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Abstract. Temperature influences both the demand and sup-
ply of electricity and is therefore a potential cause of black-
outs. Like any electricity provider, Electricité de France
(EDF) has strong incentives to model the uncertainty in fu-
ture temperatures using ensemble prediction systems (EPSs).
However, the probabilistic representations of the future tem-
peratures provided by EPSs are not reliable enough for elec-
tricity generation management. This lack of reliability be-
comes crucial for extreme temperatures, as these extreme
temperatures can result in blackouts. A proven method to
solve this problem is the best member method (BMM). This
method improves the representation as a whole, but there is
still room for improvement in the tails of the distribution.
The idea of the BMM is to model the probability distribu-
tion of the difference between the forecast and realization.
We improve the error modeling in BMM using quantile re-
gression, which is more efficient than the usual two-stage
ordinary least squares (OLS) regression. To achieve further
improvement, the probability that a given forecast is the best
one can be modeled using exogenous variables.

1 Introduction

The uncertainty of future temperatures is a major risk factor
for an electric utility company such as Electricité de France
(EDF). The demand for heating increases when the temper-
ature is lower than 18◦C, and the demand for cooling in-
creases when the temperature exceeds 18◦C. Moreover, high
temperatures also create cooling problems for thermal plants.

To fulfill the risk management needs of the company, the
ensemble prediction systems (EPSs) provided by weather
forecasting institutes such as European Centre for Medium-
Range Weather Forecasts (ECMWF) (ECMWF, 2002, 2006)
provide an indispensable source of information. Ensemble
forecasting is a numerical prediction method that is used
to generate a representative sample of the possible future
states of a dynamical system. Ensemble forecasting is a
form of Monte Carlo analysis: multiple numerical predic-
tions are computed using slightly different initial conditions,
all of which are plausible given past and current observa-
tions. The available observations are combined to obtain es-
timates of the future temperatures as well as their uncertain-
ties (Whitaker and Loughe, 1998) and predictive densities.

However, the probabilistic representations of future tem-
peratures provided by EPSs suffer some lack of reliability, es-
pecially for extreme probabilities (for example 1 % quantile
forecast is inaccurate), not only because the number of en-
semble members is limited by computing resources, but also
because EPS forecasts can be biased and typically do not dis-
play enough variability, thus leading to an underestimation
of the uncertainty (Buizza et al., 2005). As a risk manager,
and also because of its size and market power, EDF must use
the most reliable information available (Diebold et al., 1998;
Gneiting et al., 2007), so lack of reliability is prohibitive.

EDF faces also a regulatory constraint: the French tech-
nical system operator imposes that the probability of em-
ploying exceptional means (e.g., load shedding) to meet the
demand for electricity must be lower than 1 % for each
week (RTE, 2004), so EDF has to manage carefully risk at
this level. Now, in France, most of the demand variability
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ability, with opposite effects in winter and summer: in
winter demand increases when temperature decreases,70

the reverse is true in summer. Furthermore, variability
in demand largely exceeds the variability in the supply.
So, when the supply-demand balance is at the 1% quan-
tile, the temperature is nearly, but not exactly, at the
1% quantile in winter, and at the 99% quantile in sum-75

mer. Needless to say, the EDF decision making process
takes account of other quantiles and quantities, but the
regulatory constraint is the 1% quantile.
A more technical limitation of EPSs is a lack of smooth-
ness: the predictive cumulative distribution they pro-80

vide is a step function, which can lead to problems in
generation management tools.
Many methods have been developed to obtain a smooth
and unbiased representation of the risk arising from
temperature variations [Hagedorn (2010); Wilks (2011)].85

However, as we are interested in extremes, it ex-
cludes methods assuming gaussianity, such as the non-
homogeneous gaussian regression developed in Gneit-
ing et al. (2005) or Unger et al. (2009). We have
then to use one of the ensemble « dressing » method, it90

means bayesian model averaging [Raftery et al. (2004)],
bayesian processor of output [Krzysztofowicz (2004)] or
best member method [Roulston and Smith (2002a)].
The best member method is the simplest amongst these
three methods, and Gogonel-Cucu et al. (2011a) shows95

that it gives better results on ECMWF ensemble fore-
casts than bayesian model averaging. Furthermore, we
suspect that using ranks, as proposed in Fortin et al.
(2006), could be very useful to improve the representa-
tion of the tails, so it will be the basis of our modeling.100

In this paper, the key point is that the fitting of the
dispersion of the « dressing » is improved when quantile
regression is used in place of a two-stage ordinary least
squares (OLS) regression.
In this paper, we first briefly review the use of the BMM105

and then demonstrate the use of quantile regression to
improve the error modeling required for the BMM. In
the final section, we suggest several further improve-
ments of the method.

2 An example application of the best member110

method

In this section, we briefly describe a simple application
of the BMM to ECMWF forecasts, with a « dressing »
depending on the rank of the forecast. We study all pos-
sible horizons, with each horizon treated independently115

from the others.

