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Abstract. An approach to the extensive study of rogue wave
occurrence in numerical simulations is presented. As a re-
sult of numerical simulations of the unidirectional wave
evolution, spatio-temporal fields of wave data of the size
20 min× 10 km are obtained with high resolution in time
and space and are used for statistical analysis with the fo-
cus on extreme waves. Having the exhaustive information on
the wave evolution enables us to capture the detailed picture
of individual rogue waves; to detect intermittent rogue wave
events, which last for a significantly longer time, and hence,
to depict the portrait of a rogue wave. Due to the benefit
of having full-wave data, the question of relation between
extreme wave kinematics and extremely high waves is dis-
cussed in the statistical sense.

1 Introduction

The rogue (or freak wave) topic is of very high interest nowa-
days in marine engineering and geophysical communities.
The huge oceanic waves seem to come from nowhere and to
disappear with no trace, but at the transient moment of their
occurrence they cause ultimate impact, damage and destroy
boats and sea platforms, and kill people. Rogue wave phe-
nomenon challenges physical and mathematical researches,
which are now numerous, see reviews in (Kharif et al., 2009;
Dysthe et al., 2008; Slunyaev et al., 2011). Though main
physical mechanisms which can cause these waves seem to
be formulated, realistic sea waves represent a quite complex
object for investigation, so that the very vital problems: what
rogue waves look like, how long they live and how probable
they are to occur have not been answered with certainty so
far.

Derivation of rogue wave probability from the primitive
water wave equations is too complicated: the usual assump-
tions of the kinetic theory are violated, and wave phase
coherence and strong nonlinear effects must be taken into
consideration. Direct measurements of sea waves have now
resulted in an impressive amount of data. However, rogue
waves seem to produce extreme effects on measuring de-
vices, so that the number of reliable recorded time series of
rogue waves turns out to be insufficient to build the statistics
of in situ rogue waves (Christou and Ewans, 2011), which of-
ten leads to conflicting conclusions of different studies. Be-
sides, the statistical ensemble must consist of homogeneous
data; this requirement is difficult to fulfill when processing in
situ records.

Laboratory and numerical simulations provide an efficient
tool for studying stochastic wave evolution. Such experi-
ments have been performed by many authors (e.g., numer-
ical studies by Onorato et al., 2001, 2002; Dysthe et al.,
2003; Janssen, 2003; Socquet-Juglard et al., 2005; Chalikov,
2005, 2009; Gramstad and Trulsen, 2007; Annenkov and
Shrira, 2009; and laboratory experiments by Onorato et al.,
2005, 2009; Mori et al., 2007; and many others), including
the authors of the present study, see numerical simulations
(Pelinovsky and Sergeeva, 2006; Shemer et al., 2010b; Slun-
yaev and Sergeeva, 2011) and laboratory studies (Shemer and
Sergeeva, 2009; Shemer et al., 2010a, b). The simulations
performed in the present research use a similar arrangement.
A random superposition of sinusoidal waves with prescribed
spectral shape is used as the initial condition att = 0 and sim-
ulated in time. Then, the result of wave evolution is analyzed.
We emphasize that the wave system may undergo essential
statistical evolution, which yields violation of the stationarity
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1760 A. Sergeeva and A. Slunyaev: Rogue waves, rogue events and extreme wave kinematics

assumption, see discussion in (Shemer et al., 2010a, b; Slun-
yaev and Sergeeva, 2011).

Even when detailed information on wave dynamics is po-
tentially available (for example, in stochastic numerical sim-
ulations), in most of the studies only a small amount of wave
information is processed. For example, in the absolute major-
ity of laboratory experiments, the data consists of time series
of surface elevation recorded by a few gauges. In the vast
majority of the numerical simulations, rogue waves are an-
alyzed only at the moment when the maximum wave height
is attained. The wave field data normally cannot be stored
with too high a frequency because this would slow down the
simulation gradually, and would increase the amount of data.
Meanwhile, the simulation of the initial problem employs in-
tegration in time, thus a fine time resolution of wave dynam-
ics is naturally available.

If a rogue wave occurs (let us assume that the wave does
not overturn, so that the simulation can be continued), it pos-
sesses a finite lifetime, and it is a rogue wave at every mo-
ment of this time interval. We emphasize this obvious fact
and analyze all the moments of the freak wave evolution. To
produce one realization of a stochastic wave dynamics, we
simulate quasi-random waves in time, and the simulated data
is stored with a sufficiently high frequency for further anal-
ysis. Besides the surface elevation, velocity fields are also
collected through the evolution, thus, the full wave data is
available for the analysis.

Velocities and accelerations which are experienced by the
fluid due to intense wave motions are much less investi-
gated. Papers by Grue et al. (2003), Grue and Jensen (2006,
2012) combine theoretical/numerical and laboratory (by PIV
methods) investigations, and contain important findings (see
other references on direct measurements of wave kinemat-
ics therein). Different wave sequences (focusing and ran-
dom, unidirectional and directional waves) were considered
in those publications. In the present work we are focused
on the comparison between the kinematics of very intense
(rogue) waves and “ordinary” waves.

Usually, 20 min time series represent the in situ measure-
ments, therefore the time interval of 20 min is considered in
the present study. To ensure that all the waves which pass
one point in space during the 20 min period are indeed differ-
ent, we take a sufficiently long spatial domain of simulations:
Cgr × 20 min≈ 10 km, whereCgr is the typical group veloc-
ity. The data grid consists of 2048× 2048 points, which cor-
responds to about 5 m× 0.6 s mesh size. The moderate level
of discretization is chosen with the purpose of analyzing the
data employing an ordinary PC; of course, a finer mesh in
time and/or in space may be produced.

