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Abstract. In the first two parts of this study we have pre-
sented a performance analysis of our new Cloud Dynamics
and Radiation Database (CDRD) satellite precipitation re-
trieval algorithm on various convective and stratiform rain-
fall case studies verified with precision radar ground truth
data, and an exposition of the algorithm’s detailed design
in conjunction with a proof-of-concept analysis vis-à-vis its
theoretical underpinnings. In this third part of the study,
we present the underlying analysis used to identify what
we refer to as theoptimal metrological and geophysical
tags, which are the optimally effective atmospheric and ge-
ographic parameters that are used to refine the selection
of candidate microphysical profiles used for the Bayesian
retrieval. These tags enable extending beyond the conven-
tional Cloud Radiation Database (CRD) algorithm by invok-
ing meteorological-geophysical guidance, drawn from a sim-
ulated database, which affect and are in congruence with
the observed precipitation states. This is guidance beyond
the restrictive control provided by only simulated radiative
transfer equation (RTE) model-derived database brightness
temperature (TB) vector proximity information in seeking to
relate physically consistent precipitation profile solutions to
individual satellite-observed TB vectors. The first two parts
of the study have rigorously demonstrated that the optimal
tags effectively mitigate against solution ambiguity, where

use of only a CRD framework (TB guidance only) leads
to pervasive non-uniqueness problems in finding rainfall so-
lutions. Alternatively, a CDRD framework (TB + tag guid-
ance) mitigates against non-uniqueness problems through
improved constraints. It remains to show how these opti-
mal tags are identified. By use of three statistical analysis
procedures applied to a database from 120 North American
atmospheric simulations of precipitating storms (indepen-
dent of the 60 simulations for the European-Mediterranean
basin region used in the Parts 1 and 2 studies), we ex-
amine 25 separate dynamical-thermodynamical-hydrological
(DST) and geophysical parameters for their relationships to
rainfall variables – specifically, surface rain rate and colum-
nar liquid/ice/total water paths of precipitating hydromete-
ors. The analysis identifies seven optimal parameter tags
which exceed all others in the strengths of their correla-
tions to the precipitation variables but also have observa-
tional counterparts in the operational global forecast model
outputs. The seven optimal tags are (1 and 2) vertical veloc-
ities at 700 and 500 hPa; (3) equivalent potential tempera-
ture at surface; (4) convective available potential energy; (5)
moisture flux 50 hPa above surface; (6) freezing level height;
and (7) terrain height, i.e., surface height.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1186 E. A. Smith et al.: Part 3 – Identification of optimal meteorological tags

1 Introduction

The first two parts of this series of investigations, i.e., the
studies of Saǹo et al. (2013) and Casella et al. (2013), have
reported on the development of a new satellite precipitation
retrieval algorithm which we refer to as the Cloud Dynam-
ics and Radiation Database (CDRD) algorithm. The essence
of the new algorithm is that it uses what we call optimal
meteorological-geophysical parameter tags to assist in the
process of guiding the algorithm in finding microphysical
profile precipitation solutions that are congruent with the en-
vironments encompassing the satellite measurements used in
the retrievals. The first of these studies conducted a perfor-
mance evaluation and verification of the new algorithm in-
volving a pair of case studies over the Lazio region of cen-
tral Italy, for which precision ground-truth radar data were
available from the Polar 55C Doppler C-band polarimetric
radar facility located at the CNR/ISAC institute in Rome.
The case studies included both weak and intense convec-
tive precipitation, as well as various degrees of intensity of
stratiform precipitation. The performance of the algorithm
justified the new algorithm design based on the very close
agreement between the satellite radiometer and ground-truth
radar retrievals. The second study proceeded to describe in
detail the design of the algorithm, particularly the model un-
derpinnings, and finished with a proof-of-concept analysis
that confirmed the effectiveness of the algorithm in overcom-
ing the prevailing ambiguity problem that plagued an ear-
lier generation of algorithms which were formulated within
a similar theoretical framework. In this third part of the study,
we address the problem of how the optimal meteorological-
geophysical parameter tags needed by the CDRD algorithm
have been chosen.

The CDRD name we have chosen is not arbitrary. First
of all it represents an extension of the name that has been
used for the aforementioned earlier generation of algorithms
called Cloud Radiation Database (CRD) algorithms (see
Smith et al., 1994a; Mugnai et al., 2008) in which a simula-
tion database produced by the combination of a cloud resolv-
ing model (CRM) and a radiative transfer equation (RTE)
model is used for knowledge guidance to produce precipita-
tion microphysics profile solutions from passive microwave
(PMW) radiometer measurements obtained from space. The
CRM is used to produce a large number (thousands to mil-
lions) of coincident meteorological and microphysical profile
and scalar parameters, as well as key geophysical scalar pa-
rameters, situated within the environments of simulated pre-
cipitating storms. In sequence, the RTE model is used to cal-
culate simulated brightness temperature (TB) vectors associ-
ated with the meteorological, microphysical-profile and geo-
physical conditions, that are said to represent what a satellite
PMW radiometer would sense vis-à-vis top-of-atmosphere
(TOA) upwelling TB vector quantities. Note the term TB
vector denotes that a PMW TB measurement is multispectral
(i.e., multi-channel) in nature, and thus must be treated as a

packet of values (i.e., a vector). Also, a microphysical profile
is defined as a set of vertically distributed cloud and precip-
itation hydrometeor mixing densities consisting of multiple
liquid and frozen hydrometeor categories (e.g., a 2-water/4-
ice set might consist of cloud droplets, rain drops, pristine
crystals, snow pellets/flakes, ice aggregates and graupel/hail
particles).

The algorithm solution methodology is optional; relax-
ation approaches have been used (e.g., Smith et al., 1994b, c)
as have Bayesian approaches (e.g., Kummerow et al., 1996;
Pierdicca et al., 1996; Marzano et al., 1999; Mugnai et al.,
2001) and others (e.g., Bauer et al., 2001). The key issue
concerning CRD-type algorithms is that, in the process of
obtaining a solution, an individual observed radiometer TB
vector must be compared to the entire set of simulated TBs
in the knowledge database in order to select candidate mi-
crophysical profile solutions (which may include all profiles
in the database) based on the proximity of themodeledTB
vector quantities to the correspondingmeasuredTB vector
quantity. The full set or subset of candidate profile solutions
is then exported to the solver portion of the algorithm to de-
termine a specific solution.

Although the CRD methodology has been partially suc-
cessful, particularly in combination with Bayesian solver
schemes (e.g., Evans et al., 1995), such algorithms are
fraught with the problem of solution ambiguity (note the con-
ventional CRD-type scheme being used for the operational
processing of Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager (TMI) measurements into Version 6 pre-
cipitation profile products is Bayesian; see Kummerow et
al. (2001) for a description of the 2a12 TRMM TMI facility
algorithm, also referred to as GPROF). The ambiguity stems
from the fact that multiple solutions are possible because dif-
ferent vertical profile structures of microphysical hydromete-
ors can lead to exactly or nearly exactly the same TB vector.
This represents the classical non-uniqueness problem inher-
ent to multi-value mathematical functions, with the exception
that within the framework of a CRD precipitation algorithm,
the said function is the algorithm solver itself and the multi-
value impediment stems from the many profiles situated in
the CRD algorithm’s database.

So the problem has existed for almost two decades of
how to best overcome solution ambiguity within the frame-
work of making precipitation retrievals with PMW radiome-
ter measurements, i.e., the type of rain measuring instru-
ment that has provided for many years, and continues to
provide, global coverage. Of course since the launch of
TRMM, which besides flying the TMI radiometer also flew
the revolutionary 13.8 GHz incoherent scanning Precipita-
tion Radar (PR), there have been a number of algorithms
developed to combine TMI measurements with PR mea-
surements in order to supplement the hydrometeor reflec-
tion information inherent to active microwave measurements
with hydrometeor attenuation information intrinsic to pas-
sive microwave measurements. These began with the TRMM
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E. A. Smith et al.: Part 3 – Identification of optimal meteorological tags 1187

facility combined PR-TMI algorithm 2b31 of Farrar (1997),
Haddad et al. (1997) and Smith et al. (1997) and have contin-
ued to flourish (e.g., Marzano et al., 1999; Bauer et al., 2001;
Grecu et al., 2004; Grecu and Olson, 2006 – see also a related
study by Battaglia et al., 2003).

The TRMM radar has also inspired the development of
PMW algorithms trained by PR profile measurements (e.g.,
Masunaga and Kummerow, 2005; Kummerow et al., 2006,
2011; Viltard et al., 2006; Munchak and Kummerow, 2011)
(note the latter two papers, Kummerow et al. (2011) and
Munchak and Kummerow (2011), constitute a description
of the 2a12-v7 TMI (trained-by-PR) algorithm, which has
replaced the Kummerow et al. (2001) 2a12-v6 TMI (CRD-
type) algorithm, which had always suffered from database
incompleteness and concomitant solution ambiguity prob-
lems). Of course, there is an underlying limitation with the
training algorithms in that they only physically apply to the
latitude belt over which the PR acquires observations (i.e.,
between 35◦ S to 35◦ N) governed by the TRMM obser-
vatory’s orbit inclination. Moreover, given a high-frequency
radar’s fundamental inability to fully detect ice phase pro-
cesses and the fact that starting at 35 GHz and upward, PMW
observations are determined by constituents within the ice
layers, training algorithms are missing some fundamental
physics. This then begs the question of how to best improve
on PMW-only algorithms, especially in the context of am-
biguity, for applications outside the tropical and sub-tropical
domain of TRMM. This will be the case until at least the
∼ 2015 anticipated launch of the Global Precipitation Mea-
suring (GPM) mission core satellite, which will fly a dual
frequency 13.6/35.5 GHz incoherent radar package out to
the 65◦ parallels – assuming all goes according to plan (see
Smith et al., 2007 andhttp://pmm.nasa.gov/).

Thus, the purpose of the CDRD algorithm is to improve
upon the conventional CRD-type algorithms, specifically to
mitigate against ambiguity in the solutions. To do so we
have extended the CRD methodology to include additional
parameters that better isolate candidate profile solution sub-
sets used by the CDRD algorithm’s Bayesian solver to ac-
quire unique solutions. As noted, the information used for
the additional guidance is meteorological and geophysical
in nature. The specific meteorological-geophysical parame-
ters are drawn from those produced by the underlying CRM
model, but with a restriction that they must have direct coun-
terparts in the observational world such that the same proce-
dure used on the TB vectors involving proximity testing can
be employed with the meteorological-geophysical parame-
ters when seeking to constrain the algorithm solution subsets.
The meteorological-geophysical parameters we use and that
have been described and analyzed in the Sanò et al. (2013)
and Casella et al. (2013) Parts 1 and 2 studies are called op-
timal tags. This study focuses on the methodology we have
used to acquire the optimal tags and on related analyses of
the selected tags to ensure their effectiveness in establishing
algorithm solution constraints.

The following divisions of the paper consist of a scien-
tific background discussion (Sect. 2) that lays the scientific
groundwork for the appearance of the optimal tags within
the CDRD algorithm’s framework, a methodology descrip-
tion (Sect. 3) that provides a thorough explanation of how
the optimal tags are acquired, a scientific results presenta-
tion (Sect. 4) describing which tags reveal themselves as op-
timally effective insofar as their relationship to the rainfall
quantities and the degree to which the relationships hold,
and an account of the final conclusions (Sect. 5) provid-
ing an overview of the most important results of the anal-
ysis and their significance for this study and perhaps other
independent studies which may find these results beneficial.

2 Scientific background

It has been clearly understood for over a half-century
that the nature of precipitation reaching the surface is di-
rectly related to ambient meteorological, i.e., dynamical-
thermodynamical-hydrological (DST) conditions – as well
as various geophysical conditions. Processes and parameters
generally accepted as correlating with precipitation intensity
include the relative instability of the lower atmosphere, the
amount of available moisture and degree of moisture conver-
gence into the precipitation zone, the magnitudes of the mid-
and upper-level vertical velocities for the case of convective
precipitation, and the strength of upper level positive vortic-
ity advection in creating upper level divergence that enables
vertical storm development and outflow efficiency. Other fac-
tors such as the degree of orography and the convective in-
hibition have also been noted as strong correlators with pre-
cipitation intensity. In the context of the CDRD algorithm,
as we have framed the problem, it is important to objectively
and quantitatively determine, for a given satellite TB obser-
vation, which of the many dozens of possible DST and geo-
physical parameters (i.e., the possible optimal tags) are most
appropriate to help isolate a constrained set of microphysi-
cal solution profiles from within an even larger set of profiles
determined solely by TB vector proximity testing (generally
a much larger set) – all such profiles residing in the CDRD’s
a priori database (currently consisting of approximately 2.5
million profiles). Determination of a manageable set of these
tags gives rise to the optimal tags.

