for both periods, with higher values in the far
future. However, there is no consistent indication that the
change in percentiles is higher than changes in the mean.
This depends on the GCM and/or the downscaling method.
An anomalous behaviour is observed for the analogues ap-
proach and the weather-typing method combined with a
Gaussian weather generator, especially for maximum tempe-
rature in summer and for the far future period. Both methods
show a large underestimation of both the mean and percentile
values reporting to be non-robust in climate change condi-
tions. The underestimation of the mean was also detected
by Gutiérrez et al.(2013), which has here been extended to
high/low percentiles.

All of the above stresses the importance of considering an
ensemble of different methodologies in the projection of fu-
ture regional climate change. If a single method had been
used in this study, the conclusions drawn regarding e.g. the
relative increase of high/low temperature percentiles with re-
spect to changes in the mean would have been completely
misleading since they are method-dependent. Techniques to
identify non-robust downscaling methods, such as that pro-
posed byGutiérrez et al.(2013), are also key to understand-
ing ensembles of downscaled data since such methods con-
tribute to unrealistically increase regional climate change un-
certainty.
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