The spatial domain contains about 60 individual waves;
their evolution is considered for about 120 wave periods
(2048 instants). Twenty realizations of irregular waves for
each initial condition, specified by the spectrum shape (the
sea condition), build up the statistical ensemble, which re-
sults in about 2 500 000 individual waves in the spatial do-

main (20 realizations× 60 waves× 2048 instants). All these
waves are used for the analysis. It is important to be aware of
a direct comparison between the statistical results obtained
in this paper and the statistics based on measurements in one
point. In our case not all the waves are statistically indepen-
dent; this issue will be discussed below in Sect. 3.1. The re-
verse side of the present approach is that if a rogue wave
appears, then it is examined at all phases of its evolution.
Possessing both the spatial and temporal data, the dynam-
ics of a rogue wave are considered in Sect. 3.2, in particu-
lar, the lifetime and prevailing shapes of rogue waves are ob-
tained. We introduce the concept of a rogue event, which in-
corporates shorter-living extreme waves, which overpass the
formal height criterion on a rogue wave with brief interrup-
tions. With the use of the wave velocity data, collected in our
simulations, in Sect. 4 we discuss a very important issue of
the wave-structure interaction: how extreme velocities in the
simulated wave fields correlate with velocities, culminated
during the rogue wave lifetime. The paper ends with conclu-
sions.

2 The approach for producing space-time wave
data sheets

2.1 Numerical model

The primitive equations of potential hydrodynamics for the
surface displacementη(x, t) and the surface velocity poten-
tial 8(x, t) = φ(x, t , z = η) have the form

∂η

∂t
= −

∂8

∂x

∂η
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+

(
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)2
)
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∂2φ

∂x2
+

∂2φ

∂z2
= 0,z ≤ η, (3)

∂φ

∂z
→ 0,z → −∞. (4)

Herex is the spatial coordinate along the wave propagation,
and t is the time variable. TheOz axis is directed upward,
andg is the gravity acceleration. Equation (3) is the Laplace
equation for the velocity potentialφ(x, z, t), Eqs. (1) and
(2) constitute the surface boundary condition, and Eq. (4) is
the bottom condition for it (an infinitely deep water case is
considered).

In this research Eqs. (1)–(4) are integrated by means of
a high-order spectral method (HOSM), see (Dommermuth
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Table 1.Parameters of the sea states.

Series code A B C E

T0, s 10 10 10 10.5

Hs, m 3.5 7 9 7

Peakedness,γ 3 3 3 3.3

and Yue, 1987; West et al., 1987) with the 4th order Runge–
Kutta integration in time. Strictly speaking, the HOSM is
not a fully-nonlinear, but a strongly nonlinear algorithm,
which resolves the wave-wave interactions up to the prede-
termined orderM (for M = 3 the HOSM approach has the
same accuracy as the Zakharov equation (Zakharov, 1968)).
In the present study parametersM = 3 andM = 6 are used
for different simulations; the HOSM formulation of West et
al. (1987) is employed. Reviewing high-order spectral meth-
ods, Tanaka (2001) showed consistency of the approach by
West et al. (1987); an inaccuracy of the formulation of Dom-
mermuth and Yue was observed in long-term simulations by
Clamond et al. (2006). Simultaneously, the caseM = 6 was
shown to correspond to a nearly fully nonlinear case, see the
discussion in (Clamond et al., 2006).

2.2 Initial conditions and preparation of the sea state

The initial condition for the simulations corresponds to a ran-
dom superposition of sinusoidal waves with spectrum of the
JONSWAP shape

S (ω) = α

(
ω

ω0

)−5

exp

[
−

5

4

(
ω

ω0

)−4
]

γ
exp

[
−

1
212

(
ω−ω0

ω0

)2
]

(5)

1(ω) =

{
0.07, ω < ω0
0.09 ω > ω0

.

Parameters of the sea states are specified in Table 1. There
T0 is the wave peak period,Hs is the significant wave height,
andγ is the peakedness. Parameterα in (5) is determined
through the characteristic wave height, and the angular fre-
quency relates to the wave period asω0 = 2π / T0. In this
paper the majority of presented results concerns cases A and
E. The first one is considered as a low sea state, while the
second one corresponds to severe conditions.

Two functions att = 0 are required to specify the ini-
tial condition for the simulation: the surface elevation,η(x,
t = 0), and the surface velocity potential,8(x, t = 0). Due to
the nonlinearity, these fields are in fact related in a non-trivial
way, so that in the case of significant wave nonlinearity and
broad spectrum it is very difficult to find the initial condi-
tion, which would be a realization of irregular waves with
the proper relation between functionsη(x, t = 0) and8(x,
t = 0).
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Figure 1. Potential and kinetic energy of waves in the numerical simulations. Case (b) 3 

corresponds to a slow switching on the nonlinearity in the governing equations. Sea state A. 4 
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corresponds to a slow switching on the nonlinearity in the governing equations. Sea state A. 4 

Fig. 1. Potential and kinetic energy of waves in the numerical sim-
ulations. Case(b) corresponds to a slow switching on the nonlin-
earity in the governing equations, while case(a) shows the result of
simulation of the original HOSM. Sea state A.