The emphasis here is finding a set of optimal tags that can
serve to reduce the size of an initial set of solution profiles de-
termined only by TB vector proximity testing, so as to end up
with a final constrained set of profiles that are more congru-
ent with the ambient meteorological-geophysical conditions
associated with the TB observation. Such a result is then pre-
sumed to lead to the reduction or even elimination of am-
biguity in the final solution as determined by the algorithm
solver. This problem is not trivial. First of all, it is important
that any optimal tag not be highly correlated with any of the
TB components making up a TB vector, as this would render
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that particular parameter no more valuable than the given TB
component itself in acquiring the subsets of possible solu-
tion profiles. By the same token, partial correlations would
be expected with at least some of the TB components since
if there were none, that would suggest that the TB compo-
nents themselves would be unrelated to precipitation inten-
sity. That state of affairs would be in violation of the physics
of the problem. Furthermore, it is important that any opti-
mal tag not be highly correlated with any other optimal tag,
as that would render the latter parameter tag ineffectual in
effecting any further constraint. Again, partial correlations
could be expected for the very reason that distinct meteoro-
logical processes and quantities in the atmosphere are simply
not independent of one another.

The foundation that CRM used to produce the CDRD al-
gorithm’s a priori database contains within its physical and
numerical formulations over 125 separate DST/geophysical
parameters and rainfall variables. The CRM itself is the re-
gional/mesoscale Nonhydrostatic Modeling System (NMS)
of Tripoli (1992a) and Tripoli and Smith (2013a, b), run in
CRM mode. Not all of the many NMS parameters have a di-
rect relationship with rainfall. In fact, only about 20 % of the
total number of parameters can be plausibly argued to ex-
hibit a meaningful relationship. Using physically-based rea-
soning, we have identified 24 DST parameters from within
the NMS equations that are likely to exhibit some degree
of correspondence with rainfall. We also consider one geo-
physical parameter, that being the terrain elevation (i.e., sur-
face height) in question. Table 1 provides a summary of the
25-parameter set with which the optimal tag analysis takes
place, while Appendix A provides detailed definitions and
explanations of the 25 parameters, including their underlying
physical relationships with rainfall.

3 Methodology

The process of preparing the simulation database needed for
the optimal tag analysis requires two modeling systems, a
CRM model system and a RTE model system. These two
models are used in combination to create a large simu-
lation database involving thousands of members entailing
meteorological-microphysical profile and scalar parameters
along with a set of geophysical parameters, each member of
which is associated with a TB vector calculated at preferred
PMW frequencies and polarizations – specifically those cor-
responding to the PMW radiometer channels of interest. Note
that the meteorological-microphysical information includes
the main rainfall variables of interest to which the optimal
tags are to be associated, specifically the surface rain rate
(RRsurf) with an associated flag indicating whether the rain-
fall mass reaching the surface is liquid or frozen (referred
to as the LF flag), and the columnar liquid/ice/total water
paths (LWP/IWP/TWP) of precipitating hydrometeors. Once

the simulation database is prepared, three statistical analysis
schemes are used in selection of the optimal tags.

3.1 Description of Nonhydrostatic Modeling System
(NMS)

The foundation that CRM used for this investigation is the
Nonhydrostatic Modeling System (NMS), originally devel-
oped by Tripoli (1992a) with more recent major improve-
ments concerning the model’s dynamical conservation prop-
erties and its unique variable step topography (VST) surface
coordinate system described by Tripoli and Smith (2013a, b).
The NMS is a 3-dimensional, nonhydrostatic, nested, scal-
able regional-mesoscale prognostic model. It is able to sim-
ulate atmospheric phenomena across all relevant scales from
the microscale, involving such phenomena as turbulence or
smoke plumes, up through mesoscale addressing phenomena
such as water spouts, severe storms and tornadoes, out to the
regional/synoptic scales where weather systems such as trop-
ical and extra-tropical cyclones, frontal systems and massive
high pressure events can be addressed. This model is chosen
because of its ability to achieve accuracy in simulating scale-
interaction processes through imposition of conservation on
mass, energy, momentum, vorticity and enstrophy through-
out model integration. The underlying model framework uses
quasi-compressible closure formulated on an Arakawa “C”
grid, cast on multiple-nest rotated spherical grids using mul-
tiple two-way nesting. The model employs non-Boussinesq
dynamics, two-way grid nesting exchanges, and a unique
terrain-following VST vertical coordinate system at its lower
boundary. The two-way interactive nesting scheme allows in-
creased resolution in focused areas. VST coordinates are able
to capture the dynamical consequences of either steep incli-
nations or subtly varying terrain features without sacrificing
accuracy for any type of terrain-induced slope flows at any
scale as shown in Tripoli and Smith (2013a, b). A variable
ice/liquid water potential temperature is used as the predic-
tive thermodynamic variable in the model (Tripoli and Cot-
ton, 1981). The advantage in using this quantity is its con-
served properties for all phase changes. In so doing, poten-
tial temperature, water vapor and cloud water are all treated
as diagnostic variables

Physical turbulence associated with diagnosed down gra-
dient sub-grid scale motion is represented by either level 1
or level 2 closure based on the schemes of Redelsperger and
Sommeria (1982) or Tripoli (1992b), respectively. Fluxes of
heat, moisture and momentum resulting from exchanges with
the surface enter the simulation domain as vertical surface
boundary fluxes due to physical turbulence. Surface fluxes
are determined from optional 1-dimensional surface layer
parameterizations of varying complexity (e.g., Louis, 1979;
Businger, 1982; Smith et al., 1993). The NMS has been de-
signed to function with any plug-compatible shortwave and
longwave radiation parameterizations (e.g., the shortwave
models of Ackerman and Stephens, 1987; Liou et al., 1988;
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Table 1.Meteorological and geophysical parameters considered for selection of optimal tags.

# Parameter Name Symbolic Name Nominal Units

Meteorological Parameters (24):
Incompatible/Non-observable – both GFS & ECMWF Models (N2, Ri, Fr, HPBL, LH, LCL)
Incompatible/Non-observable – only ECMWF model (CIN) SPACE

1 Brunt–V̈ais̈alä Frequency Squared N2 s−2

2 Richardson Number Ri unitless
3 Froude Number Fr unitless
4 Planetary Boundary Layer Height HPBL km
5 Convective Available Potential Energy CAPE J kg−1

6 Convective Inhibition CIN J kg−1

7 Surface Equivalent Potential Temperatureθesurf K
8 Surface Skin Temperature Tskin K
9 Lifted Index LI K
10 Lapse Rate from 500 to 850 hPa 0500−850

◦C km−1

11 Latent Heating Rate of Column LH ◦C day−1

12 Lifting Condensation Level LCL km
13 Freezing Level Height HFL km
14 Sensible Heat Flux from Surface 8hsurf W m−2

15 Moisture Flux 50 hPa above Surface 8q150 g m−2 s−1

16 Positive Vorticity Advection at 500 hPa ξ500 s−2

17 Positive Vorticity Advection at 700 hPa ξ700 s−2

18 Vertical Velocity at 700 hPa ω700 hPa s−1

19 Vertical Velocity at 500 hPa ω500 hPa s−1

20 Divergence at Surface DIsurf s−1

21 Divergence at 700 hPa DIV700 s−1

22 Thickness from 500 to 1000 hPa 1Z500−1000 m
23 Thickness from 700 to 1000 hPa 1Z700−1000 m
24 Vertical Wind Shear in Lower Troposphere1zVLT m s−1 km−1

Geophysical Parameter (1)

25 Surface Height Hsurf km

Morcrette, 1991; and the longwave models of Morcrette,
1991; Schwarzkopf and Fels, 1991; Chou and Suarez, 1994)
and cumulus parameterizations (e.g., the models of Kuo,
1974; Betts, 1986; Emanuel, 1991; Kain and Fritsch, 1993).

The microphysics parameterization is a bulk scheme de-
veloped progressively, beginning with the work of Cotton
et al. (1982) and Flatau et al. (1989) and more recently im-
proved by Panegrossi (2004) and Tripoli (2005). This scheme
handles initiations, growth processes and inter-hydrometeor
mass exchanges of six individual hydrometeors. Each NMS
grid volume can contain any combination of hydrometeors,
with mass exchanges between hydrometeors treated as a lo-
calized set of processes, formulated into a 6-dimensional up-
per, off-diagonal matrix of physics interactions. The investi-
gation of Panegrossi (2004) was important in that by use of
data assimilation procedures using aircraft-based in situ mi-
crophysics and PMW TB measurements, it was possible to
obtain more realistic exchange coefficients for mass build-up
of snow and graupel particles to prevent an original problem
with the NMS bulk microphysical parameterization related to

its tendency to overly-complicate and over-produce graupel
mass. The six individual hydrometeors considered in the 2-
water/4-ice bulk microphysics scheme are as follows (noting
their associated mixing densities are given in the parentheti-
cal expressions): (1) cloud droplets (qc), (2) rain drops (qr),
(3) pristine crystals (qp), (4) snow (qs) (representing snow
flakes, rimed crystals and snow pellets), (5) ice aggregates
(qa) and (6) high density graupel/hail particles (qg). Of these
six, all but cloud droplets and pristine crystals precipitate.

The size distributions, density factors and habit issues of
the hydrometeors assumed in the NMS simulations, charac-
teristics that have a large impact on the RMS calculations,
require close attention. Cloud drops are assumed mono-
disperse except with respect to the formulations for auto-
conversion and ice splintering, in which they are cast in
the form of a modified Gamma distribution; see Tripoli and
Cotton (1981). Their mixing ratio is diagnosed, while their
concentration is specified a priori since cloud water nucle-
ation is not explicitly considered. The typical characteris-
tic diameter (DC) of cloud droplets is 0.02 mm with the

www.nat-hazards-earth-syst-sci.net/13/1185/2013/ Nat. Hazards Earth Syst. Sci., 13, 1185–1208, 2013
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Table 2. Values of α and β parameters for different values of
ice crystal mass used in density formulation given in Eq. (2) for
K = 1 g.

Crystal Massm [g] α β [cm]

1.7 e−7
≤ m ≤ 1.0 e−5 0.5 19.2

m < 1.7 e−7 0.5 51.5
m > 1.0 e−5 0.419 8.89

density of pure water (ρw), i.e., 1 g cm−2. The termDC is
given by the first moment of the size distribution and can
be considered a weighted-mean parameter; see Panegrossi et
al. (1998, 2004).

Pristine crystals represent newly nucleated cloud ice and
are also considered mono-disperse. Both their concentra-
tion and mixing ratio are predicted, therefore their mass
and size actually change at each grid point, with a typi-
cal DC of ∼ 0.24 mm. The density (ρp) is derived accord-
ing to Flatau et al. (1989), starting with a mass–diameter
(m–D) relationship:

D = β
(m

K

)α

(1)

whereα is a non-dimensional exponential factor,β is a size
scale factor (in cm) andK is a mass normalization factor (in
g). For an equivalent volume sphere, the density becomes

ρp =
6

π
KβαD1/α−3 . (2)

The three parameters,α, β andK, depend on the crystal mass
in such a manner that as the mass (or size) increases, the den-
sity decreases. Table 2 gives values ofα andβ for different
regimes of crystal mass forK = 1 g.

For the other four hydrometeor categories, size
distributions are described with an exponential function:

n(D) = A exp(−B D), (3)

where either a constant intercept (A) or a constant slope
(B) is assumed for each hydrometeor. In this study, con-
stant intercepts of 0.08 cm−4, 0.014 cm−4 and 0.071 cm−4

have been assumed for rain drops, snow and graupel par-
ticles, respectively, while a constant slope of 3 cm−1 (i.e.,
the inverse of the associated characteristic diameter) is
used for aggregates.