Fig. 1. Weather stations used to define global temperature
fro France: names, locations and circles with surfaces pro-
portional to the weight of each station.

2.1 The data

The temperatures (in Celsius degrees) that we analyze
are spatial and temporal averages. The time extent
of the average is the day, the spatial extent is France:120

we average the temperatures measured in 26 cities in
France, the vector of 26 weights is chosen in order to
estimate the electricity load in France [Dordonnat et al.
(2008)]. The map in figure 1 shows the names, loca-
tions of the cities, as well as circles with surfaces pro-125

portional to the weight of each city. Because we use
temperatures measured at specific observation sites, a
statistical adaptation stage is included in the forecast-
ing process. This statistical adaptation is performed by
Météo-France. The forecast that we use are EPSs pro-130

vided by ECMWF. As shown in figure 2, the ensemble
spread is actually a proxy for the forecast error. Fur-
thermore, the skill itself is seasonal, as demonstrated in
figure 3.

The data consists of two different arrays. The first135

array is 3-dimensional and contains the forecasts.

– The dates of the forecasts range from 2007-03-27 to
2011-04-30 (for a total of 1473 dates).

– The horizons of the forecasts provided by ECMWF
range from 1 to 14 days in the future.140

– The member is identified by a number between 0
and 50. For a given date, a member corresponds to
a given initial state.

Fig. 1. Weather stations used to define global temperature for
France: names, locations and circles with surfaces proportional to
the weight of each station.

is a consequence of temperature variability, with opposite
effects in winter and summer: in winter demand increases
when temperature decreases; the reverse is true in summer.
Furthermore, variability in demand largely exceeds the vari-
ability in the supply. So, when the supply–demand balance is
at the 1 % quantile, the temperature is nearly, but not exactly,
at the 1 % quantile in winter, and at the 99 % quantile in sum-
mer. Needless to say, the EDF decision-making process takes
account of other quantiles and quantities, but the regulatory
constraint is the 1 % quantile.

A more technical limitation of EPSs is a lack of smooth-
ness: the predictive cumulative distribution they provide is a
step function, which can lead to problems in generation man-
agement tools.

Many methods have been developed to obtain a smooth
and unbiased representation of the risk arising from temper-
ature variations (Hagedorn, 2010; Wilks, 2011). However, as
we are interested in extremes, it excludes methods assum-
ing Gaussianity, such as the non-homogeneous Gaussian re-
gression developed inGneiting et al.(2005) andUnger et al.
(2009). We then have to use one of the ensemble “dress-
ing” methods: Bayesian model averaging (Raftery et al.,
2004), Bayesian processor of output (Krzysztofowicz, 2004)
or best member method (Roulston and Smith, 2002a). The
best member method is the simplest amongst these three
methods, andGogonel-Cucu et al.(2011a) show that it gives
better results on ECMWF ensemble forecasts than Bayesian
model averaging. Furthermore, we suspect that using ranks,
as proposed inFortin et al.(2006), could be very useful to
improve the representation of the tails, so it will be the basis

Gogonel, Collet, Bar-Hen: Improving Calibration of Best Member Method using Quantile Regression 3

Fig. 2. Correlation between Ensemble Prediction System
(EPS) interquartile range and forecast error, using EPS
mean as a deterministic forecast

Fig. 3. Mean forecast error, using Ensemble Prediction Sys-
tem mean as a deterministic forecast, for all horizons and
seasons

The second array contains the realizations of the tem-
perature variable. This array has 1 dimension corre-145

sponding to the date, with approximately the same ex-
tent as the forecasts.
The member 0 is different from others, as its initial con-
ditions are unperturbed. Despite this, we consider the
member number to be uninformative, and the members150

of the EPS are assumed to be exchangeable according to
the definition provided in Bernardo (1996) (in contrast
to multi-model ensembles [Gneiting et al. (2005)]).

2.2 The criteria

On can find many verification criteria for forecasts, see155

for example Jolliffe and Stephenson (2012). As our goal
is risk management, we will focus on criteria measuring
the quality of uncertainty representation. That is why
we use the probability integral transform (PIT) [Diebold
et al. (1998); Hamill (2001)]. For each forecast horizon h160

and each date, we have a set of temperature simulations
from BMM, and a realization. The PIT is defined as
the proportion of the simulated values that are lower
than the realization. If the forecast is reliable, then the
PIT is uniformly distributed on [0,1]. Formally, if we165

note yt the sequence of realized temperatures, and Ft the
sequence of density forecasts, if the Ft are continuous,
we have:

yt∼Ft⇒Ft(yt)∼U [0,1].