Frequently, one of the fields is taken in the form of a lin-
ear superposition of Fourier harmonics with random phases,
and the second one is obtained according to the linear relation
between wave elevation and velocity. The result of such care-
less production of the initial condition is displayed in Fig. 1a,
where the evolution of potential,Ep, and kinetic,Ek, ener-
gies of the wave system is given, where

Ek =
1

2

∫
∂η

∂t
8dx,Ep =

1

2
g

∫
η2dx. (6)

According to the linear theory, the portions of kinetic and po-
tential energy are equal at the initial moment. This balance is
not retained by nonlinear waves. As a result, parasitic counter
waves are naturally excited in the course of evolution of the
improper initial condition. They are well seen in the (ω, e)
Fourier diagrams of the wave evolution (see Slunyaev and
Sergeeva, 2012), and also may be revealed due to the oscilla-
tions, which are readily seen in Fig. 1a. Similar oscillations
with the period of a half-dominant wave period are typical
for the case of standing waves (in other words: existence of
two opposite wave systems).

To avoid this undesired effect in the simulations, the non-
linear parts of Eqs. (1)–(4) were turned on slowly to enable
the waves to adjust to the nonlinearity normally. The depen-
dences of potential and kinetic energies in this statement are
shown in Fig. 1b. The time interval shown in Fig. 1 corre-
sponds to about 20 wave periods, while the typical timescale
of this adjustment is one wave period. A smooth departure of
the kinetic and potential parts of energy is observed. Simulta-
neously, the amount of counter waves diminishes gradually.
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1762 A. Sergeeva and A. Slunyaev: Rogue waves, rogue events and extreme wave kinematics

Generation of the initial condition in the form of a su-
perposition of sinusoids with random phases implicitly im-
plies the assumption of Gaussian wave statistics. Besides
establishing the correct ratio between the kinetic and the
potential energies due to generation of proper phase-locked
bound waves, the initial stage of wave evolution may undergo
a longer transition process, which is related to the forming of
natural nonlinear wave groups. This effect is primarily due
to the four-wave interactions, and has a typical duration of
order ε−2 Tp (whereε is the wave steepness). This effect
has been observed many times in laboratory and numeri-
cal experiments, see among others (Shemer and Sergeeva,
2009, 2011; Shemer et al., 2010a, b; Dysthe et al., 2003;
Janssen, 2003; Onorato et al., 2005; Annenkov and Shrira,
2009). A relatively simple theory, based on modified non-
linear Schrodinger equation (see, e.g., in Trulsen, 2006), is
often able to capture the nonlinear effects at this scale. How-
ever, its application may be limited due to the requirements
of a narrow spectrum and a weak nonlinearity.

For a given wave intensity, this transition process occurs in
the case of sufficiently narrow spectrum and is characterized
by a temporal spectrum widening with subsequent partial re-
laxation. During the transition stage the probability of ex-
treme waves increases greatly. After this acute stage a quasis-
tationary state is attained. Such a process is most pronounced
in the case of large values of the Benjamin–Feir Index, which
may happen when the JONSWAP spectrum is characterized
by a large value of peakedness,γ . The transition process is
not appreciable if the waves are weakly nonlinear or the spec-
trum is wide (BFI is small). The quasistationary condition is
achieved within a few units of the “nonlinear time”∼ ε−2 Tp.

In our numerical simulations the first 200 s of the wave
evolution are allocated for the transient processes and are not
used for the analysis. The wave system is assumed to be the
proper sea state fort > 200 s.

Figures 2 and 3 show the spectra which characterize the
obtained sea states A and E correspondingly. These Fourier
spectra are averaged; they are built on the basis of all sim-
ulated data using 20 realizations. Dashed curves in the fig-
ures indicate the corresponding JONSWAP spectrum, which
is used for the generation of the initial condition.

It may be noted that the obtained spectrum is somewhat
distorted due to the nonlinear processes and moderate num-
ber of realizations used for the averaging. However, the
agreement between the modeled and the obtained spectra is
good. A significant variation of the wavenumber spectrum in
time was not observed, which confirms the closeness of the
simulated sea states to stationary conditions.

A peak frequency downshift may be seen for the steeper
sea state in Fig. 3, which is a well-known effect. Besides,
some faster decay of the simulated spectrum tail, in compar-
ison with the JONSWAP curve, is noticeable in Fig. 3. This
effect is due to the effective high-frequency wave dissipation,
which was introduced to damp the processes of wave break-
ing in the way similar to (Chalikov, 2005). Otherwise, too
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Figure 2. Averaged frequency spectrum in linear (a) and semi-logarithmic (b) axis, and also 5 

the wavenumber spectrum in semi-logarithmic axis (c) for the sea state A. Dashes curves 6 

show the modeled JONSWAP spectrum. 7 

Fig. 2. Averaged frequency spectrum in linear(a) and semi-
logarithmic (b) axis, and also the wavenumber spectrum in semi-
logarithmic axis(c) for the sea state A. Dashed curves show the
modeled JONSWAP spectrum.

steep waves, which appear during the wave evolution, cause
numerical instabilities, and the simulation blows up quickly.
Thus, the desired sea state E is not reproduced in full, and the
sea state corresponds to a slightly different condition of sea
wave evolution.

The HOSM is unable to resolve very steep waves; it also
suffers from instabilities that may normally reduce its ca-
pability of long-time simulations. High-intensity waves in
case E and the slowly decaying spectrum tail of the JON-
SWAP function provide favorable conditions for the occur-
rence of very steep waves. Sometimes the employed high-
frequency damping filter was not able to prevent the occur-
rence of small-scale instability. Then the simulation was in-
terrupted, the steep wave was artificially removed from the
field, and the simulation was continued. As a result of the
introduced damping and removal of too many sharp waves,
the root mean square of surface elevation,σ , might decrease
during the simulation to about 23 min in total, or up to about
10 %.
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Figure 3. Averaged frequency spectrum in linear (a) and semi-logarithmic (b) axis, and also 5 

the wavenumber spectrum in semi-logarithmic axis (c) for the sea state E. Dashes curves 6 

show the modeled JONSWAP spectrum. 7 

Fig. 3. Averaged frequency spectrum in linear(a) and semi-
logarithmic (b) axis, and also the wavenumber spectrum in semi-
logarithmic axis(c) for the sea state E. Dashed curves show the
modeled JONSWAP spectrum.