As with cloud droplets, rain drops have the density of pure
water. Snow represents soft, low-density ice forming when
pristine crystals or aggregates become heavily rimed, with
their density (ρs) formulated according to Macklin (1962):

ρs = a

(
−

r̂Ûimp

Ts

)b

(4)

in which Ts is the surface temperature of the ice substrates
(in ◦C), r̂ is a weighted averaged radius (in µm) andÛimp

is the weighted average impact velocity of cloud droplets
and rain drops (in m s−1). The values for thea and b co-
efficients are 0.23 g cm−3 and 0.44, respectively, as reported
by Prodi et al. (1991). Thêr is calculated by averaging the
radii of the cloud droplet and rain drop diameters, weighted
by their respective mixing ratios. ThêUimp is calculated by
averaging the impact velocity between rain drops and snow
(i.e., the difference between the terminal velocities of rain
drops and snow) with the impact velocity between cloud
droplets and snow (i.e., approximately the terminal velocity
of snow alone), again weighted by the mixing ratios of cloud
droplets and rain drops. The resultant snow density typically
covers a range of values from 0.05–0.9 g cm−3. An aggre-
gate, formed by either the collisions of two pristine crys-
tals, two existing aggregates or a pristine crystal and an ex-
isting aggregate, has a density (ρa) given by Eqs. (2) and
(3) for the case of a large crystal mass, as expressed in Ta-
ble 2 (i.e.,α = 0.419 andβ = 8.89 cm). The resultant ex-
pression isρa(DC) = 0.015/[D0.6

C ] g cm−3; see Panegrossiet
al. (1998). TheDC is given by the characteristic diameter of
aggregates (i.e., the inverse of the associated constant slope).
Graupel particles are considered hard, high-density ice form-
ing with a fixed density (ρg) of 0.9 g cm−3 – close to that of
pure ice (i.e., 0.91 g cm−3).

In this study’s simulation framework, three two-way
nested grids are configured, within which the two inner-
most nests are run at CRM resolution, while the outer nest
uses the cloud parameterization scheme of Emanuel (1991)
in order to generate convection and stratiform cloudiness.
The vertical grid extends to 17 km divided into 36 levels
with variable, height-dependent grid spacing. The horizon-
tal grid configuration is comprised of (1) an outer domain of
4500× 4500 km at 50-km resolution, (2) a first interior do-
main of 900× 900 km at 10-km resolution, and (3) a second
interior and innermost domain of 500× 500 km at 2-km reso-
lution. The horizontal and vertical mesh dimensions plus hor-
izontal resolutions and domain sizes for these three grids are
summarized in Table 3. In general, initial data for the outer
grid can be interpolated from another global model such
as the NOAA National Centers for Environmental Predic-
tion (NCEP) Global Forecasting System (GFS) model or the
European Center for Medium Range Forecasts (ECMWF)
model, or from, e.g., imposed horizontally homogenous or
inhomogeneous balanced states. For this study, we have used
GFS initial data fields to stipulate initial boundary condi-
tions. Simulation cases are selected to ensure thorough sam-
pling over an extensive manifold of multi-channel TBs and
across a wide range of meteorological and microphysical
conditions containing precipitation.

3.2 Description of RTE Model System (RMS)

An accurate multiple scattering RTE model is needed to
transform the CRM-generated meteorological-microphysical
information into upwelling passive microwave TB vectors
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Table 3.Horizontal and vertical mesh dimensions, horizontal reso-
lutions and domain sizes of nested grid configuration used for NMS
simulations.

Horizontal Horizontal
Horizontal Vertical Resolution Domain

Grid Mesh Mesh (km) Size (km)

Outer 90× 90 36 50 4500× 4500
Middle 90× 90 36 10 900× 900
Innermost 250× 250 36 2 500× 500

for inclusion in the simulation database. Also, in addition to
the RTE model, a single scatter model and a surface emissiv-
ity module are needed to complete what we call the CDRD’s
RTE Model System (RMS). It is the RMS which enables the
link between simulated and observed TBs.

The 3-dimensional adjusted plane parallel RTE model de-
veloped by Roberti et al. (1994) is used for the multiple scat-
tering calculations. For its relevant gaseous absorption cal-
culations, the RTE model uses the millimeter wave propaga-
tion model of Liebe (1985, 1987, 1989), which is designed to
accurately calculate O2 and H2O absorption coefficients for
microwave frequencies up to 1000 GHz, these being the two
principal active gases in the cm–mm radiation spectrum. The
calculations of absorption, scattering, extinction and phase
function properties of any cloud-precipitation medium are ar-
rived at through a variety of applications of a prudently modi-
fied Mie scattering model. It is noted that the underlying suc-
cess of the CDRD’s RMS in attaining accurate simulations
of any arbitrary microphysical cloud-precipitation situation
is attributable to using much more realistic renditions of the
optical properties of the multiple types of hydrometeors in-
herent to the actual precipitation process than have been used
in past studies. This is particularly so for the frozen hydrom-
eteors, and the adjustment of classical Mie theory to account
for, in a relatively unadorned fashion, the general proper-
ties of non-sphericity associated with specific ice habits. The
calibration-level accuracy of the CDRD RMS is described
and explained in the Part 2 study of Casella et al. (2013).

Plane parallel cloud structures are generated from the
cloud model paths but in which the RTE calculations are
taken with respect to a 53◦ slant path typical (± a few de-
grees) of a conical-scanning PMW radiometer. Notably, the
RMS is designed for flexibility in selecting, for any simulated
PMW radiometer, the channel frequencies and polarizations,
the channel spectral widths and spectral response functions,
the channel instantaneous-field-of-view (IFOV) elliptical di-
mensions, the channel noise properties, the radiometer view-
ing angle and the radiometer antenna(e) response pattern(s)
needed for accurate simulations of the upwelling TBs (note,
radiometers necessarily carry multiple antennas if they mea-
sure over an extended cm–mm spectrum). First, monochro-
matic upwelling radiances are calculated for each radiometer
channel at the same resolution of the NMS inner grid (i.e.,

2 km). Once a set of RMS calculations is complete, instru-
ment transfer functions are used to calculate the final TB vec-
tor components associated with the preferred channels. This
is accomplished by first integrating the upwelling monochro-
matic radiances over the channel spectral widths considering
each channel’s spectral response function. It is then neces-
sary to integrate the channel upwelling radiances over each
channel’s IFOV, considering all grid elements of the CRM
that are included in an IFOV, and taking into account the
radiometer antenna pattern and ambient radiometric noise.

The vertical profiles of hydrometeor-specific liquid/ice
water contents (LWC/IWC) mixing densities referred to as
(qc, qr, qp, qs, qa, qg) for cloud droplets, rain drops, pristine
crystals, snow pellets/flakes, ice aggregates and graupel/hail
particles, respectively, together with vertical temperature-
moisture profiles [T (z) and q(z)], surface height (Hsurf)

and surface skin temperature (Tskin), are required parameters
for the RMS RTE model calculations. Furthermore, for any
given RTE model calculation, additional inputs are needed
for the surface emissivity model concerning the emissive-
reflective properties of the given type of surface (TYsurf) un-
der consideration, properties actually dependent on the sur-
face’s biogeophysical features. For water surfaces the rele-
vant radiometric properties are a function of sea/fresh wa-
ter surface temperature (SST= Tskin), salinity (S) for sea
water, and surface roughness height (zR) for either fresh
or sea water – withzR controlled by near-surface wind
speed (Vsurf); for unfrozen land surfaces the notional ra-
diometric properties are largely controlled by near-surface
soil moisture content (SMC), near-surface soil quartz con-
tent (SQC), canopy areal index (CAI ) and canopy water con-
tent (Cqc); and finally, for frozen surfaces the radiometric
properties are generally dependent on the age of the snow
or ice (1SI), its granularity condition (G) and its melt-state
(MS). The surface emissivity module of the RMS, described
in the next sub-section, intrinsically includes the features
embodied by theS, zR, SMC, SQC, CAI , Cqc, 1SI, G and
MS parameters.

Thus, the RMS RTE model requires the LWC/IWC pro-
files of the six hydrometeors, profiles ofT (z) andq(z), and
scalar quantitiesHsurf, TYsurf, Tskin andVsurf. The left-land
two columns of Table 4 summarize this collection of NMS-
generated scalar and vector (profile) parameters needed by
the RMS, along with the foremost NMS-generated scalar
rainfall variables. The factors in this table represent the min-
imal meteorological-microphysical-geophysical information
packet for a given database profile member needed by a
conventional CRD algorithm. It is the expansion of this
packet with additional meteorological and geophysical infor-
mation (either scalar or vector parameter form) that enables
extending a algorithm database into a fully defined CDRD
database equipped with optimal tags.

www.nat-hazards-earth-syst-sci.net/13/1185/2013/ Nat. Hazards Earth Syst. Sci., 13, 1185–1208, 2013



1192 E. A. Smith et al.: Part 3 – Identification of optimal meteorological tags

 

55 

 1 

 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 

Figure 1: Emissivity properties for nine surfaces, specifically rough ocean, vegetated land cover, non-frozen bare soil, frozen bare soil, first year 12 
ice and four types of snow cover (compact snow, fresh wet snow, snow-covered forest, deep dry snow) -- as function of frequency from 0 to 13 
200 GHz. Solid (dashed) lines show vertically (horizontally) polarized emissivities, respectively with viewing angle fixed at 53-deg. Rough 14 
ocean properties are with respect to sea surface temperature of 283K, surface salinity of 35 ppt and above-surface wind velocity of 2 m s-1 15 
(thus roughening surface).  Vegetated land cover is assumed to completely depolarize scattered and emitted radiation. 16 
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Fig. 1.Emissivity properties for nine surfaces, specifically rough ocean, vegetated land cover, non-frozen bare soil, frozen bare soil, first year
ice and four types of snow cover (compact snow, fresh wet snow, snow-covered forest, deep dry snow) – as function of frequency from 0 to
200 GHz. Solid (dashed) lines show vertically (horizontally) polarized emissivities, respectively, with viewing angle fixed at 53-deg. Rough
ocean properties are with respect to sea surface temperature of 283 K, surface salinity of 35 ppt and above-surface wind velocity of 2 m s−1

(thus roughening surface). Vegetated land cover is assumed to completely depolarize scattered and emitted radiation.

3.3 Description of Surface Emissivity Module (SEM)

To accommodate the various surface backgrounds being
used for the CDRD retrieval algorithm, a consistent and
quantitative means to acquire characteristic surface emissiv-
ities (reflectances) for variable satellite view angles and for
both horizontal and vertical polarizations is essential. Thus,
we have developed a 9-member surface emissivity module
(SEM). For a rough ocean (i.e., an ocean surface undergoing
above-surface winds), the SEM employs the ocean emissiv-
ity model of English and Hewison (1998); see also Schlues-
sel and Luthardt (1991) and Hewison and English (2000).
This scheme calculates accurate estimates of open sea emis-
sivity between 10 and 200 GHz for observation angles up
to 60 degrees and winds between 0 and 20 m s−1. For non-
frozen land emissivities, we have adopted two different sur-
face emissivity models from Hewison (2001), specifically
models for “other forestry” and “bare soil”, which we refer to

as “vegetated land cover” and “non-frozen bare soil”, respec-
tively. For frozen surfaces we have adopted six surface emis-
sivity models from Hewison and English (1999) consisting
of “frozen bare soil”, “snow-covered forest”, “first year ice”,
“compact snow”, “fresh wet snow”, and “deep dry snow” –
noting we have imposed various minor name changes from
the originals for the frozen surface cases. We also note that
the latter four frozen surfaces may be applied to either ocean
or land areas.

Figure 1 shows results from the nine surface emissivity
component models adopted for the SEM as a function of fre-
quency (from 0 to 200 GHz) and for H and V polarizations.
For the purpose of this diagram, the satellite view angle is
held constant at 53◦. A number of remarks are pertinent. In
the case of rough ocean, the calculations are taken with re-
spect to a sea surface temperature of 283 K, a surface salinity
of 35 ppt and an above-surface wind velocity of 2 m s−1 (thus
producing the roughened surface). Note that HV polarization
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Table 4.NMS-generated microphysical, meteorological and geophysical scalar/vector parameters used for RMS calculations (left-hand two
columns) and NMS-generated scalar rainfall variables (right-hand column).