The statistic Ft(yt) is called the PIT. So, measuring170

the reliability of a sequence of density forecasts comes
down to compare the distribution of the PIT to the uni-
form distribution. This condition can be checked in a
straightforward manner using the empirical distribution
function (EDF).175

We also use continuous ranked probability score
(CRPS), because this criterion is well known. The
CRPS measures the difference between the forecast and
observed CDFs. In the case of ensemble forecasts, when
the size of the sample is sufficiently large, the forecasted180

CDF is approximated by the EDF of the ensemble. This
definition has two consequences: The smaller the CRPS,
the better, and CRPS has the same units as the observa-
tions.The CRPS can be decomposed in two components:
the reliability component tests whether the forecast sys-185

tem has the correct statistical properties, whereas the
potential CRPS measures the residual uncertainty of the
forecast.

2.3 The best member method applied to
ECMWF data190

2.3.1 Principle

The BMM was first proposed by Roulston and Smith
(2002a) and subsequently improved by Wang and
Bishop (2005), Fortin et al. (2006) and in Gogonel-Cucu
et al. (2011b,a). The last three references use the rank195

of a member in the sorted ensemble. As we state later
in this section, this discrete variable is too detailed, so
it is useful to aggregate some of its values.
The BMM is a statistical post-processing method, so us-
ing this method implies choosing a training period. In200

all cited works, and in our, the training period is fixed,
and large (some months). We used cross-validation, and
stated that there is likely no-effect of the training period

Fig. 2. Correlation between ensemble prediction system (EPS) in-
terquartile range and forecast error, using EPS mean as a determin-
istic forecast.

of our modeling. In this paper, the key point is that the fitting
of the dispersion of the “dressing” is improved when quan-
tile regression is used in place of a two-stage ordinary least
squares (OLS) regression.

In this paper, we first briefly review the use of the best
member method (BMM) and then demonstrate the use of
quantile regression to improve the error modeling required
for the BMM. In the final section, we suggest several further
improvements of the method.

2 An example application of the best member method

In this section, we briefly describe a simple application of the
BMM to ECMWF forecasts, with a “dressing” depending on
the rank of the forecast. We study all possible horizons, with
each horizon treated independently of the others.

2.1 The data

The temperatures (in degrees Celsius) that we analyze are
spatial and temporal averages. The time extent of the average
is the day, and the spatial extent is France: we average the
temperatures measured in 26 cities in France; the vector of
26 weights is chosen in order to estimate the electricity load
in France (Dordonnat et al., 2008). The map in Fig.1 shows
the names, locations of the cities, as well as circles with sur-
faces proportional to the weight of each city. Because we use
temperatures measured at specific observation sites, a statis-
tical adaptation stage is included in the forecasting process.
This statistical adaptation is performed by Mét́eo-France.

The forecasts that we use are EPSs provided by ECMWF.
As shown in Fig.2, the ensemble spread is actually a proxy
for the forecast error. Furthermore, the skill itself is seasonal,
as demonstrated in Fig.3.
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Fig. 2. Correlation between Ensemble Prediction System
(EPS) interquartile range and forecast error, using EPS
mean as a deterministic forecast

Fig. 3. Mean forecast error, using Ensemble Prediction Sys-
tem mean as a deterministic forecast, for all horizons and
seasons

The second array contains the realizations of the tem-
perature variable. This array has 1 dimension corre-145

sponding to the date, with approximately the same ex-
tent as the forecasts.
The member 0 is different from others, as its initial con-
ditions are unperturbed. Despite this, we consider the
member number to be uninformative, and the members150

of the EPS are assumed to be exchangeable according to
the definition provided in Bernardo (1996) (in contrast
to multi-model ensembles [Gneiting et al. (2005)]).

2.2 The criteria

On can find many verification criteria for forecasts, see155

for example Jolliffe and Stephenson (2012). As our goal
is risk management, we will focus on criteria measuring
the quality of uncertainty representation. That is why
we use the probability integral transform (PIT) [Diebold
et al. (1998); Hamill (2001)]. For each forecast horizon h160

and each date, we have a set of temperature simulations
from BMM, and a realization. The PIT is defined as
the proportion of the simulated values that are lower
than the realization. If the forecast is reliable, then the
PIT is uniformly distributed on [0,1]. Formally, if we165

note yt the sequence of realized temperatures, and Ft the
sequence of density forecasts, if the Ft are continuous,
we have:

yt∼Ft⇒Ft(yt)∼U [0,1].

The statistic Ft(yt) is called the PIT. So, measuring170

the reliability of a sequence of density forecasts comes
down to compare the distribution of the PIT to the uni-
form distribution. This condition can be checked in a
straightforward manner using the empirical distribution
function (EDF).175

We also use continuous ranked probability score
(CRPS), because this criterion is well known. The
CRPS measures the difference between the forecast and
observed CDFs. In the case of ensemble forecasts, when
the size of the sample is sufficiently large, the forecasted180

CDF is approximated by the EDF of the ensemble. This
definition has two consequences: The smaller the CRPS,
the better, and CRPS has the same units as the observa-
tions.The CRPS can be decomposed in two components:
the reliability component tests whether the forecast sys-185

tem has the correct statistical properties, whereas the
potential CRPS measures the residual uncertainty of the
forecast.