3 Analysis of the spatio-temporal surface elevations

The simulated spatio-temporal wave fields of the surface el-
evation with high resolution in time and space give the com-
prehensive information about the wave’s shapes, and make
possible a study of rogue wave’s dynamics in detail. Since the
considered spatial domain is large (about 10 km), the proba-
bility of extreme waves in a certain time interval increases in
comparison with the probability calculated for time records
in a given spatial point. Thus, almost every simulated realiza-
tion contains several abnormal waves, while the linear theory
for the Gaussian sea predicts such a wave to occur in a single
point once during about 8 h (Kharif et al., 2009).

The widely used criterion for rogue wave definition is
based on the amplification factor,AI (abnormality index),
formulated in terms of the wave height,H . The simple com-
mon definition of a rogue wave reads

AI > 2,AI =
H

Hs
. (7)

HereHs is the significant wave height determined as the av-
erage value of one-third of the highest waves in a record. For
the Gaussian sea this parameter could be written with the use
of the root mean square of surface elevation asHs ≈ 4σ .
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Fig. 4. Wave height exceedence probability distribution functions
for conditions A simulated within the linear framework (case AL)
(a) and by means of HOSM (M = 6) (b), and for conditionE sim-
ulated by means of the HOSM (M = 3) (c) . The PDF are produced
for the raw and filtered data; wave heights are normalized by differ-
ent factors Href (see legend and discussion in the text). The theoret-
ical Rayleigh distribution (thick line) is given for the reference.

We should mention that the statistics of simulated nonlinear
waves deviates from the Gaussian one, and values ofHs, cal-
culated according to the general definition, differ from the
value of 4σ , which leads to a different criterion for the rogue
wave selection. For simplicity of selecting rogue waves, we
use criterion (7) with Hs equal to 4σ , i.e., for rogue waves
H > 8σ . In total about 800 rogue waves are found for the
sea state A, and about 4500 waves for the more severe case
E.

www.nat-hazards-earth-syst-sci.net/13/1759/2013/ Nat. Hazards Earth Syst. Sci., 13, 1759–1771, 2013
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and also for case A, when the evolution is simulated within the linear theory, AL (dashed 9 
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Fig. 5.Wave correlation R(0,1t) for conditions A (thick solid line)
and E (thin solid line) 9 and also for case A, when the evolution is
simulated within the linear theory, AL (dashed 10 line).

One of the aims of the present work is to consider the va-
riety of shapes of rogue waves. To this end, individual waves
must be singled out. Usually, this is performed by the zero-
crossing approach, see e.g. (Holthuijsen, 2007). It is substan-
tial that in the present case we deal with space series, but not
time series. It is very well understood that in deep-water con-
ditions waves have an effectively narrower frequency spec-
trum in comparison to the wavenumber spectrum. As a con-
sequence, the portion of short-scale waves which can be dis-
tinguished on water surface is greater in the spatial domain.
They look like ripples on the background of wind waves;
many of them are recognized as individual waves according
to the naive application of the zero-crossing approach. The
large amount of small-scale weak-amplitude waves distorts
statistical properties (such as typical wave length, significant
wave height) greatly. To avoid this spurious effect, wave fil-
tering was introduced. First, individual waves were separated
following the basic zero-crossing approach (hereafter this se-
lection of individual waves in spatial series will be referred
to as raw data). If an individual wave happens to be signifi-
cantly shorter than the peak wave length (shorter thanL0/5,
whereL0 = T 2

0 g/(2π)), it is merged by the neighboring indi-
vidual wave. Therefore, the number of individual waves after
the filtering is smaller than the one in the raw data, and the
significant wave height is, correspondingly, larger in the fil-
tered data.

3.1 Probability distribution functions

We have already noted the difference between statistical data,
used in this study, and that composed by conventional time
series retrieved at a single point: not all individual waves
(among about 2.5 million) are independent. Therefore, the di-
rect comparison between the statistical results becomes im-
possible, and it is desirable to understand at least the main
features of the difference.
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Fig. 6.Spatio-temporal sheet of the surface elevation. Markers indi-
cate rogue waves, and rectangles assemble them into rogue events.

First, we employ the advantage of fully controllable nu-
merical simulations, and conduct numerical simulations of
20 realizations for the initial condition A, when nonlinear
effects are switched off totally (this numerical experiment
will be hereafter referred to as AL), and then produce the
exceedance probability distribution function on the basis of
the 2.5 million individual waves. The result of processing is
shown in Fig. 4a. The probability distribution functions are
produced for the raw and filtered data, denoted asHs andH

f
s

respectively; inequalityH f
s ≥ Hs takes place. The significant

wave heights are defined as a mean of significant heights of
zero down-crossing waves and up-crossing waves. The hori-
zontal axis in Fig. 4 shows the normalized height, where the
normalization factor,Href, is given in the figure legend. The
Rayleigh probability function, which follows from the linear
theory for narrow band waves, is given for the reference by a
thick line.