NMS-generated
hydrometeor-specific
profile parameters used
for RMS calculations

Other NMS-generated
profile & scalar parameters
ssed for RMS calculations

NMS-generated
rainfall-specific
scalar variables

Cloud Droplet LWC
qc Profile (g cm−3)

Atmospheric Temperature
Profile [T (z) in K]

Liquid/Frozen Flag
for Surface Rain [LF]

Rain Drop LWC
qr Profile (g cm−3)

Atmospheric Water Vapor
Mixing Ratio Profile [q(z) in g kg−1]

Surface Rain Rate
[RRsurf in mm h−1]

Pristine Crystal IWC
qp Profile (g cm−3)

Surface Height
[Hsurf in km]

Liquid Water Path
[LWP in kg m−2]

Snow Pellet IWC
qs Profile (g cm−3)

Type of Surface
[TYsurf]

Ice Water Path
[IWP in kg m−2]

Ice Aggregate IWC
qa Profile (g cm−3)

Surface Skin Temperature
[Tskin in K]

Total Water Path
[TWP in kg m−2]

Graupel Particle IWC
qg Profile (g cm−3)

Near-surface Wind Speed
[Vsurf in m s−1]

differences are large but fairly constant regardless of any
variation of emissivity itself with respect to frequency. In the
case of vegetated land cover, it is evident that the model pre-
dicts emissivity close to the value of 1.0 with no variation in
regard to polarization state, nearly constant with frequency,
and larger than any ocean emissivity across the analyzed fre-
quency range. Similar to rough ocean, non-frozen bare soil
and first year ice also exhibit large HV polarization differ-
ences whereas frozen bare soil exhibits very small and nearly
constant differences (it is noted that we use non-frozen bare
soil to represent desert surfaces). For snow cover, the H and
V emissivities vary significantly depending on snow condi-
tions (because of different grain sizes and whether melted
water is present) both in average values and HV polarization
state differences, with deep dry snow exhibiting the great-
est differences. It is important to recognize that in using the
RMS, the SEM is applied according to the corresponding sur-
face type defined by the NMS in which any snow conditions
that are assigned are actually inferred from the NMS’s soil
temperatures and geographical locations.

3.4 Generation of simulation database

For a one year period from November 2007 to Octo-
ber 2008, 120 individual NMS simulations using the nested
grid scheme described in Table 3 are made over the North
American region for pre-selected precipitating storm events.
GFS optimal analysis data are used to define initial condi-
tions for the NMS and to describe the outer boundary condi-
tions for the outer grid, updated every 6 h of simulation time
throughout the individual simulation runs. Simulation runs
are integrated from 18 to 36 h, prefaced by a 12-h spin-up pe-
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Figure 2: Locations of 120 simulations generated over North American region for creation of simulation database; 68 over water and 52 over land. 10 
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Fig. 2. Locations of 120 simulations generated over North Ameri-
can region for creation of simulation database; 68 over water and 52
over land.

riod, depending on the development and dissipation periods
of the particular weather systems. The 12-h spin up time is
required to allow local forcing to develop and stabilize gradu-
ally. The 120 simulation are uniformly distributed over time
such that 10 simulations are produced for each month. The
spatial distribution of simulation domains is shown in Fig. 2.
Within this distribution, 68 simulations take place over water
while 52 take place over land.

After the spin-up period and during the simulations,
meteorological-microphysical profile and scalar parameters,
geophysical parameters and TB vectors over all grid points
in the inner grid nest are saved hourly in the database when-
ever any single point in the inner domain contains a liquid
or frozen form RRsurf of at least 0.01 mm h−1. By saving
data hourly in simulation time means that a great variety
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of meteorological-microphysical-geophysical-radiation real-
izations describing precipitation systems at different devel-
opment, maturity and dissipation stages become included in
the database. Profile data are saved at all 36 vertical levels
for each grid point along with all essential scalar parameters.
There are a total of 128 meteorological DST profile param-
eters besides various other meteorological scalars, including
the four scalar rainfall variables and liquid/frozen LF flag.
There are also five scalar geophysical parameters that can
be used for constraint tags and/or algorithm logic; these are
described in Saǹo et al. (2013).

Finally, the microwave frequencies of 10.65, 19.35, 22.23,
23.8, 36.5, 85.5, 89.0 and 150 GHz form the principal ele-
ments of the TB vectors, noting all frequencies are calculated
at horizontal (H-pol) and vertical (V-pol) polarizations with
the exception of 22.23 and 23.8 GHz, which are just calcu-
lated at V-pol. These frequencies-polarizations are selected
because they correspond to a number of radiometer channels
now in use on current satellites. Upon completion, some 2.14
and 1.84 million database members are obtained over water
and land, respectively.

As noted at the end of Sect. 2, the 24 DST parameters and
one surface height geophysical parameter are identified in
Table 1 and described in detail in Appendix A. These pa-
rameters have been chosen based on their potential to pro-
vide diagnostic constraint information in helping to differen-
tiate atmospheric states that can initiate and support various
types of precipitation events and thus serve as optimal tags.
These parameters provide information concerning (a) the sta-
bility of the atmosphere, (b) the amount of mesoscale forcing
(such as by local surface convergence, mid-level vertical ve-
locity and wind shear), (c) the amount of large scale dynam-
ical forcing (by mid- to upper-level divergence governed by
potential vorticity advection), (d) the degree to which low-
level moisture is available to support convection, (e) the ver-
tical levels of the PBL, convection onset and freezing, (f) the
surface fluxes of heat and moisture and the release of latent
heat, (g) the surface pressure tendencies as defined by low
and deeper level pressure-layer thicknesses, and (h) the in-
fluence of topography in promoting orographic lift as mea-
sured by the elevation of the terrain. Note that all the pa-
rameters in Table 1 are defined in the simulation database
at 50-km outer grid resolution – so as to make them con-
gruent with counterpart observed parameters enabled by the
optimally assimilated gridded meteorological datasets used
for initialization of the GFS or ECMWF operational forecast
models. It is also noted that Table 1 identifies seven param-
eters that cannot, in fact, be used in conjunction with op-
erational CDRD algorithms because they do not have com-
patible or actual counterparts, in relationship to the NMS,
insofar as observed meteorological parameters enabled by
the operational models. These are (1) Brunt–Väis̈alä Fre-
quency Squared, (2) Richardson Number, (3) Froude Num-
ber, (3) Planetary Boundary Layer Height, (5) Latent Heating
Rate of Column, (6) Lifting Condensation Level – no coun-

terparts from either GFS or ECMWF models, and (7) Con-
vective Inhibition – no counterpart from just ECMWF model.

Over the last 30 yr, with higher operational global forecast
model resolutions now prevalent and with gradually improv-
ing physical parameterizations and continuous data assimi-
lation techniques, the initial condition accuracies of opera-
tional prediction models and subsequent quality of predic-
tions out from 6 to 48 h have significantly improved. How-
ever, the operational models cannot resolve small-scale pro-
cesses due to turbulence, convection and other cloud pro-
cesses such as microphysical mass and latent heat exchanges
and the concomitant radiative flux variations. Although at
times they can produce reasonably accurate renditions of
the flux exchanges of enthalpy, heat, moisture and momen-
tum, they must do so by relying on physical parameteriza-
tion schemes that are more practical than realistic. That is
why turning to a CRM to simulate cloud processes down to
the horizontal scales that are actually at work in generating
clouds and precipitation is so important when trying to inter-
pret satellite PMW information that arrives at relatively high
resolutions, depending on the actual PMW frequency.

By the same token, when seeking to constrain the CDRD
algorithm’s selection of potential Bayesian solution profiles
using observed meteorological-geophysical guidance param-
eters, we remain cognizant of the fact that the notional ob-
served meteorological-geophysical parameters that we apply
as optimal tags are not yet available at cloud resolving scales
– currently only at synoptic scales (i.e., order 50 km). For ex-
ample, the current NOAA/NCEP Hybrid EnKF Global En-
semble Forecast System (GEMS) and the current ECMWF
Cycle 38r1 Ensemble Prediction System (EPS) operational
model resolutions are 35 km and 30 km, respectively (note
GEMS is the 22-member ensemble version of the GFS fore-
cast model suite while EPS is the 51-member ensemble
version of the ECMWF forecast model suite). We are al-
most certainly on the order of a decade away from the
time when cloud resolving global forecast models become
a reality and the type of algorithm we are now exploit-
ing will be able to conduct its observational data gathering
tasks at high resolution scales, i.e., presumably at or below
2-km resolution.

3.5 Description of statistical analyses used to identify
optimal tags

In determining the optimal tags, three statistical analysis pro-
cedures are used: (i) the 1st is a parameter-by-parameter lin-
ear correlation analysis with respect to three principal rain-
fall variables – RRsurf, LWP, and IWP – applied on a sea-
sonal basis; (ii) the 2nd is a 2-dimensional cross-tabulated
histogram analysis used to confirm how well-behaved the
strongly correlating parameters are insofar as their statisti-
cal relationships to the rainfall variables; and (iii) the 3rd
is a multi-linear regression analysis used to determine the
effectiveness of the optimal tags, in combination with TBs, in
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regressively determining estimates of the rainfall variables.
This 3rd analysis helps justify the claims in the Part 1 and
2 papers of Saǹo et al. (2013) and Casella et al. (2013) that
the optimal tags can be used effectively for improving CDRD
rainfall retrievals.

4 Results of analysis

The simulation database is first divided into over-water and
over-land partitions. For the purpose of the 1st and 2nd sta-
tistical procedures, the parameter-by-parameter linear cor-
relation analysis and the 2-dimensional cross-tabulated his-
togram analysis, both partitions are analyzed. However, for
the 3rd procedure, the multi-linear regression analysis, only
the over-water partition is analyzed. The latter restraint is es-
sential in preventing significant errors appearing in the re-
gression results due to the fact that detection of rainfall for
over-land backgrounds using PMW TB measurements is far
more uncertain than with respect to over-water backgrounds.
This is because TB-delineated precipitation in its degree of
contrast to over-land surfaces is much less detectable than
in conjunction with over-water surfaces. Therefore, in seek-
ing to determine rainfall usingstatisticallyformulated multi-
linear regression relationships involving use of TB predictor
variables for the over-land case, it is difficult to obtain un-
ambiguous conclusions concerning the effectiveness of the
optimal tags within the regressions. Note the emphasis here
is onstatisticalregression relationships; these types of rela-
tionships are actually not used in the physically and Bayesian
formulated CDRD algorithm – they are used here simply
for demonstrating the potential of optimal tags as Bayesian
solution constraints.

Note that the linear correlation analysis is performed on
a seasonal basis to prevent blurring of the correlative rela-
tionships. This is important since the optimal tags should be
effective for all seasons, not just particular seasons. For the
over-water (over-land) partitions of the database, the percent-
ages of database members for the winter, spring, summer
and autumn seasons are 39.1 % (23.8 %), 29.4 % (26.4 %),
14.0 % (31.1 %) and 17.5 % (18.7 %), respectively. Since
Hsurf is zero for the over-water partition, it is not included
in the associated linear correlation analysis. However, for
the over-land partition,Hsurf is used and emerges as one of
the seven optimal tags. The process of identifying the six
meteorological optimal tags is as follows.

4.1 Parameter-by-parameter linear correlation analysis

The 1st statistical analysis procedure uses parameter-by-
parameter linear correlation analysis to identify which of the
25 target parameters correlate best with the RRsurf, LWP, and
IWP rainfall variables. This procedure is first applied to the
four over-water seasonal groups of 24 meteorological param-
eters, which have been summarized in Table 1; note thatHsurf

plays no role with the sea level database members. Within
each group, the individual parameters are assigned totalized
correlation scores based on summing the absolute values of
their respective linear correlation coefficients in conjunction
with the three rainfall variables, then ordered according to the
magnitudes of their total scores from highest to lowest. Next,
parameters are discarded for further consideration if they do
not indicate at least one absolute value of correlation coef-
ficient exceeding 0.25, in conjunction with the three rainfall
variables and the winter, spring and autumn seasons, with
the threshold lowered to 0.15 for the summer season when
all correlation coefficients systematically decrease. Further-
more, for a parameter to remain in play, it must pass the
threshold test for all four seasons – otherwise it is discarded.
Finally, the parameters passing these two tests are grouped
into two sets, one for which counterpart observational pa-
rameters are available and a second for which there are no
counterpart parameters. This process is then repeated for the
over-land partition which now includes surface height as a
possible parameter.