2.3 The best member method applied to
ECMWF data190

2.3.1 Principle

The BMM was first proposed by Roulston and Smith
(2002a) and subsequently improved by Wang and
Bishop (2005), Fortin et al. (2006) and in Gogonel-Cucu
et al. (2011b,a). The last three references use the rank195

of a member in the sorted ensemble. As we state later
in this section, this discrete variable is too detailed, so
it is useful to aggregate some of its values.
The BMM is a statistical post-processing method, so us-
ing this method implies choosing a training period. In200

all cited works, and in our, the training period is fixed,
and large (some months). We used cross-validation, and
stated that there is likely no-effect of the training period

Fig. 3.Mean forecast error, using ensemble prediction system mean
as a deterministic forecast, for all horizons and seasons.

The data consist of two different arrays. The first array is
3-dimensional and contains the forecasts.

– The dates of the forecasts range from 27 March 2007 to
30 April 2011 (for a total of 1473 dates).

– The horizons of the forecasts provided by ECMWF
range from 1 to 14 days in the future.

– The member is identified by a number between 0 and
50. For a given date, a member corresponds to a given
initial state.

The second array contains the realizations of the temperature
variable. This array has 1 dimension corresponding to the
date, with approximately the same extent as the forecasts.

The member 0 is different from others, as its initial condi-
tions are unperturbed. Despite this, we consider the member
number to be uninformative, and the members of the EPS
are assumed to be exchangeable according to the definition
provided inBernardo(1996) (in contrast to multi-model en-
sembles;Gneiting et al., 2005).

2.2 The criteria

On can find many verification criteria for forecasts (see for
exampleJolliffe and Stephenson(2012)). As our goal is risk
management, we will focus on criteria measuring the quality
of uncertainty representation. That is why we use the proba-
bility integral transform (PIT) (Diebold et al., 1998; Hamill
and Thomas, 2001). For each forecast horizonh and each
date, we have a set of temperature simulations from BMM,
and a realization. The PIT is defined as the proportion of
the simulated values that are lower than the realization. If
the forecast is reliable, then the PIT is uniformly distributed
on [0,1]. Formally, if we noteyt the sequence of realized
temperatures, andFt the sequence of density forecasts (if
theFt are continuous), we have

yt ∼ Ft ⇒ Ft (yt ) ∼ U [0,1].

The statisticFt (yt ) is called the PIT. So, measuring the
reliability of a sequence of density forecasts comes down to
comparing the distribution of the PIT to the uniform distri-
bution. This condition can be checked in a straightforward
manner using the empirical distribution function (EDF).

We also use continuous ranked probability score (CRPS),
because this criterion is well known. The CRPS measures
the difference between the forecast and observed cumulative
distribution functions (CDFs). In the case of ensemble fore-
casts, when the size of the sample is sufficiently large, the
forecasted CDF is approximated by the EDF of the ensem-
ble. This definition has two consequences: The smaller the
CRPS, the better, and CRPS has the same units as the obser-
vations.The CRPS can be decomposed in two components:
the reliability component tests whether the forecast system
has the correct statistical properties, whereas the potential
CRPS measures the residual uncertainty of the forecast.

2.3 The best member method applied to ECMWF data

2.3.1 Principle

The BMM was first proposed byRoulston and Smith(2002a)
and subsequently improved byWang and Bishop(2005),
Fortin et al.(2006) and inGogonel-Cucu et al.(2011a,b). The
last three references use the rank of a member in the sorted
ensemble. As we state later in this section, this discrete vari-
able is too detailed, so it is useful to aggregate some of its
values.

The BMM is a statistical post-processing method, so us-
ing this method implies choosing a training period. In all
cited works, and in our work, the training period is fixed and
large (some months). We used cross-validation and stated
that there is likely no effect of the training period on the per-
formances of the method.

For each date and each horizon, the “best member” is the
member closest to the realization (with the smallest absolute
difference). The principle of the method is to model the prob-
ability distribution of the difference between the “best mem-
ber” and the realization. The probabilistic forecast is then a
convolution of the error distribution and the discrete distribu-
tion of the EPS members. Because all members of the EPS
are exchangeable, all of the error models and weights are the
same in the first step. An alternative idea, proposed byFortin
et al.(2006), is to use the rank of a member in the sorted en-
semble. In this case, we first rank the forecasts for each date,
according to the forecast value. The error model and weights
are then functions of the rank. In order to write down some
equations, we will use notations inspired fromFortin et al.
(2006). For each datet ∈ [1,T ], we have the following:

– (xt,(k))k=1,··· ,51 the sorted forecasts (using usual nota-
tions of order statistics) and

www.nat-hazards-earth-syst-sci.net/13/1161/2013/ Nat. Hazards Earth Syst. Sci., 13, 1161–1168, 2013
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– yt the realized temperature.