The first important observation is that no rogue waves oc-
cur in simulation AL at all, since all the curves in Fig. 4a
fall down atH < 2Href. This fact is obviously caused by in-
sufficient volume of the statistical ensemble. The number of
narrow-banded individual waves in the ensemble, which re-
sults in the Rayleigh distribution for wave heights, exceeding
4σ , was estimated in Pelinovsky and Kokorina, (2002) to be
about 10 000. Even a greater number of realizations should
be simulated with the purpose of studying the rogue wave
statistics in conditions AL. There is practically no difference
between curves forHref = H

f
s andHref = Hs. The tail of

the curve forHref = 4σ is somewhat lower than the one for
Href = Hs, which is because the value 4σ exceeds significant
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wave height, and both the tails are lower than the Rayleigh
function.

Figure 4b,c displays the results of nonlinear wave evolu-
tion. Appearance of long tails is evident, and waves exceed-
ing H > 2Href occur in all cases. The PDF’s tails for the en-
semble of non-filtered waves exceed theoretical curve when
Href =2Hs, both in Fig. 4b (moderately intense waves, A)
and in Fig. 4c (severe wave conditions, E); for these cases
Hs< ∼ 4σ , similar to conditions AL. At the same time,
the calculated PDF with scalingHref =4σ is lower than the
Rayleigh curve in case A (Fig. 4b) and seems to be a bit
higher than in case E (Fig. 4c). Note that the slightly differ-
ent definition of the quantityHs is able to change the posi-
tioning of the calculated curves with respect to the Rayleigh
function.

The impact of the wave filtering, which sifts out short-
scale waves, becomes very important in nonlinear simula-
tions (Fig. 4b, c), in contrast to the linear case (Fig. 4a).
Due to the filtering, the amount of small waves decreases
greatly, H f

s grows respectively, and the number of waves
with H > 2H

f
s is much smaller than of waves withH > 2Hs

or H > 8σ . As a result, the probability distribution function
for filtered data falls below the Rayleigh function. We em-
phasize that in the present study the wave processing is per-
formed for the space series, but not for time series. Because
frequency wave spectrum of deep-water waves is about twice
as narrow as the wavenumber spectrum, it is natural to expect
that the effect of small-scale waves on the distribution func-
tion in the case of time series processing is less prominent.

The study of wave auto-correlation in time and space is
illustrated in Fig. 5. The wave correlation is estimated with
the help of the following function,

R(t,1t) = max
1x

∫
η(t,x)η (t + 1t,x + 1x)dx√∫
η2 (t,x)dx

√∫
η2 (t + 1t,x)dx

, (8)

where the integration is made over the spatial domain. For
simplicity, functionR(0, 1t) is examined and is plotted in
Fig. 5. Three curves are shown in the figure: the thin solid
line corresponds to the case A; the case E is marked with
the thick solid line; the dashed curve displays the result of
simulation, when the same initial condition as in case A is
simulated within the linear framework (AL). Figure 5 shows
very different pictures for the linear and nonlinear wave dy-
namics. It reports that the level of correlation decays much
faster in the nonlinear case in comparison to the linear simu-
lation. Sea states with relatively small waves and with steeper
waves do not differ significantly.

According to the analysis, the effect of higher probabil-
ity of high waves with respect to the linear theory, observed
in the present simulations (see Fig. 4), is assumed by us to
be twofold. First, nonlinearity is generally known to increase
the likelihood of high waves; this effect was observed both
in deep and shallow water conditions (Onorato et al., 2001,
2002; Pelinovsky and Sergeeva, 2006; and many others).
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 1 

Figure 7. Normalized life-time of rogue events versus the abnormality index, AI. 2 Fig. 7. Normalized lifetime of rogue events versus the abnormality
index, AI.

Qualitatively this effect is in agreement with the formation
of long-living nonlinear wave structures (coherent nonlinear
wave groups in deep water, and solitary waves in shallow wa-
ter). The second effect, which becomes vivid due to Fig. 5, is
shortening of the wave correlation length, more waves among
the 2.5 million become effectively independent due to nonlin-
ear effects, and hence the volume of the statistical ensemble
effectively increases, and higher waves may be found.

3.2 Pictures of rogue waves and rogue events

An example of the simulated (x, t) sheet of surface eleva-
tions with detected rogue waves is given in Fig. 6. Filled
circles mark extreme waves withAI > 2. As it is described
above, the spatial domain is periodic, and space series are
analyzed.

To follow the evolution of a rogue wave, the wave height
may get smaller than the threshold value (7), which specifies
rogue waves for a short time, and may exceed the threshold
soon after. Thus, such extreme waves in the course of its evo-
lution satisfies criterion (7) in a discontinuous manner. It is
natural to consider this sequence of extreme waves as a rogue
event, even if the wave does not satisfy conditionAI > 2 at
all instants of its lifetime. Therefore, individual waves, which
satisfy the rogue wave criterion (7), are assumed to belong to
one rogue event, if they are located in space and time not fur-
ther from each other than 2.5 characteristic wave lengths and
2.5 characteristic wave periods.

In Fig. 6 clustered rogue events are shown by frames,
which assemble rogue waves (filled circles). Very short-
living single rogue waves (of one wave period or less), and
continuous and intermittent long-living rogue events (last-
ing for many wave periods) may be observed in the figure
(note periodic boundary conditions for the simulated spatial
domain.) Long-living rogue waves were found, in particular,
in numerical simulations by Clamond and Grue (2002), Slun-
yaev and Sergeeva (2012), Slunyaev and Shrira (2013). An
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(a) 1 

(b) 2 

(c) 3 

 4 

Figure 8. Examples of rogue wave’s profiles (bold lines), and surface elevations at 5 

consecutive time points: single crest (a), sign-variable wave (b), deep hole (c). 6 

Fig. 8. Examples of rogue wave profiles (bold lines), and surface
elevations at consecutive time points: single crest(a), sign-variable
wave(b), deep hole(c).

even longer rogue event might be distinguished in the figure
(from 150 s to about 550 s), if a longer separation between
the individual rogue waves is allowed.