For each of the over-water and over-land partitions, six
meteorological parameters survive the two correlation tests
for which observational counterparts are available. These are
as follows: (1 and 2) vertical velocities at 700 and 500 hPa
(ω700, ω500), (3) equivalent potential temperature at surface
(θesurf), (4) convective available potential energy (CAPE),
(5) moisture flux 50 hPa above surface (8q150), and (6)
freezing level height (HFL). Table 5 provides an example of
the over-water correlation results for the winter season. It is
interesting why bothω700 andω500 score well in the correla-
tion tests. The Table 5 results show thatω700 is slightly more
strongly correlated thanω500 in conjunction with RRsurf and
LWP, whereasω500 is much more strongly correlated with
IWP. The reason for this reversal is related to scale. At
700 hPa, vertical circulations are closely associated with finer
scale eddies and the roots of convection (see Appendix A),
that is, they are tied in with cloud bases and condensation
processes. Alternatively, at 500 hPa, which is typically above
the freezing level, vertical motions are more wave like (e.g.,
vertical Rossby wave propagation) and tend to describe the
vertical ascents needed to support ice formation. Thus, for
the CDRD algorithm, theω500 parameter can be discarded if
only RRsurf in either liquid or frozen form is the sole interest,
but retained if LWP/IWP are also of interest.

For the over-land partition, similar results are obtained but
with the additional result thatHsurf also passes its linear cor-
relation tests. This is because elevated terrain is so effec-
tive in mechanically stimulating vertical motions and possi-
bly convection and precipitation. Thus, the linear correlation
procedures applied to the two partitions identify six meteoro-
logical parameters and one geophysical parameter (i.e.,ω700,
ω500, θesurf, CAPE,8q150, HFL andHsurf) as possible op-
timal tags, contingent on their performance in conjunction
with the 2-dimensional cross-tabulated histogram analysis
and the multi-linear regression analysis.
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Table 5. For cases of winter season and over-water, summary of
parameter-by-parameter linear correlation results for 6 optimal tags.

Parameter
# Optimal RRsurf LWP IWP

1 ω700 −0.40 −0.42 −0.40
2 ω500 −0.39 −0.41 −0.67
3 θesurf 0.25 0.31 0.40
4 CAPE 0.21 0.25 0.30
5 8q150 0.33 0.37 0.18
6 HFL 0.22 0.28 0.36

Of further interest are three parameters which score well
in the linear correlation tests but for which observable coun-
terparts from the operational global forecast model initial
data analyses are simply not available. These are the Brunt–
Väis̈alä Frequency Squared (N2), the Richardson Number
(Ri) and the Planetary Boundary Layer Height (HPBL). Each
of these parameters is strongly correlated with the three rain-
fall variables. These three parameters remain as tantalizingly
useful information for future applications, although as shown
in the next sub-section, it is possible thatRi might not serve
as an effective constraint. This is because of its complex sta-
tistical relationship with TWP, denoting that strong correla-
tions by themselves may hide statistical features in particular
parameters that belie their usability as optimal tags.

4.2 Two-dimensional cross-tabulated histogram
analysis

The 2nd statistical analysis procedure is used to confirm, by
qualitative examination of 2-dimensional histograms of rela-
tionships between the contingent optimal tag parameters and
the rainfall variables, whether the individual tags are physi-
cally acceptable for use as CDRD algorithm constraints. This
check is necessary in determining whether strong correla-
tive behaviors as determined in the first test are not simply
pathological in nature, but instead indicative of tag-rainfall
relationships that contain relatively continuous and uniform
value-to-value associations. To accomplish this, we cross-
tabulate the contingent optimal tag quantities with rainfall
variable quantities using normalized frequency counts within
small, discrete 2-dimensioanl bin intervals to produce his-
togram array diagrams, in which color is used to illustrate
normalized bin frequencies. Figure 3a presents nine of these
histograms representing selections from all four seasons of
the year for the over-water database partition, each panel il-
lustrating relationships between selections from all six con-
tingent meteorological tags (abscissa values) and from all
three rainfall variables (ordinate values). Theω700, HFL and
CAPE tags are repeated for two seasons each. Both abscissas
and ordinates are plotted in terms of log10 scales. Histogram
arrays and presented in color (refer to rhs color bars), for
which summed histogram counts are transformed into either

un-scaled normalized frequencies (i.e., indicated above color
bars by NF) or percent-scaled normalized frequencies (i.e.,
indicated by NF%).

The various diagrams shown in Fig. 3a are typical of the
types of relationships found between the tag parameters and
the rainfall variables for the different seasons, in which gen-
erally the clearest relationships are found with respect to
LWP, followed by RRsurf and TWP, and finally by IWP. Cer-
tain of the tags’ clearest relationships are in conjunction with
IWP, dominated by the case of theω500 tag (see panel 3 in
Fig. 3a), whereas a few others for specific seasons tend to
demonstrate their clearest relationships with respect to TWP,
e.g., as with CAPE for autumn (see panel 9 in Fig. 3a). It is
noted that some of the relationships are relatively linear and
sloped in nature, some more nonlinear, some tending to lie
parallel along either the abscissa or the ordinate for part of
or all of their distribution domain and all of them show some
degree of scatter along whatever underlying functional form
is evident. It is important to recognize that no specific aspect
of these various tag-rainfall relationship features in any way
inhibits their effectiveness in the CDRD algorithm method-
ology, as described by Sanò et al. (2013) and Casella et
al. (2013). Nor does it matter in the context of the algorithm
that the statistical relationships vary between different rain-
fall variables. This is because the types of statistical relation-
ships presented in Fig. 3a are not used in the algorithm, and
thus cannot govern the algorithm’s constraint methodology.

In the constraint methodology, simulated optimal tag val-
ues are actually used in Euclidian norm measures with re-
spect to observed optimal tag values. Their purpose is to help
identify and eliminate microphysical-meteorological profile
members from Bayesian profile solution subsets that have
been initially selected on the basis of TB information only
but do not pass muster insofar as their likelihood of be-
ing congruent with the meteorological observations. The Eu-
clidian norm measures are actually cast within a probability
framework, and therefore for a number of important reasons,
can entertain any or all of the characteristic relationships seen
in Fig. 3a as well as more compacted versions of these rela-
tionships, as we have found in some of the histogram pat-
terns (diagrams not shown). What the tag-rainfall relation-
ships cannot do is be highly discontinuous or highly com-
plex – such as the complex behavior illustrated in Fig. 3b in
conjunction with the Richardson Number (discussed below).
In other words, the constraint methodology of the CDRD al-
gorithm is impervious to compactness, scatter and/or zero or
infinite slope behaviors in the tag-rainfall relationships, be-
cause the methodology treats tag values more in the form of
probabilistic discriminant measures than in the form of math-
ematical functions. Accordingly, we find that the six contin-
gent optimal tags, for both database partitions, satisfy the 2nd
of the statistical analysis procedures.

An examination of Fig. 3b showing the tag-rainfall rela-
tionships for the three non-observable parametersN2, HPBL
andRi (again for the over-water partition), indicates that the
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Figure 3a: Nine 2-dimensional histograms (over-water partition) of selections from all four seasons, illustrating relationships between selections from all six contingent optimal meteorological 4 
tags (abscissas) and from all three rainfall variables (ordinates), noting ω 700, HFL and CAPE parameters are repeated for two seasons each.  Both abscissas and ordinates are given on log10 scales 5 
and either unscaled normalized frequencies (NF) or percent-scaled normalized frequencies (NF-%) present histogram frequencies over color ranges described by individual color bars. 6 
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Fig. 3a.Nine 2-dimensional histograms (over-water partition) of selections from all four seasons, illustrating relationships between selections
from all six contingent optimal meteorological tags (abscissas) and from all three rainfall variables (ordinates), notingω700, HFL and
CAPE parameters are repeated for two seasons each. Both abscissas and ordinates are given on log10 scales and either unscaled normalized
frequencies (NF) or percent-scaled normalized frequencies (NF%) present histogram frequencies over color ranges described by individual
color bars.

first two of these parameters might serve effectively as op-
timal tags, but that the third, i.e.,Ri, likely would not. It
is evident that in panel 3 of Fig. 3b that there are underly-
ing strands of association loci that describe howRi is func-
tionally related to TWP, all of which emanate out from the
abscissa value of 0.25, i.e., the value of the critical Richard-
son Number (RiC). There are various possible reasons for
this, but are speculative. The relevance of the diagram is that
theRi parameter, were it available as an observable, would
likely not be a wise choice for a CDRD algorithm constraint
tag because its behavior is too complex to serve effectively
in a discriminant-based framework.

4.3 Multi-linear regression analysis

The 3rd statistical analysis procedure is used to confirm
whether the contingent optimal tags actually exert influence

in improving explained variances when an

RVn = MLRnom(TBi) (5)

expression, is extended to an

RVn = MLRext(TBi + OTj ) (6)

expression, where RVn is one of three rainfall variables (i.e.,
RRsurf, LWP or IWP), MLRnom and MLRext are nominal
(nom) and extended (ext) multi-linear regression functional
relationships for whichi = 1, NF is a sequence of TB pa-
rameters in conjunction with a set of frequency-polarization
states andj = 1 NT is an optimal tag (OT) sequence for
partial or complete inclusion in stepwise fashion into the
MLRext. The stepwise regression process is supervised by
a Bayesian information criteria (BIC) scheme (see Schwarz,
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Figure 3b: Similar to Fig. 3a except for three selections of N2, HPBL and Ri, noting that N2 and Ri calculations take place 50 hPa above surface. 3 
 4 Fig. 3b. Similar to Fig. 3a except for three selections ofN2, HPBL

andRi, noting thatN2 andRi calculations take place 50 hPa above
surface.

1978), which objectively, but not necessarily sequentially, in-
serts OTj parameters into the MLRext according to their abil-
ity to boost the explained variance at each new step. As pa-
rameters from the OTj set are included in the order selected
by the BIC scheme (denoted by indexk), the percentage ex-
plained variances (%ε2

k) associated with the individual OTks
of the associated sequence of MLRext

k relationships are tallied
and analyzed for the effectiveness of the OTks in improving
upon the MLRnom nominal percentage explained variance
(%ε2

0). If the %ε2
k sequence indicates steady and significant

improvement relative to theε2
0 value for a given RVn, then

the associated OTk set is confirmed as effective for CDRD
algorithm applications for that particular RVn.

In the design of the multi-linear regression process, the
nominal MLRnom regression relationships are established in
optimized linearized formby log10 transformations of the re-
sponse RVn (thus adjusting for their positive skew toward
small water paths or light rain rates) and transformation
of the TB parameters to normalized polarization difference
(NPD) predictor parameters (a unitless quantity). Following
Petty (1994), the form of an NPD is taken as follows:

NPD≡
TV − TH

TV,O − TH,O
(7)

whereTV andTH are the observed vertical (V-pol) and hor-
izontal (H-pol) linearly polarized TBs at a given frequency,
andTV,O andTH,O are the clear sky (cloud-free) V-pol/H-pol
TBs for the same scene (most effectively determined clima-
tologically from an independent TB dataset).

When viewed at an oblique angle over water as measured
by conical scanning PMW radiometers, the observed dif-
ference betweenTV andTH is dominated by the polarized
emissivity of the water surface such that NPD= 1 represents
a completely cloud-free situation, regardless of a precipita-
tion radiometer’s microwave frequency. On the other hand,
for a completely opaque situation due to cloud and precip-
itation hydrometeors (both liquid and frozen phases), NPD
will become nearly 0 for the lower radiometer frequencies
(f ≤ 60 GHz) over which hydrometeor scattering is negligi-
ble (but not zero) and does not induce meaningful polariza-
tion, while for the higher frequencies (f > 60 GHz), NPD
will become small (order 0.01–0.1) and be entirely depen-
dent on the hydrometeor scattering-induced polarization sig-
nal controlled by water phases, hydrometeor size distribu-
tions, ice densities and hydrometeor shapes/habits. By nor-
malizing the observed polarization difference with the cloud-
free polarization difference, the TBs’ sensitivity to cloud wa-
ter in a column is isolated from its sensitivity to the ocean
surface emissivity such that an NPD is nearly directly pro-
portional to column transmittance. An NPD parameter thus
exhibits a monotonic relationship to increasing optical depth
due to the increase of hydrometeor densities, and for most
of the microwave frequency range applicable to precipita-
tion, retrieval (f ≤ 100 GHz) is only weakly sensitive to the
scattering effects of the cloud within both liquid and ice lay-
ers. These advantages make NPDs better predictor parame-
ters than the underlying TBs since the former correlate better
with the log10 transformations of the rainfall variables. Note
that NPDs can only be calculated for polarized channels; it
is important to note that the NPD idea is really a simplifica-
tion of the idea behind the polarization corrected temperature
(PCT) of Spencer et al. (1989), a parameter that was devel-
oped for simplifying the delineation of precipitation using
H-pol/V-pol differentiated conical-scan radiometer channels,
with the added advantage that a PCT responds nearly linearly
to rain rate for either low or high frequencies.
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The nominal MLRnom models can be tested for their lin-
earity, based on two assumptions: (a) the associated residu-
als are independent and (b) the residuals are normally dis-
tributed with zero mean and constant variance. The %ε2

0 is
the best indicator to identify and assess the goodness-of-
fit of a MLRnom model. For the over-water database par-
tition, based on %ε2

0 calculations with the mix of possible
NPDs calculated for the database, NPDs at 10.65, 19.35 and
36.5 GHz frequencies are found to be the most effective pre-
dictor parameters for log10 transformations of the response
RVn. A quantile-quantile (Q-Q) plot (also called a normal
probability plot) can be used to graph the quantiles for a
distribution of residuals taken for a given MLRnom model
against equivalent quantiles from a theoretical normal distri-
bution (note, quantiles are points taken at regular intervals
from a cumulative distribution function (CDF) of a random
variable). This is effective in checking how well the proba-
bility distribution of the model residuals agrees to that for a
perfect normal distribution.