Then the best member is thex∗
t that minimizes|xt,(k) − yt |:

x∗
t = argmin

xt,(k)

|xt,(k) − yt |.

Similarly, the rank of the best member is

k∗
t = argmin

k
|xt,(k) − yt |,

and the error of the best member is

ε∗
t = yt − x∗

t .

For each rankk, the weight assigned to the rank is

pk =

(∑
1
{
k∗
t = k

})
/T .

Because we prefer to use a parametric framework, the error
model consists of the following:

1. a model for the meanµt of the error of the best member,

2. a model for the varianceσ 2
t of the error of the best mem-

ber, and

3. a parametric distribution forε∗
t .

Since the errors are unbounded, and approximately symmet-
ric, we will use a normal distribution.

Many variables can be used to model the mean and vari-
ance of the error:

– variables summarizing features of the current EPS, such
as the mean, square of the mean (to take account for the
effect of extreme temperatures) and spread (here defined
as the interquartile range) of the ensemble;

– variables to take account for a smooth influence of the
date (the datet itself, cos(2πt/365) and sin(2πt/365));

– the rank of the best memberk∗
t , considered as a discrete

variable.

Furthermore, we may assume that the various discrete and
continuous variables interact with one another: for example,
the mean temperature of the EPS may have a different slope
for each rank in the model.

An important point is that it is impossible to estimate all
of the parameters simultaneously for all horizons as the vari-
ance of the residuals is approximately 3 times larger for hori-
zon 14 than for horizon 1. All models are built separately for
each horizon.

2.3.2 Rank aggregation

In this type of modeling, the rank of the member is a useful
variable but is too detailed, at least in the case of ECMWF
ensembles, as shown in Fig.4.

4 Gogonel, Collet, Bar-Hen: Improving Calibration of Best Member Method using Quantile Regression

on the performances of the method.
For each date and each horizon, the « best member » is205

the member closest to the realization (with the small-
est absolute difference). The principle of the method
is to model the probability distribution of the differ-
ence between the « best member » and the realization.
The probabilistic forecast is then a convolution of the210

error distribution and the discrete distribution of the
EPS members. Because all members of the EPS are ex-
changeable, all of the error models and weights are the
same in the first step.
An alternative idea, proposed by Fortin et al. (2006),215

is to use the rank of a member in the sorted ensem-
ble. In this case, we first rank the forecasts for each
date, according to the forecast value. The error model
and weights are then functions of the rank. In order
to write down some equations, we will use notations in-220

spired from Fortin et al. (2006). For each date t∈ [1,T ],
we have:

– (xt,(k))k=1,···,51 the sorted forecasts (using usual no-
tations of order statistics),

– yt the realized temperature.225

Then the best member is the x∗
t that minimizes |xt,(k)−

yt|:

x∗
t = arg min

xt,(k)
|xt,(k)−yt|

similarly the rank of the best member is

k∗
t = argmin

k
|xt,(k)−yt|230

and the error of the best member is

ε∗t = yt−x∗
t .

For each rank k, the weight assigned to the rank is:

pk =
(∑

1{k∗
t = k}

)
/T.

Because we prefer to use a parametric framework, the235

error model consists of:

1. a model for the mean µt of the error of the best
member,

2. a model for the variance σ2
t of the error of the best

member.240

3. a parametric distribution for ε∗t .

Since the errors are unbounded, and approximately sym-
metric, we will use a normal distribution.
Many variables can be used to model the mean and vari-
ance of the error, including:245

Fig. 4. Best member error (ε∗
t ) standard deviation, w.r.t.

best member rank (k∗
t ), for 3 horizons: 3, 8 and 14 days.

– variables summarizing features of the current EPS:,
such as the mean, square of the mean (to take ac-
count for the effect of extreme temperatures) and
spread (here defined as the interquartile range) of
the ensemble;250

– variables to take account for a smooth influ-
ence of the date (the date t itself, cos(2πt/365)
and sin(2πt/365));

– the rank of the best member k∗
t , considered as a

discrete variable.255

Furthermore, we may assume that the various discrete
and continuous variables interact with one another: for
example, the mean temperature of the EPS may have a
different slope for each rank in the model.
An important point is that it is impossible to estimate260

all of the parameters simultaneously for all horizons as
the variance of the residuals is approximately 3 times
larger for horizon 14 than for horizon 1. All models are
built separately for each horizon.

2.3.2 Rank aggregation265

In this type of modeling, the rank of the member is a
useful variable but is too detailed, at least in the case of
ECMWF ensembles, as shown in figure 4.
All of the members with central ranks have nearly the
same standard deviation in their errors; however, the270

errors of the members with extreme ranks behave very
differently. We therefore propose to aggregate all of the
central ranks. We define a new variable edge that is
equal to 0 when the rank is central and equal to the rank
otherwise. We must specify the definition of a « central275

rank », it will be made thereafter.