Of course, the life time of a rogue event can be signifi-
cantly longer than for continuous rogue waves. The spread
of values of rogue event’s lifetimes versus the abnormality
index is pictured in Fig. 7 for series A, B, C and E. The fig-
ure claims that rogue events may last for a few dozen charac-
teristic wave periods, up to about 10 min. This lifetime sig-
nificantly exceeds some other estimations on the rogue wave
lifetime, including the results of our previous studies, where
the lifetimes were estimated to be up to about 1.5 min. Fig-
ure 7 exhibits the trend that more intense waves live for a
longer time.

Typical shapes of rogue waves observed in the numeri-
cal simulations are shown in Fig. 8. The bold lines depict
the rogue waves, how they are segregated by the present
processing. Most of rogue waves correspond to high crests
(Fig. 8a) or skew-symmetric surfaces (Fig. 8b); besides,
extreme waves with deep troughs (“holes in the sea”) are also
found (Fig. 8c). Thin lines in Fig. 8 correspond to surface el-
evations at consecutive time instants close to the moment of
the rogue wave occurrence.

Two approaches to selecting wave heights are usually ap-
plied to processing wave records: zero down-crossing or
zero up-crossing (e.g., Holthuijsen, 2007). Note that an up-
crossing wave in a time series becomes a down-crossing
wave when its momentary shape is considered as a func-
tion of a coordinate (and the coordinate axis is chosen along
the wave propagation). In the present analysis, a rogue wave
owns an extreme vertical excursion between the wave crest
and the wave trough; each crest and trough, localized accord-
ing to the zero-crossing method, constitute the rogue wave,
as shown in Fig. 8 by bold lines. A rogue wave may be ei-
ther up- or down-crossing, depending on the mutual location
of the wave crest and trough constituting the rogue wave.
Waves in Fig. 8 represent space series of waves which prop-
agate to the right. Extreme waves in Fig. 8a, c (given by the
bold line) are zero down-crossing waves, and will be referred
to as extreme rear slope waves. The spatial record of an ex-
treme wave, given in Fig. 8b, is an up-crossing wave and is
represented by an extreme frontal slope.

A variety of rogue wave geometries found in the numer-
ical simulations is illustrated in Figs. 9 and 10. Figure 9
displays the relation between the ratio of crest amplitude
to trough amplitude (vertical axis) versus the ratio of crest
length to trough length (horizontal axis) for wave condi-
tions A (Fig. 9a) and E (Fig. 9b). The distinction is made
between the cases when the rogue wave has a huge frontal
slope (shown with circles) or an extreme rear slope (shown
with crosses). In Fig. 9 all the rogue waves found in 20 re-
alizations for cases A and E are collected. Figure 9 proves
that extreme waves with high crests are prevalent in compar-
ison with extremely deep troughs. Higher crests are shorter
in length.

The proportion between rogue waves of different shapes is
displayed in Fig. 10 for sea states A and E respectively. Four
kinds of rogue waves are distinguished regarding the vertical
asymmetry and orientation of the wave (extreme frontal or
rear slope). Both panels in Figs. 10a,b claim prevalence of
waves with high crests (“positive” waves, 85–95 %), while
waves with deep troughs (“negative” waves) are much less in
number, agreeing with the results in Fig. 9.

For less intense waves (Series A, Fig. 10a) the propor-
tion between up-crossing and down-crossing rogue waves
is about the same, whereas in the steeper wave case (Series
E, Fig. 10b) the total number of recognized rogue waves is
much greater, and the number of rogue waves with extreme
rear slopes (61 %) is significantly larger than with extreme
fronts (34 %), thus in the majority of cases a ship should ex-
perience a very high wave crest first, and then a subsequent
deep trough. This picture is opposite to the one known in
relation to regions with strong opposite currents (Mallory,
1974; Lavrenov, 1998), when a deep trough precedes a high
crest (a huge wave front), but agrees very well with the in
situ measurements by Pinho et al. (2004), where 276 cases
of rogue waves result in the proportion between waves with
large rear and frontal slopes as 197:108.
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 b 2 

Figure 9. Relation between vertical wave asymmetry (crest amplitude to trough amplitude) 3 

and horizontal asymmetry (crest length to trough length) for two types of rogue waves (circles 4 

show cases with extreme wave fronts, while crosses denote extreme rear slopes) for series A 5 

(a) and E (b).  6 

Fig. 9. Relation between vertical wave asymmetry (crest ampli-
tude to trough amplitude) and horizontal asymmetry (crest length
to trough length) for two types of rogue waves (circles show cases
with extreme wave fronts, while crosses denote extreme rear slopes)
for series A(a) and E(b).

4 Extreme kinematics of waves versus kinematics of
extremely high waves

Establishing the relation between the extreme surface ele-
vation and extreme wave kinematics is an important issue.
Conventionally the rogue wave criterion is based on the am-
plitude characteristics (7). The reason for that is evident: al-
though waves are in fact a complicated phenomenon repre-
sented by the movement of fluid particles, the surface eleva-
tion is much easier to observe and to register.