As an example, the left-hand panel of Fig. 4 shows that
the distribution of individual NPD residuals of the over-water
MLRnom [log10 (LWP)≈ NPD (10.65, 19.35, 36.5)] model
exhibits nearly constant variance over the range of fit of log10
(LWP). Then it is shown with a Q-Q plot in the right-hand
panel of Fig. 4 that over the±3.5 quantile intervals of the
normal distribution (nearly all of the data) that the quan-
tiles from the MLRnom model residual distribution are in
relatively close agreement with equivalent quantiles from a
perfect normal distribution. The overall behavior of the Q-
Q plot corroborates the intrinsic degree of linearity in the
MLRnom model (proximity of the Q-Q plot to the x= y ref-
erence line), with associated near-agreement in scale, skew-
ness and extensions of the distribution tails. In fact, we find
this to be a far better degree of linearity than with respect to
the associated non-transformed MLRnom [log10 (LWP)≈ TB
(10.65 H/V, 19.35 H/V, 36.5 H/V)] model. Similar results are
found for the over-water RRsurf and IWP variables and for
the full RVn set of the over-land partition.

As noted, the BIC supervisory scheme attempts to deter-
mine a regression model that best explains the predictor and
response data (goodness-of-fit), noting it attempts to do so
with a minimum combination of variables (i.e., a model with
the optimal combination of OTk predictor parameters that re-
sults in maximum response variable precision). Generally, in
selecting predictor parameters for regression models through
the technique of maximum likelihood estimation, an essen-
tial technique for the BIC scheme to operate, overfitting may
result (maximum likelihood refers to theprobabilitiesof the
observed results being as large as possible). This is because it
is possible to increase the likelihood of the estimates by sim-
ply adding more and more parameters. The advantage of the
BIC scheme is that it not only awards the goodness-of-fit, but
also penalizes overfitting gauged by the BIC log likelihood

expression:

BICLL = −2 · [n + n log (2π) + n log (RSS/n)]

+(p + 1) · log(n), (8)

wheren is the number of observations,p is the number of
parameters used in the model, RSS is the residual sum of
squares and RSS/n is the maximum likelihood estimate. Note
that the second term on the rhs of Eq. (8) is the penalty
term. The preferred model is the one with the smallest BICLL
value. After a training dataset is extracted from the partition
in question (25 % of the samples are randomly selected for
this purpose with the remainder used for the independent test
dataset), the BIC scheme is applied using the open source sta-
tistical package R (http://www.r-project.org/). The scheme
invokes a forward selection procedure that starts with the
MLRnom regression equation as the base model, then extends
to the MLRext model by adding the contingent optimal tag
parameters one at a time (producing an OTk sequence), un-
til no further parameter addition significantly improves the
BICLL fit, with the relative significance evaluations of the
OTk sequence assessed by the values of the associated %ε2

k

sequence.
After MLRext regression coefficients are evaluated for the

RVn of the over-water and over-land database partitions us-
ing training datasets, the results are prepared for a final ex-
periment. The hypothesis of this experiment is that at least
a few optimal tags contained within the MLRext models will
improve upon (increase) the %ε2

0s significantly when the re-
gression model coefficients are used in conjunction with test
datasets (mutually exclusive from the training datasets). This
hypothesis must be confirmed to demonstrate that the set of
contingent optimal tags can be credibly proposed for use in
the CDRD algorithm as effective constraint parameters. In
fact, the results from the experiment confirm the hypothesis,
actually somewhat better than expected. Three to five tags
are consistently added to the MLRext models before overfit-
ting begins, with the summations of the sets of %ε2

ks around
25 % over and above the associated %ε2

0s, regardless of the
rainfall parameter. For example, the %ε2

k sequence associated
with RRsurf for the winter over-water experiment member is
16.54 %, 5.25 %, 3.61 %, 1.35 % and 0.40 %. The overall re-
sults of the experiment are impressive considering only one
adjustment has been made for non-linearities in the original
relationships between individual optimal tags and the rain-
fall variables represented on log10 scales, as exemplified by
the patterns seen in Fig. 3a (the exception is thatω700 can be
introduced as is or as the square of its value).

5 Conclusions

In developing an extensive dual-model generated CDRD
database, underpinned by the Tripoli Nonhydrostatic Model-
ing System and implemented according to explanations given
in Sects. 3.1 and 3.4 of this paper, and the RTE Model System

www.nat-hazards-earth-syst-sci.net/13/1185/2013/ Nat. Hazards Earth Syst. Sci., 13, 1185–1208, 2013
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Figure 4: Left-hand panel shows scatter of individual NPD residuals with respect to range of log10 (LWP) from over-water MLRnom [log10 (LWP) ≈ NPD (10.65, 19.35, 36.5)] model.  Zero 13 
residual axis is seen as thin black-white dashed line while best fit to residual distribution is seen as thick black-white solid line.  Right-hand panel shows associated Q-Q plot over ± 4.25 quantile 14 
interval of quantiles from same MLRnom model residual distribution to equivalent quantiles from perfect normal distribution.  Reference x = y line is seen as dashed bi-sector. 15 

Fig. 4. Left-hand panel shows scatter of individual NPD residuals with respect to range of log10 (LWP) from over-water MLRnom [log10
(LWP) ≈ NPD (10.65, 19.35, 36.5)] model. Zero residual axis is seen as thin black-white dashed line while best fit to residual distribution
is seen as thick black-white solid line. Right-hand panel shows associated Q-Q plot over± 4.25 quantile interval of quantiles from same
MLRnom model residual distribution to equivalent quantiles from perfect normal distribution. Reference x= y line is seen as dashed bi-
sector.

(RMS) developed in the Part 2 study and implemented ac-
cording to descriptions given in Sects. 3.2, 3.3 and 3.4 also of
this paper, we have identified seven optimal meteorological-
geophysical tags for purposes of algorithm constraint. A va-
riety of these tags have already been used in the Part 1 and
Part 2 studies of this multi-part investigation. Three statisti-
cal analysis procedures have been used to identify and con-
firm the reliability of the seven parameters for use in the
CDRD algorithms. The 1st procedure is a parameter-by-
parameter linear correlation analysis conducted seasonally
on 25 candidate meteorological-geophysical parameters and
the first three of the four principal associated rainfall vari-
ables, RRsurf, LWP, IWP and TWP. The 2nd procedure is
a 2-dimensional cross-tabulated histogram analysis used to
confirm that the distribution properties of the strongest cor-
relating parameters in conjunction with their statistical rela-
tionships to the rainfall variables are well-behaved. The 3rd
procedure is a multi-linear regression analysis used to de-
termine the effectiveness of the optimal tags, in combina-
tion with TBs, in regressively determining estimates of the
rainfall variables, and by so doing, confirming their potential
effectiveness as physical constraints in CDRD type rainfall
retrieval algorithms.

The parameter-by-parameter linear correlation analysis
has identified six meteorological parameters and one geo-
physical parameter that would best exert constraint lever-
age on potential microphysical profile Bayesian solution sub-
sets for a CDRD algorithm. Note that each of these optimal
tags has or supports calculations of counterpart observational
tags within the optimally assimilated initial meteorological
datasets used for forecasting by the GFS and ECMWF op-

erational models. The seven optimal tags are (1 and 2) ver-
tical velocities at 700 and 500 hPa (ω700, ω500), (3) equiva-
lent potential temperature at surface (θesurf), (4) convective
available potential energy (CAPE), (5) moisture flux 50 hPa
above surface (8q150), (6) freezing level height (HFL) and
(7) surface height (Hsurf). Note thatω700 and ω500 should
be considered dynamical tags,θesurf and CAPE thermody-
namical tags,8q150 andHFL hydrological tags, andHsurf a
geophysical tag.

It is further shown that three additional non-observable
parameters might be effective as optimal tags, if global op-
erational forecast model initial data analyses could provide
or could support the calculations of such parameters. As
noted in Sect. 4, these three parameters consist of the Brunt–
Väis̈alä Frequency Squared (N2), the Richardson Number
(Ri) and the Planetary Boundary Layer Height (HPBL). All
three of these quantities exhibit strong correlative relation-
ships with the rainfall variables, with the caveat that the dis-
tribution of theRi realizations with respect to TWP entails
complexities that suggest it may be difficult to use as a con-
straint tag.

The 2-dimensional histogram analysis confirms well-
behaved uniform and continuous relationships between the
optimal tags and the rainfall variables. Some of the rela-
tionships are relatively linear and sloped, some more non-
linear, some tend to lie parallel along either the abscissa or
the ordinate for part of or all of their distribution domain and
all of them indicate scatter over their functional structure.
We stress that none of the underlying relationships inhibit
their effectiveness as constraint parameters with regards to
the CDRD algorithm methodology.
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The multi-linear regression analysis corroborates the
claims made in the Parts 1 and 2 papers of Sanò et al. (2013)
and Casella et al. (2013) that the optimal tags applied as
Bayesian solution constraints in a CDRD framework serve to
improve satellite PMW estimates of rainfall. This is shown
by a detailed study of the effectiveness of the optimal tags
in increasing percentage explained variances (consistently
around 25 %) within multi-linear regression models that re-
late from three to five optimal tag parameters, in combina-
tion with normalized polarization difference (NPD) param-
eters, to logarithmic transformations of the rainfall variable
quantities. These results are impressive because they attempt
to account only weakly for standing non-linearities in the
tag-rainfall relationships, while using as base models well-
linearized regressions between just the NPD parameters and
the log10 transformations of the rainfall variable. It is em-
phasized that the multi-linear regression results do not pro-
vide a quantitative measure of the expected performance of
the optimal tags as applied in the CDRD algorithm, because
there they are used in an entirely different discriminant-type
fashion within a probabilistic framework. These results sim-
ply buttress our argument why algorithm performance would
improve.

Finally, it is stressed that in any implementation of a CDR-
type algorithm, the retrieval outcomes strongly depend on the
quality of the observational tags and the physical compat-
ibilities between the simulation tags and their observational
counterparts. This point is important because the global mod-
els are hydrostatic in nature and the NMS model is nonhy-
drostatic in nature. Thus, there always exists the possibility
of counterpart parameter incompatibility when experiment-
ing with different sets of optimal tags. This, of course, does
not diminish any such parameter as a future possible optimal
tag at such time that nonhydrostatic models at CRM resolu-
tions emerge – models that would provide meteorological ob-
servables on a global basis through assimilation procedures
– although, as we have noted, such a state of affairs may be a
decade or more away.

Appendix A

25 Selected meteorological and geophysical parameters

In the following, the formulations of the 25 NMS variables
selected for testing as possible correlator parameters to the
three rainfall variables (RRsurf, LWP, IWP) are described in
the manner they are calculated in the NMS code. Note that
the first four of these parameters (N2, Ri, Fr, HPBL) are
calculated differently than what would be found in meteo-
rological textbooks, but, in fact, are simply more advanced
formulations perfectly suited to high resolution models.