Fig. 4. Best member error (ε∗
t ) standard deviation, with respect to

best member rank (k∗
t ), for 3 horizons: 3, 8 and 14 days.

All of the members with central ranks have nearly the
same standard deviation in their errors; however, the errors
of the members with extreme ranks behave very differently.
We therefore propose to aggregate all of the central ranks. We
define a new variableedge that is equal to 0 when the rank is
central and equal to the rank otherwise. We must specify the
definition of a “central rank”, which will be made thereafter.

We apply automated variable selection method, such as
the “stepwise” selection method (SAS, 2006), which pro-
vides some information on significant variables. So, for each
possible definition of “central ranks”, it is possible to select
the significant variables, estimate their coefficient, and finally
compute Akaike information criterion (AIC) or adjustedR2.
Following these criteria, the optimal choice is to consider the
ranks{1,2,50,51} to be non-central and the remaining ranks
to be central. Therefore, the value set of the variableedge
is {0,1,2,50,51}. Finally, we obtain the following informa-
tion.

– The rank never appears in the model; the relevant in-
formation carried by the rank is provided by the vari-
ableedge .

– The mean temperature is significant in modeling the
mean of the error.

– The spread is significant in modeling the error variance,
as are the mean temperature and its square.

– Nothing is gained by taking account of the date.

The following models were finally selected:

ε∗
t = a(edge t ) + b(edge t ) · mt + ηt

(ε∗
t − ε̂∗

t )2
t = α(edge t ) + β(edge t ) · mt+

γ (edge t ) · m2
t + δ(edge t ) · IQRt + ξt ,

where
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– ε∗
t is the error of the best member,

– mt (respectivelyIQRt ) is the mean (respectively in-
terquartile range) of the ensemble forecast,

– edge t is equal to the rankk∗
t ∗ if k∗

t ∗ ∈ {1,2,50,51},
to 0 elsewhere, and

– ηt andηt are the disturbances.

So, we may assign values to the parameters of the best mem-
ber error model:

µt = ε̂∗
t

σ 2
t =

̂
(ε∗

t − ε̂∗
t )2.

To account for possible evolution in the data, we used
cross-validation, with a partitioning into two equal parts:
we first estimated the BMM model on the period from
27 March 2007 to 12 April 2009, and used it on the period
from 13 April 2009 to 30 April 2011, and we exchanged the
roles in a second stage.

The BMM yields a substantial improvement in the relia-
bility of the temperature density forecast, compared to raw
EPS.

In Fig. 5, we plot the difference between the EDF of the
PITs and the functionFU (x) = x for horizon 3 for three tem-
perature density forecasts: raw EPS, EPS post-processed us-
ing BMM, and EPS post-processed using BMM, with error
modeling using quantile regression (which will be described
in Sect.3). We see the improvement in the reliability using
the BMM is substantial for this horizon. Note we must plot
thedifferencebetween the PIT and its theoretical distribution
to observe the improvement; otherwise, we would see only
two very close lines.

In order to compare raw EPS and BMM for all horizons,
we need a numerical criterion: we will use continuous ranked
probability score (CRPS) (Hersbach, 2000), and more specif-
ically the reliability component of CRPS. We only performed
statistical tuning, and we observe in Table1 that the poten-
tial CRPS does not vary substantially. On the contrary, the
reliability component is substantially decreased, except for
horizon 5.

Furthermore, this reliability improvement substantially af-
fects some practically relevant quantities. For example, the
variance of the temperature 1 day ahead can be used as a
rough risk indicator. Using the raw EPS, we obtain (on aver-
age) a value of 0.2 for this indicator, while we obtain a value
of 0.44 using the BMM. For horizon 14, the values are 2.6
and 2.9. Note that this example does not prove that BMM is
better than raw EPS; this proof is provided by comparison
of the reliability component of CRPS. What it proves is the
usefulness of the reliability improvement provided by BMM.

Despite the substantial reliability improvement using the
BMM, the tails are still not well represented, as shown in
Fig. 5.

Table 1. The continuous ranked probability score (CRPS) and
its decomposition, for raw ensemble prediction system (column
“Raw”) and usual best member method (column “BMM”), for all
horizons (column “h.”). “BMM Score” is computed assuming that
a perfect forecast has reliability component equal to 0. Temperature
unit is degrees Celsius.