Through the performed simulations, a large amount of in-
formation on wave kinematics is available, enabling us to
conduct a kind of statistical study on rogue wave kinematics
characterizing particular sea states. The employed numerical
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 3 

Figure 10. The proportions of waves of different types in the total mass of rogue waves for 4 

series A (a) and E (b). 5 

Fig. 10.The proportions of waves of different types in the total mass
of rogue waves for series A(a) and E(b).

model cannot simulate wave breaking, hence breaking waves
are beyond the scopes of the present analysis.

In this section we consider the relation between extreme
velocities in the simulated wave fields, and velocities of
rogue waves (the latter are singled out on the basis of the
wave height criterion (7)) and address the question: do rogue
waves manifest faster velocities?

The Eulerian horizontal and vertical velocities of the water
surface,Vx andVz are defined by

Vx ≡
∂φ

∂x

∣∣∣∣
z=η

=
8x − ηtηx

1+ η2
x

,Vz ≡
∂φ

∂z

∣∣∣∣
z=η

=
ηt + 8xηx

1+ η2
x

.

(9)

The formula forVz results from (1), and the formula forVx

comes from the identity8x = φx +ηxφz at z = η.
A simulation of one irregular wave realization results in

2048× 2048 values of velocities (9). They are plotted in
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a) 1 

b) 2 

Figure 11. Grey points are all the values of vertical versus horizontal surface velocities in the 3 

(x, t) fields (5 realizations are used). Black points are the maximum horizontal and blue points 4 

are the maximum vertical velocities attained by the detected rogue waves (all 20 realizations 5 

are used to plot these values): (a) - Series A, (b) - Series E. Contours correspond to the values 6 

for the 3rd order Stokes wave solution of the heights Hs (the smaller contour) and Hmax (the 7 

larger contour). 8 

Fig. 11.Grey points are all the values of vertical versus horizontal
surface velocities in the (x, t) fields (5 realizations are used). Black
points are the maximum horizontal and blue points are the maxi-
mum vertical velocities attained by the detected rogue waves (all 20
realizations are used to plot these values):(a) Series A,(b) Series E.
Contours correspond to the values for the 3rd order Stokes wave so-
lution of the heightsHs (the smaller contour) and Hmax (the larger
contour).

diagrams in Figs. 11 with grey points (Vx versusVz) for five
realizations of sea states A (Fig. 11a) and E (Fig. 11b). The
extreme values of horizontal (black points) and vertical (blue
points) velocities, which are attained by the segregated rogue

waves (see examples given by bold lines in Fig. 8), are shown
for all 20 realizations, simulated for conditions A and E.

For reference, velocities at the water surface for the 3rd or-
der Stokes wave solution are shown in Figs. 11 (contours) ac-
cording to formulas, see e.g. (Fenton, 1985; Slunyaev, 2005)

Vx =
√

k0gA

(
1−

1

8
k2

0A2
)

exp(k0η)cosθ, (10)

Vz =
√

k0gA

(
1−

1

8
k2

0A2
)

exp(k0η)sinθ, (11)

η = Acosθ +
k0

2
A2cos2θ +

3

8
k2

0A3cos3θ. (12)

HereA is the wave amplitude, and 0< θ < 2π is the wave
phase;k0 = ω2

0 / g is the carrier wavenumber, andω0 comes
from the JONSWAP spectrum (5). The contours are plotted
in Figs. 11 for two wave intensities: (i) when the wave height
is equal to the significant wave height,Hs (thenA = Hs/2–
3/64k2

0 H 3
s , the smaller contour); and (ii) for the maximum

wave height registered in the simulated wave fields,Hmax
(thenA = Hmax / 2 – 3/64k2

0 H 3
max, the larger contour).

The larger contour corresponds to the highest possible ve-
locity of surface waves as if they were described by the 3rd
order Stokes wave solution (10–12). The area inside the con-
tour corresponds well to the major amount of velocities in
the both cases, Series A and E. The inner contour allocates
the range of wave velocities with heights smaller thanHs;
this area of velocities (Vx , Vz) is practically free of rogue
waves. The 5th order Stokes wave solution for surface ve-
locities does not significantly change the picture shown in
Fig. 11a (Series A), it is quite similar to the 3rd order ve-
locities. For severer Series E the value ofHmax seems to be
so large that the asymptotic solution for wave velocities does
not converge well.

Asymmetries of the vertical and horizontal velocity fields
are well pronounced, the velocities, which correspond to
rogue waves, have qualitatively similar distribution asymme-
try. The asymmetries strengthen for a steeper wave sea state.

Figure 11 proves the inability of the high-order Stokes
wave theory to describe the rogue wave kinematics, although
the major part of velocities attained by simulated rogue
waves lies within the ranges, which correspond to the high-
est registered wave. Some “blind” areas in Fig. 11 are evident
(where only grey points exist), which correspond to intense
velocities (they may even exceed the limit set by the Stokes
wave solution) and at the same time to relatively small wave
amplitudes (rogue waves with these fluid velocities are not
found in the records). On the other hand, some rogue waves
exhibit quite moderate values of velocities.