A1 Brunt–V äisälä frequency squared (N2)

Brunt–Väis̈alä Frequency Squared (N2) is a measure of
buoyant stability, given in units of s−2. WhereasN2 can be
calculated at any level of the atmosphere, for the purpose of
this study it is calculated at 50 hPa (∼ 500 m) above ground
level (AGL). Its formulation requires different equations for
three cases: (Case 1a) a dry parcel, (Case 1b) a saturated par-
cel with respect to liquid and/or ice water, and (Case 1c) an
unsaturated parcel for which liquid and/or frozen precipita-
tion is present in the parcel.
Case 1a.N2 for a dry parcel:

N2
=

(
g

θo

)
∂θv

∂z
(A1)

For this case,θo is the dry, hydrostatic reference value of
potential temperature (θ) given by θ = (cp/π ) T , wherecp
is specific heat capacity of dry air at constant pressure,g is
acceleration due to gravity, andθv = θ (1+ 0.61 qv) is the
virtual potential temperature of an air parcel in which∂ θv/∂z

is its vertical derivative andqv is the specific humidity of
water vapor.
Case 1b.N2 for a saturated parcel:

N2
=

(
g

θo

)
∂θev

∂z
(A2)

For this case,θv is replaced by the virtual equiva-
lent potential temperature (θev) given by θev = θv [1 +

(lwp qw
s )/(cpT )], wherelwp is a weighted latent heat of phase

change given bylwp = α · lvc + (1− α) ·lsd in which α =

max[0, min(1, (T − 253.16)/20)] is the weighting fac-
tor and lwp is defined using the latent heat of vaporization-
condensation (lvc) for T ≥ 273.16 and the latent heat of
sublimation-deposition (lsd) for T ≤ 253.16 as limiting val-
ues, with the weighted value linearly changing between the
two limits with respect to temperature change over the inter-
vening 20◦C interval 273.16 K to 253.16 K, and whereqw

s
is a weighted saturation specific humidity using the same
weighting schemeqw

s = α · qvs+ (1− α) · qis, defined us-
ing the saturation specific humidities with respect to liquid
and ice surfaces (qvs, qvs), respectively.
Case 1c.N2 for an unsaturated parcel:

N2
=

(
g

θo

)
∂θv

∂z
− P1

∂q ′

∂z

(
lwp g

cpT

)
(A3)

For this case, evaporation cooling and melting are taken into
effect, whereP1 is a precipitation evaporation/melting factor
pertaining to the size of the precipitating hydrometeors (set
to 0.5 because the larger hydrometeors fail to maintain satu-
ration) and∂q ′/∂z is replaced by a delta expression in which
1q ′ approximates the total evaporating and/or sublimating
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condensate:

1q ′ ∼= P1 mingqv

RT
1z

ε
cp

lwp
T

− 1

ε
cpR

lwp

T 2 qv + 1
+ qvs− qv , qcl + qci

 (A4)

whereR is the ideal gas constant (8.314 J K−1 mol−1), ε =

0.622 (ratio of molecular weight of water to that of air) and
qcl, qci are the specific humidities of cloud liquid condensate
and cloud ice condensate, respectively.

Typically at 50 hPa AGL, a parcel is dry or unsaturated,
although if the latter it may contain liquid or frozen precip-
itation. Note thatN2 is positive for a statically stable envi-
ronment. Thus, the greater a positive value ofN2, the more
stratified the atmosphere becomes and the greater the atmo-
spheric stability. For a positiveN2, its square rootN is de-
fined as the Brunt–V̈ais̈alä frequency (after David Brunt and
Vilho Väis̈alä), i.e., the frequency at which the parcel oscil-
lates when vertically displaced in the statically stable envi-
ronment. On the other hand,N2 is negative for a statically
unstable environment, which means the rhs of the relevant
N2 expression (i.e., either Eqs. A1, A2 or A3) is negative
(e.g., for Case 1a,∂θv/∂z is negative). In this instance,N
must be considered complex, but in reality is not defined be-
cause there is no oscillation frequency – instead, simply run
away acceleration, convection and overturning. Thus, asN2

becomes more negative, the greater the probability there is
for precipitation. It is important to note thatN2 is useful in
determining gravity wave behavior, such as how likely grav-
ity waves will grow or dampen. Significantly, gravity waves
can alter the vertical moisture gradient and trigger convective
instability. Note also that latent heating can possibly change
the sign of∂θv/∂z, ∂θev/∂z or even∂q ′/∂z, and thus the sign
of N2.

A2 Richardson number (Ri)

Richardson number (Ri) is the ratio of the buoyant produc-
tion of turbulence to the shear production of turbulence, and
is thus a dimensionless quantity. WhereasRi can be calcu-
lated at any level of the atmosphere, for the purpose of this
study it is calculated at 50 hPa (∼ 500 m) a.g.l. Its formu-
lation requires the calculation ofN2 and is meaningful for
either signed quantity.

Ri =
N2

D2
ij

(A5)

whereDij is the 9-component deformation tensor, expressed
by

Dij =
∂ui

∂xj

+
∂uj

∂xi

(A6)

wherei = 1,3 andj = 1,3 represent indices for the zonal,
meridional and vertical velocities (u, v, w) expressed byui

or uj , and the associated coordinate axes (x, y, z) expressed
by xi or xj . Ri is used to evaluate the dynamic stability of a
specified region of the atmosphere. The critical value ofRi

(RiC) is found at 0.25, the value below which flow is unstable
and turbulent, signifying that wind shear is strong enough to
overpower static stability. Thus, values ofRi belowRiC can
be indicative of the presence of convection and precipitation.

A3 Froude number (Fr)

Froude number (Fr) is the ratio of the inertial resistance to
lifting a parcel flowing at horizontal velocity (V ) at a spec-
ified height above the surface (h) to the resistance against
lifting due to static stability in the PBL, and is thus a dimen-
sionless quantity. WhereasFr can be calculated at any level
of the atmosphere, for the purpose of this study it is calcu-
lated at 50 hPa (∼ 500 m) a.g.l. Its formulation requires the
calculation ofN and is only meaningful for static stability.

Fr = V/Nh (A7)

whereh marks the top of the statically stable PBL andN

is the average Brunt–V̈ais̈alä frequency over depthh (since
Fr only applies to the statically stable PBL,N2 is guaran-
teed positive and thusN is real). Values ofFr < 1 are called
subcritical (flow velocity< wave velocity), while values of
Fr > 1 are called supercritical (flow velocity> wave veloc-
ity). Flows that are forced to go around an obstacle have
smaller values ofFr (i.e., subcritical), while flows that tend
to rise over the top of an obstacle have larger values ofFr

(i.e., supercritical). In actual atmospheric applications, gen-
erally small values ofFr would be associated with resistance
to orographic or frontal lifting and thus indicative of con-
ditions unfavorable for convection and precipitation, while
large values ofFr would be associated with preference for
orographic or frontal lifting and thus indicative of conditions
favorable for forced convection and precipitation.

A4 Planetaly boundary layer height (HPBL)

Planetary boundary layer height (HPBL) is defined as the top
of the planetary boundary layer (PBL), and is generally con-
sidered the lowest level of the free atmosphere not in fric-
tional contact with the surface. TheHPBL generally varies
during the day and can be found as the level over which the
PBL can be mixed until its bulkRi becomes theRiC, noting
the bulkRi incorporates a value ofN2 defined between the
surface and the mixing level; see Troen and Mahrt (1986) for
a description of this methodology for definingHPBL. This
means that for a very deep statically unstable atmosphere
(such as over an intensely heated desert during daytime), the
associatedHPBL itself can become very deep (theoretically
up to troposphere depth). After sunrise, assuming negligi-
ble horizontal advection and undisturbed conditions, turbu-
lent eddies and rising thermals in the mixed layer deepen the
PBL depth by the process of entrainment from above. After
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sunset, turbulence dissipates with the mixed layer, transform-
ing to a residual layer. Afterwards, during nighttime, the sur-
face cools by outgoing longwave radiation, promoting the
formation of a stable PBL. For moist boundary layers, under
greater PBL depths, moisture from the surface is mixed to
higher levels, increasing the likelihood of condensation and
precipitation.

A5 Convective available potential energy (CAPE)

Convective available potential energy (CAPE) is the potential
energy a parcel of air near the surface would have, in excess
of its environment, if lifted along a specified vertical path,
given in units of J kg−1. Its formulation requires an integral
along the path for which the parcel is buoyant.

CAPE=

ze∫
zf

g

(
Tvpar − Tvenv

Tvenv

)
dz (A8)

wherezf andze are the heights of the level of free convection
(LFC) and the equilibrium level (EL) (also referred to as the
level of neutral buoyancy), respectively,Tvpar is the virtual
temperature (Tv) of the specified parcel andTvpar is theTv of
the environment. It is the positive buoyancy of the air par-
cel as an indicator of atmospheric instability, which makes
it valuable in predicting severe weather. In general, CAPE
should be considered as a form of fluid instability found in
thermally stratified atmospheres, in which a colder fluid over-
lies a warmer one. When an air parcel is statically unstable,
it is displaced upwards by its buoyancy and then accelerated
by the pressure differential between the displaced air and the
ambient air at the higher altitude to which it is displaced.
CAPE is also realized under the condition that when a moist
parcel is forced to rise to its LFC, excess heating will be re-
leased through condensation and/or freezing and thus will
additionally warm the parcel to temperatures in excess of
its environment. This can eventually lead to thunderstorms
and precipitation. Notably, CAPE can be created by various
processes, particularly those which can cause cooling above
and moistening and warming below. Even if the air is cooler
on the surface, there may still be warmer air at mid-levels,
which would rise to upper levels. However, if there is insuf-
ficient water vapor, there can be no significant condensation,
meaning no clouds or precipitation.

A6 Convective inhibition (CIN)

Convective inhibition (CIN) is the amount of positive energy
needed to lift an air parcel vertically from the surface to its
LFC, given in units of J kg−1. Its formulation resembles that
of CAPE.

CIN = −

zf∫
zs

g

(
Tvpar − Tvenv

Tvenv

)
dz (A9)

wherezs andzf are the heights of the surface and the LFC,
respectively, and theTv parameters are equivalent to those
used for the definition of CAPE. The negative sign makes
the definition a positive quantity, because the integral term,
by itself, represents negative energy. Typically, for conditions
in which CIN becomes a relevant parameter, the larger its
value, the stronger the capping inversion, which temporar-
ily suppresses the development of convection and thunder-
storms. The capping inversion is an important element of se-
vere weather because it is the layer which separates warm,
moist air below from cool, dry air above. Thus, for a strong
capping inversion (i.e., large CIN), surface convective insta-
bility will continue to build up under ongoing heating and
moistening of the near surface air, until convective elements
break through the cap later in the day, enabling the develop-
ment of severe weather and precipitation. On the other hand,
if CIN becomes too large, the inversion is too strong and pre-
vents convection altogether. Conversely, if CIN is too small,
it may indicate that there is insufficient CAPE for convec-
tion to develop, with or without a capping inversion. Thus,
there tends to be an intermediate large value of CIN (i.e., a
Goldilocksvalue), that may depend on other parameters such
as wind shear, for which severe weather and precipitation are
enabled.

A7 Surface equivalent potential temperature (θesurf)

Surface equivalent potential temperature (θesurf) is theθ of
an air parcel raised from the surface to a level that all latent
heat content has been released andqv removed, then returned
adiabatically to the surface reference level. Therefore, it is a
thermodynamic measure of the combinedθ andqv of a par-
cel.θesurf is conserved as a parcel rises and can be compared
to the values above to determine the heights to which a parcel
is capable of rising during moist convection. Large values of
θesurf are helpful in distinguishing warm-moist tropical air
mass sources from cool-dry temperate sources. Increases in
surface temperature (Tsurf) and surface dew point tempera-
ture (T dsurf) will result in larger values ofθesurf, and thus
will increase the potential height to which an air parcel can
rise. Also,θesurf is strongly influenced by surface pressure
and elevation, as it depicts the effect of elevation or lower
surface pressure on increasing the potential for air to rise to
greater atmospheric heights via convective processes. Thus,
larger values ofθesurf raise the probabilities for clouds and
precipitation.