Potential CRPS Reliability component

h. Raw BMM Raw BMM BMM Score

1 0.24 0.25 2.6× 10−2 4.4× 10−3 83 %
2 0.31 0.32 1.6× 10−2 4.3× 10−3 73 %
3 0.38 0.39 6.9× 10−3 3.9× 10−3 43 %
4 0.49 0.50 4.7× 10−3 3.2× 10−3 32 %
5 0.63 0.64 3.5× 10−3 4.0× 10−3

−16 %
6 0.78 0.80 3.5× 10−3 2.2× 10−3 39 %
7 0.96 0.98 4.6× 10−3 2.2× 10−3 51 %
8 1.10 1.12 5.4× 10−3 2.4× 10−3 56 %
9 1.24 1.26 4.7× 10−3 2.4× 10−3 48 %

10 1.35 1.38 4.8× 10−3 2.7× 10−3 44 %
11 1.43 1.47 4.0× 10−3 2.3× 10−3 41 %
12 1.49 1.52 4.2× 10−3 2.2× 10−3 47 %
13 1.54 1.56 4.2× 10−3 3.0× 10−3 29 %
14 1.56 1.59 3.6× 10−3 3.1× 10−3 15 %

3 Improving the tail representation using quantile
regression

3.1 Criteria to measure tail representation
improvement

As we aim to model the tails, it is important to account for
the relativeerrors in theextremequantiles. Indeed, if we es-
timate the blackout risk is 2 %, while it is actually 1 %, we
would plan much more emergency power supply than neces-
sary. Therefore, we should neither employ the CRPS measure
nor consider the PIT graph globally.

If accounting for the relative errors were the only issue,
then we could employ measures based on likelihood ratio,
e.g., the ignorance score (Roulston and Smith, 2002b) and
its decompositions (Weijs et al., 2010; Tödter, 2011), or even
statistical tests of the goodness-of-fit (Jager and Wellner,
2005).

However, in this study, we know the range of probabili-
ties that are of interest: around the 1 % quantile and around
the 99 % quantile. Therefore, to measure the dissimilarity be-
tween the PIT distribution and the uniform distribution, we
use aχ2 distance with the classes[0;0.01], [0.01;0.02] and
[0.02;0.05] for the lower tail and the symmetric classes for
the upper tail. This strategy will be used to assess all of the
improvements.

More formally, we will compute

D =

∑
i

(
(F̂PIT(Mi) − F̂PIT(mi)) − (Mi − mi)

)2

Mi − mi

,
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Fig. 5. Comparison of Probability Integral Transform deviations from theoretical distribution for horizon 3. The point
labeled « 1 », with coordinates (0.02,0.095), shows that for raw Ensemble Prediction System (« raw EPS »), the realized
temperature is lower than 2% of the simulated values on 2+9.5=11.5% (rather than 2%) of the dates. For Best Member
Method, denoted by « Usual BMM » (resp. Best Member Method with error modeling using quantile regression, denoted by
« BMM with QR »), point labeled « 2 » (resp. « 3 ») realized temperature is lower than 2% of the simulated values on 2.9%
(resp. 2.2%) of the dates.

Fig. 6. Plot of χ2 distances between theoretical and em-
pirical distributions of Probability Integral Transform, w.r.t.
horizon, for Best Member Method (BMM) and BMM with
error modeling using quantile regression (BMM with QR).

Because the ECMWF temperature ensemble forecasts

are under-dispersive, we modified the BMM improve-440

ment proposed by Fortin et al. (2006). All of the cen-
tral ranks behave similarly, and we can therefore aggre-
gate them, resulting in a far more parsimonious model.
This strategy is most likely applicable to other under-
dispersive ensemble forecasts as well.445

Another improvement introduced in this paper is the
use of quantile regression to determine the location and
scale of the error distribution. This method is widely
applicable, whenever the location and scale of a distri-
bution must be determined for simulation purposes.450

Moderate biases remain in the tail representations of the
temperature density forecasts. The following strategies
may provide further improvement in future work.

– The distribution of the errors of the extreme mem-
bers is highly asymmetric, with some very large455

values, it suggests using using the extreme value
distribution to model it.

– In our modeling, the probability that a member of
a given rank is the best member does not depend
on any exogenous variables. Testing and possibly460

rejecting this independence assumption may help
to improve the tail estimation.

Fig. 5. Comparison of probability integral transform deviations from theoretical distribution for horizon 3. The point labeled “1”, with
coordinates(0.02,0.095), shows that, for raw ensemble prediction system (“raw EPS”), the realized temperature is lower than 2 % of the
simulated values on 2+ 9.5 = 11.5 % (rather than 2 %) of the dates. For best member method, denoted by “Usual BMM” (respectively best
member method with error modeling using quantile regression, denoted by “BMM with QR”), point labeled “2” (respectively “3”) realized
temperature is lower than 2 % of the simulated values on 2.9 % (respectively 2.2 %) of the dates.

where

– mi = (0;0.01;0.02;0.95;0.98;0.99) is the sequence of
the classes lower bounds, and

– Mi = (0.01;0.02;0.05;0.98;0.99,1) is the sequence of
the classes upper bounds.

3.2 Grounds for using quantile regression

We are interested in the tail representation, so we have to
focus on the error of the extreme members. The dispersion
of distribution of these errors is much larger (approximately
5 times) than the errors of central members. So, a first pos-
sibility to improve the quality of tail representation is to im-
prove the estimation of the dispersion.