The analysis of velocities and accelerations under crests
of steep waves was performed in (Grue et al., 2003; Grue
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Figure 12. Scaled horizontal velocities Vx / Cnonlin versus scaled crest amplitudes kloccr found 3 

in rogue waves in numerical simulations of sea states A and E (points). The solid curve gives 4 

the analytic estimation from the asymptotic weakly nonlinear theory. 5 

Fig. 12.Scaled horizontal velocities Vx /Cnonlin versus scaled crest
amplitudes klocnor found in rogue waves in numerical simulations
of sea states A and E (points). The solid curve gives the analytic
estimation from the asymptotic weakly nonlinear theory.

and Jansen, 2006, 2012). In particular, profiles of horizon-
tal velocities and maximal horizontal velocities with respect
to the wave speed were considered. The exponential profile
was found to describe the situation very well. Two charac-
teristic velocity scales were suggested, the linear phase ve-
locity, Clin ≡ A

√
k0g (cf. (10,11)), and the velocity which

takes into account a small nonlinear correction to frequency,
Cnonlin ≡ A

√
k0g (1 +k2

0A2). Grue et al. (2003) overviewed
the maximum horizontal fluid velocities reported by differ-
ent researchers. They found that the fluid velocities were
generally smaller than the nonlinear wave celerity,Cnonlin,
but seemed to be strongly dependent on wave types (depth
conditions, breaking situations) that sometimes could exceed
Cnonlin.

In this paper we consider only the fluid velocities at
the water surface. In Fig. 12 the maximum velocity value
Vx /Cnonlin for each rogue wave is indicated by a symbol ver-
sus the dimensionless rogue wave crest amplitude,klocηcr .;
only the waves which satisfy the rogue wave criterion are
concerned. Sea states A and E are shown by black and green
points, respectively. Here the local wavenumber,kloc, is de-
termined according to the zero-crossing wave length, andηcr

is related withA by formula (12), whenθ = 0. The values
of klocηcr in Fig. 12 are up to 0.29 for the sea state A, and
up to 0.51 for the sea state E; the corresponding maximum
scaled velocities are up to 0.55 and 0.87. For valuesVx /Clin ,
the clouds of data are significantly more spread (not shown).

According to Fig. 11, formulas (10–12) are expected to
describe the major part of the velocity data rather well. For
the maximal registered values ofklocηcr , which are shown in
Fig. 12, formulas (10–12) result in estimationsVx / Cnonlin =

0.32 for case A, andVx / Cnonlin= 0.60 for case E; the
corresponding analytic curve is plotted in Fig. 12 for refer-
ence. This estimation obviously limits the data of numerical
experiments from below. Actual velocities may exceed this

estimation substantially, but they are still always less than
Cnonlin. The numerical simulations reported in (Grue et al.,
2003) seem to agree better with the theoretical curve. It is
worth mentioning that the way in which the local wavenum-
ber is estimated is different in Grue et al. (2003) and in the
present study. In Grue et al. (2003) the trough-to-trough dis-
tance around an intense crest in time series is estimated,
while we use the zero-crossing wave length around an ex-
treme elevation drop is space series.

5 Conclusions

In the paper we present the approach to a more extensive use
of data on rogue wave dynamics, statistics, and kinematics,
which becomes available through stochastic simulations of
irregular waves.

In this study waves characterized by the JONSWAP spec-
trum are simulated by means of the strongly nonlinear algo-
rithm for solving the Euler equations, the HOSM. Two sea
states are considered in more detail – of moderately high
waves and steeper waves. For each sea state 20 realizations
are simulated, each results in 10 km×20 min sheets of data
with good resolution of the surface elevation, fluid velocity,
etc.

The accumulated data may be used for generating tempo-
ral or spatial wave records, and then used for verification and
adjustment of processing techniques. The availability of full
spatio-temporal information about the wave field provides an
opportunity to clarify the dispersion relation for nonlinear
waves, where wave components (free, bound and counter-
directional modes) are naturally separated (as discussed in
Slunyaev and Sergeeva, 2012).

In the present study the main interest is focused on charac-
teristics of rogue waves which occur in the simulated fields.
The simulated data contains a number of rogue waves avail-
able for analysis. Space series are used, because of the pecu-
liarity of periodic spatial boundary conditions. Spatial time
series (one- and two-dimensional) of the surface elevation,
which are recorded in laboratory and in situ conditions are
becoming available nowadays due to the development of new
measuring techniques. Hence, the direct comparison between
the theoretical simulation and measurements becomes poten-
tially possible.

The analysis of characteristics of individual rogue waves,
found in our simulations, shows the variety of their shapes
and appearances. Most of the simulated rogue waves have
very high crests and shallow long troughs, or sign-variable
shapes. “Holes in the sea”, characterized by deep troughs,
are found in the simulation data as well. In severe conditions,
the predominance of rogue waves with extreme rear slopes is
discovered compared to rogue waves with high fronts.

The employed approach allows for the observation of a
full picture of the rogue wave propagation. Some of extreme
waves appear suddenly and live for a short time, less then a
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wave period. Large amount of rogue waves’ heights oscillate
with time and exceed the formal criterion of a rogue wave,
H > 2Hs, repeatedly, and thus may be considered as rogue
events which can live significantly longer than the wave,
which satisfies the rogue wave amplitude criterion continu-
ously. As a result, the lifetime of extremely high wave events
varies from several seconds to tens of characteristic wave pe-
riods.

Water velocities at the surface are considered in relation
to the rogue wave phenomenon. The velocities of extreme
waves are compared versus extreme kinematics of all waves
and with predictions of the 3-order and 5-order nonlinear the-
ories for Stokes waves. The difference between the kinemat-
ics of extremely high waves and the extreme kinematics is
emphasized, whereas the significant amount of data well cor-
respond to each other. Rogue waves are typically character-
ized by large values of velocities, but high velocities do not
necessarily correspond to rogue waves, and rogue waves may
be characterized by moderate fluid velocities. The maximal
horizontal fluid velocities at the surface of rogue waves may
be rather well parametrized over the wave velocity, which
takes into account the nonlinear frequency correction.
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