A8 Surface skin temperature (Tskin)

Surface skin temperature (Tskin) is defined as theT at the top
of the Earth’s surface (whether it be land or sea), assuming
radiative equilibrium of an idealized thin-membrane molecu-
lar boundary. Notably,Tskin responds differently for different
types of surfaces. For example, it can be used to distinguish
vegetated from soil surfaces, salinated sea water from fresh
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sea water surfaces, or even tropical latitude from temperate
latitude surfaces (under certain assumptions). Moreover, it
conditionally can be used to determine the degree of surface
heating and thus be an indicator of convection and possibly
precipitation.

A9 Lifted index (LI)

Lifted index (LI) is the difference between theT of a parcel
that has been adiabatically lifted to the 500 hPa level from the
surface and the environmentalT at 500 hPa. It measures the
stability of the troposphere with respect to convection that
has originated from the surface. If LI is negative, it indicates
instability and the likelihood for convection. Thus it can be
used as a severe weather parameter and a potential indicator
of precipitation.

A10 Lapse rate from 500 to 850 hPa (0500−850)

Lapse rate from 500 to 850 hPa (0500−850) is the atmo-
spheric temperature gradient with height at mid levels. Since
0500−850 can be altered by horizontally differential temper-
ature advection and vertically differential diabatic heating,
any change in this parameter has a direct effect on CAPE
and CIN, and thus can be used to assess atmospheric stabil-
ity. When0500−850 is less than∼ 6◦C km−1, conditions are
generally stable with little to no chance for the formation of
clouds and precipitation.. Alternatively, when0500−850 ap-
proaches∼ 10◦C km−1, conditions are typically absolutely
unstable, indicative of the formation of convection and pre-
cipitation. Between these two lapse rate values, conditions
are considered to be conditionally unstable, and thus possi-
bly indicative of cloud and precipitation formation.

A11 Latent heating of column (LH)

Latent heating of column (LH) is the heat released or taken
up by the phase change(s) of water. This is an important pa-
rameter in determining the growth and development of both
synoptic and mesoscale circulations. The actual mechanisms
producing LH release or uptake and thus the magnitude and
sign of LH, are the explicit counterpoised microphysical pro-
cesses of evaporation–condensation (e–c), melting–freezing
(m–f ) and sublimation–deposition (s–d). Accordingly, any
net production of (e + m + s) would lead to LH uptake (di-
abatic cooling) with a reduction in the possibility of pre-
cipitation, while any net production of (c + f + d) would
lead to LH release (diabetic heating) with an increase in the
possibility of precipitation.

A12 Lifting condensation level (LCL)

Lifting condensation level (LCL) is the height at which an air
parcel reaches its saturation level by lifting. It is used to esti-
mate cloud base heights in which smaller LCLs would gener-
ally indicate larger probabilities for clouds and precipitation.

A13 Freezing level height (HFL )

Freezing level height (HFL) is the height at which the value
of T along its vertical axis reaches a value of 0◦C. In the
presence of condensates, ice formation will generally occur
above theHFL. It can be used to estimate the amount of ice
and water in a column. If theHFL is low, the cloud column
generally contains more ice and less water; alternatively, if
HFL is high, the reverse occurs. In this sense,HFL represents
an estimator of surface precipitation. SinceHFL depends on
the T profile of the atmosphere, it changes due to temper-
ature advection, convection and evaporation-cooling from
precipitation itself. It is often used to differentiate tropical
from higher latitude environments because theHFL generally
decreases as latitude extends poleward.

A14 Sensible heat flux from surface (8hsurf)

Sensible heat flux from surface (8hsurf) is defined as the ver-
tical transport of heat by turbulent eddies with respect to the
surface, using the sign convection that conducting heat away
from the surface into the atmosphere is positive. Thus, larger
values of8hsurf can be indicative of greater probabilities for
convective destabilization, storms, clouds and precipitation.

A15 Moisture flux 50 hPa AGL (8q150)

Moisture flux 50 hPa AGL (8q150) is defined as the verti-
cal transport of water vapor at a level of 50 hPa above the
surface, using the sign convention that upward directed flux
is positive.8q150 actually combines vertical motion with
the vertical flux of moisture content near the surface into a
single parameter. It effectively integrates the effect of mois-
ture convergence over the friction layer, which can be the
source of moisture lifted to form clouds when lifting is forced
from below such as with Ekman pumping or orographic forc-
ing. Thus, larger values of8q150 are indicative of greater
probabilities for clouds and precipitation.

A16 Positive vorticity advection at 500 hPa (ξ500)

Positive vorticity advection at 500 hPa (ξ500) is defined as
ξ = −V ∇ (ζ + f ) at the 500 hPa level, whereζ + f is the
absolute vorticity, given by the sum of relative and plane-
tary vorticity, respectively [ζ = ∂v/∂x-∂u/∂y, i.e., curl ofV ;
f = 2� sin ϕ], given in units of s−2, and noting that� is
the rotation rate of the Earth (7.2921× 10−5 rad s−1) andϕ

is the specified Earth latitude. For quasi-geostrophic (QG)
motions in middle latitudes (requiring geostrophic and hy-
drostatic balance), positive vorticity advection (PVA) is pro-
duced when parcels of air move from higher to lower val-
ues of vorticity. For such QG flow with a unimodal verti-
cal profile of PVA, the difference between PVA at an upper
level and at the surface signifies the forcing of vertical mo-
tion to maintain geostrophic balance. Because the PVA at the
surface tends to be much smaller than that at upper levels,
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the surface value is typically neglected such that a value of
PVA at upper levels, by itself, represents the integrated effect
of QG lifting from below. It is a convention to assess PVA
at 500 hPa because this is approximately the level of non-
divergence for deep tropospheric divergence. QG theory also
shows that PVA-induced rising motion is usually enhanced if
there is coincident warm air advection at lower levels. There-
fore, elevated values ofξ500 in middle latitudes are indicative
of inertially forced vertical motion in the lower troposphere
and possibly the development of clouds and precipitation.

A17 Positive vorticity advection at 700 hPa (ξ700)

Positive vorticity advection at 700 hPa (ξ700) is equivalent to
the definition forξ500, except that it is calculated in the mid-
dle of the lower troposphere at 700 hPa. For shallow weather
systems or for the lower portions of deep weather systems,
ξ700 assesses the potential of PVA to induce lifting motions
in the lower troposphere. This gives a more focused measure
of QG lifting in the lowest portions of the atmosphere where
moisture is most abundant. Therefore, in comparison to large
values ofξ500, large values ofξ700 indicate lifting focused in
the moist layer and thus may better isolate the potential for
vertical motion that would lead to clouds and precipitation.

A18 Vertical velocity at 700 hPa (ω700)

Vertical velocity at 700 hPa (ω700) is a measure of the ver-
tical air motion in p-coordinates in the middle of the lower
half of the troposphere. Because pressure decreases with
height, negative values mean rising motion while positive
values mean descending motion. Notably, 700 hPa is at a
level where precipitation production is typically at its maxi-
mum, and thus large negativeω700 values can represent the
amount of precipitation being actively formed. Generally,
such lifting is maximized in deep convective systems, frontal
regions and deep orographic clouds. Unlike PVA,ω700 is a
direct measure of vertical motion rather than a QG assess-
ment of the potential for vertical motion. Hence, it represents
not only QG forcing, but unbalanced motion (in NMS, this
includes resolved convective motions and gravity wave mo-
tions). Therefore, large negativeω700 values are indicative of
greater probabilities for clouds and precipitation.

A19 Vertical velocity at 500 hPa (ω500)

Vertical velocity at 500 hPa (ω500) is a measure of vertical
air motion in p-coordinates in the middle of the troposphere.
Although the 500 hPa level is above the height where pre-
cipitation is typically produced, upward motion at this level
signifies very deep tropospheric overturning, which in turn
supports deep convection. Therefore, large negative values
of ω500 are indicative of greater probabilities for clouds and
precipitation.

A20 Divergence at surface (DIVsurf)

Divergence at surface (DIVsurf) is negative for air mass con-
vergence at the surface and thus, for this situation, represents
a mechanical lifting mechanism rooted at the surface for cre-
ating rising air. Unlike lower tropospheric divergence above
the surface, surface divergence is strongly affected by local
boundaries such as density currents left by convective sys-
tems, low level deformations produced by cold fronts, sea
breeze fronts, or thermal contrasts created by, e.g., the sep-
aration of river and field areas, desert and grassland land-
scapes, or snow-cover and snow-free regions. This type of
convergence can be important in triggering conditionally un-
stable air to rise to its LFC, thus producing convection and
possibly precipitation. On the other hand, it is less important
for long-term lifting of stable air to form stratiform clouds,
except possibly over sloped terrain. In the case of of lifting
stable air over sloped terrain, divergence should be diagnosed
at deeper upper levels, for example, at 700 mb. This is be-
cause deep convergence is more important for lifting a deep
layer, rather than for triggering shallow vertical motion.

A21 Divergence at 700 hPa (DIV700)

Divergence at 700 hPa (DIV700) is a measure of how much
mass is being deposited in the lower troposphere and thus
indicates the integrated effect of downward (divergent) or
upward (convergent) motion above that level. The effect at
700 hPa is most pronounced in the vicinity of fronts, where
isentropic frontal lifting is manifested as the 700 hPa con-
vergence of flow. In addition, along major mountain barriers
such as, e.g., the Rockies, Andes, Alps or Himalyas, 700 mb
convergence (divergence) results from mid-level flow normal
to the mountain ridge, resulting in upslope (downslope) flow
on the windward side. Thus, negative DIV700 (convergence)
is indicative of frontal or orographic lifting and the concomi-
tant formation of clouds and possibly precipitation, while
positive DIV700 is indicative of frontal or orographic sub-
sidence and the concomitant suppression of any cloudiness.

A22 Thickness from 500–1000 hPa (1Z500−1000)

Thickness from 500–1000 hPa (1Z500−1000) is the separa-
tion length between the 500 and 1000 hPa pressure levels.
It is proportional to the meanT of this layer, and typically
matches the 700 hPa thermal pattern. It can be used to sig-
nify a cold versus warm lower troposphere. It can also sig-
nify the possibility of precipitation reaching the surface as
frozen snow versus conditions of melting and thus precipita-
tion reaching the surface as liquid rain. Whereas it is difficult
to relate1Z500−1000 to precipitation because such a relation-
ship is dependent on the geography and ambient climatology
of the region; in general, the greater its value, the greater the
possibility for snow.
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A23 Thickness from 700–1000 hPa (1P700−1000)

Thickness from 700–1000 hPa (1Z700−1000) is the separa-
tion length between the 700 and 1000 hPa pressure levels.
As with 1Z500−1000, it is proportional to the meanT of
this layer and can be used to identify cold or warm air
masses centered in the low troposphere. In addition, as with
1Z500−1000, it is difficult to relate1Z700−1000 to precipita-
tion because such a relationship is dependent on the geogra-
phy and ambient climatology of the region; in general, the
greater its value, the greater the possibility for snow.

A24 Vertical wind shear in lower troposphere (1zVLT )

Vertical wind shear in lower troposphere (1zVLT), is defined
as the vertical velocity gradient in the lower troposphere be-
tween the surface and the 6 km level. It is a measure of how
vertically-layered dynamic shear stresses can affect the or-
ganization, type, longevity and severity of storms. At mid-
latitudes, in considering thunderstorms, moderate levels of
1zVLT can help tilt the vertical storm structures such that
precipitation is able fall away from the updraft regions, thus
preventing updraft suppression. Moreover,1zVLT can pro-
duce rotating convective storms such as supercells, which are
long-lived, severe and containing intense precipitation. How-
ever, if 1zVLT becomes too large, it can destroy weak up-
drafts and prevent storm development. By the same token, at
lower latitudes in tropical cyclone environments, any mean-
ingful 1zVLT is generally considered a menace to the effi-
cient organization of the cyclone outflow layers, serving to
tear apart disturbances before they can reach or maintain cy-
clone strength. Therefore, regardless of the fact that1zVLT
is related to how precipitating storms develop, it is difficult
to set meaningful thresholds for this parameter insofar as
defining practical guides for the probability of precipitation.

A25 Surface height (Hsurf)

Terrain elevation, referred to as surface height (Hsurf), is an
effective parameter for defining the potential for mechanical
lifting of horizontal airflow, which if sufficiently strong, can
produce condensation, cloud formation and possibly precip-
itation. It also defines the potential for producing enhanced
equivalent potential temperature at the surface (θesurf) (re-
sulting from lowered surface pressure due to the terrain-
induced lifting), a parameter also noted for its relationship
to precipitation.
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