The error distribution of the extreme members is highly
asymmetric, with some very large values. That is why using
mean and standard deviation to locate and scale a normal dis-
tribution has no theoretical ground. We therefore propose to
model two different quantiles (Q1/3 andQ2/3) of the error in
a single stage, using quantile regression (Koenker and Bas-
sett, 1978), with the same regressors as in OLS regression.
Then, we choose the mean and variance of the normal dis-
tribution such that its quantilesQ1/3 andQ2/3 are equal to
the empirical quantiles. The key point is that this estimation
does not rely on an assumed distribution.

3.3 Implementation

We modeled the quantilesQ(1/3) andQ(2/3) of the error
of best memberε∗

t , using the variableedge together with
ensemble mean and spread. For both quantiles, the chosen
model is

Q(i/3)t = α(edge t ) + β(edge t ) · mt+

γ (edge t ) · m2
+ δ(edge t ) · IQRt ,

where

– i = 1,2 is the index of the tercile,

– mt (respectivelyIQRt ) is the mean (respectively in-
terquartile range) of the ensemble forecast, and

– edge t is equal to the rankk∗
t ∗ if k∗

t ∗ ∈ {1,2,50,51},
to 0 elsewhere.

As we aim to simulate the errors using the normal distribu-
tion, the normal parameters are those required to obtain the
estimated third and first terciles. We have

µt =
Q(2/3)t+Q(1/3)t

2
σt =

Q(2/3)t−Q(1/3)t
2×φ−1(2/3)

,

where φ is the cumulative normal distribution function
and φ−1(2/3) = 0.431. The rest of the model remains the
same as in Sect.2.3.
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Method, denoted by « Usual BMM » (resp. Best Member Method with error modeling using quantile regression, denoted by
« BMM with QR »), point labeled « 2 » (resp. « 3 ») realized temperature is lower than 2% of the simulated values on 2.9%
(resp. 2.2%) of the dates.
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error modeling using quantile regression (BMM with QR).

Because the ECMWF temperature ensemble forecasts

are under-dispersive, we modified the BMM improve-440

ment proposed by Fortin et al. (2006). All of the cen-
tral ranks behave similarly, and we can therefore aggre-
gate them, resulting in a far more parsimonious model.
This strategy is most likely applicable to other under-
dispersive ensemble forecasts as well.445

Another improvement introduced in this paper is the
use of quantile regression to determine the location and
scale of the error distribution. This method is widely
applicable, whenever the location and scale of a distri-
bution must be determined for simulation purposes.450

Moderate biases remain in the tail representations of the
temperature density forecasts. The following strategies
may provide further improvement in future work.

– The distribution of the errors of the extreme mem-
bers is highly asymmetric, with some very large455

values, it suggests using using the extreme value
distribution to model it.

– In our modeling, the probability that a member of
a given rank is the best member does not depend
on any exogenous variables. Testing and possibly460

rejecting this independence assumption may help
to improve the tail estimation.

Fig. 6.Plot ofχ2 distances between theoretical and empirical distri-
butions of Probability Integral Transform, with respect to horizon,
for Best Member Method (BMM) and BMM with error modeling
using quantile regression (BMM with QR).

The results are as follows. First, we consider the third PIT
plot of Fig. 5: this third plot is a bit closer to the horizontal
axis than the second one, which represents the usual BMM.
We also need to compare BMM and BMM with error mod-
eling using quantile regression for all horizons, so we use
χ2 distances, plotted in Fig.6. The improvement is substan-
tial, and there is a slight degradation of the forecast for only
3 of the horizons (out of 14), implying that the tails are rep-
resented much more accurately.

4 Conclusions

In this study, we used ECMWF temperature ensemble fore-
casts in order to improve the tails of temperature density fore-
casts, which are an important input in electrical blackout risk
management. Any improvement enables a more accurate es-
timate of the required power supplies, resulting in substantial
cost reductions.

Because the ECMWF temperature ensemble forecasts are
under-dispersive, we modified the BMM improvement pro-
posed byFortin et al.(2006). All of the central ranks behave
similarly, and we can therefore aggregate them, resulting in a
far more parsimonious model. This strategy is most likely ap-
plicable to other under-dispersive ensemble forecasts as well.

Another improvement introduced in this paper is the use of
quantile regression to determine the location and scale of the
error distribution. This method is widely applicable, when-
ever the location and scale of a distribution must be deter-
mined for simulation purposes.

Moderate biases remain in the tail representations of the
temperature density forecasts. The following strategies may
provide further improvement in future work.

– The distribution of the errors of the extreme members is
highly asymmetric, with some very large values, and it
suggests using the extreme value distribution to model
it.

– In our modeling, the probability that a member of a
given rank is the best member does not depend on any
exogenous variables. Testing and possibly rejecting this
independence assumption may help to improve the tail
estimation.
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