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Abstract. Temperature influences both the demand and sup- To fulfill the risk management needs of the company, the
ply of electricity and is therefore a potential cause of black-ensemble prediction systems (EPSs) provided by weather
outs. Like any electricity provider, Electriéitde France forecasting institutes such as European Centre for Medium-
(EDF) has strong incentives to model the uncertainty in fu-Range Weather Forecasts (ECMWEXOMWEF, 2002 2006

ture temperatures using ensemble prediction systems (EPSgrovide an indispensable source of information. Ensemble
However, the probabilistic representations of the future temforecasting is a numerical prediction method that is used
peratures provided by EPSs are not reliable enough for eledo generate a representative sample of the possible future
tricity generation management. This lack of reliability be- states of a dynamical system. Ensemble forecasting is a
comes crucial for extreme temperatures, as these extremferm of Monte Carlo analysis: multiple humerical predic-
temperatures can result in blackouts. A proven method tdions are computed using slightly different initial conditions,
solve this problem is the best member method (BMM). Thisall of which are plausible given past and current observa-
method improves the representation as a whole, but there i8ons. The available observations are combined to obtain es-
still room for improvement in the tails of the distribution. timates of the future temperatures as well as their uncertain-
The idea of the BMM is to model the probability distribu- ties (Whitaker and Loughel998 and predictive densities.

tion of the difference between the forecast and realization. However, the probabilistic representations of future tem-
We improve the error modeling in BMM using quantile re- peratures provided by EPSs suffer some lack of reliability, es-
gression, which is more efficient than the usual two-stagepecially for extreme probabilities (for example 1% quantile
ordinary least squares (OLS) regression. To achieve furtheforecast is inaccurate), not only because the number of en-
improvement, the probability that a given forecast is the besisemble members is limited by computing resources, but also
one can be modeled using exogenous variables. because EPS forecasts can be biased and typically do not dis-
play enough variability, thus leading to an underestimation
of the uncertainty Buizza et al. 2005. As a risk manager,
and also because of its size and market power, EDF must use
the most reliable information availablBigbold et al, 1998

The uncertainty of future temperatures is a major risk factorGneiting et al. 2007), so lack of reliability is prohibitive.

for an electric utility company such as Electréiile France EDF faces also a regulatory constraint: the French tech-
(EDF). The demand for heating increases when the tempemical system operator imposes that the probability of em-
ature is lower than 18C, and the demand for cooling in- ploying exceptional means (e.g., load shedding) to meet the
creases when the temperature exceed€18loreover, high ~demand for electricity must be lower than 1% for each

temperatures also create cooling problems for thermal plantsveek RTE, 2004, so EDF has to manage carefully risk at
this level. Now, in France, most of the demand variability

1 Introduction
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Fig. 2. Correlation between ensemble prediction system (EPS) in-

terquartile range and forecast error, using EPS mean as a determin-
istic forecast.

Fig. 1. Weather stations used to define global temperature for . . o _
France: names, locations and circles with surfaces proportional t&f 0Ur modeling. In this paper, the key point is that the fitting
the weight of each station. of the dispersion of the “dressing” is improved when quan-

tile regression is used in place of a two-stage ordinary least
squares (OLS) regression.

is a consequence of temperature variability, with opposite !N this paper, we first briefly review the use of the best
effects in winter and summer: in winter demand increasesmember method (BMM) and then demonstrate the use of

when temperature decreases: the reverse is true in summélu@ntile regression to improve the error modeling required
Furthermore, variability in demand largely exceeds the vari-1O" the BMM. In the final section, we suggest several further
ability in the supply. So, when the supply—demand balance idMProvements of the method.
at the 1 % quantile, the temperature is nearly, but not exactly,
at the 1 % quantile in winter, and at_tr_le 99 % quantile insum-, A example application of the best member method
mer. Needless to say, the EDF decision-making process takes
account of other quantiles and quantities, but the regulatoryn this section, we briefly describe a simple application of the
constraint is the 1 % quantile. BMM to ECMWF forecasts, with a “dressing” depending on

A more technical limitation of EPSs is a lack of smooth- the rank of the forecast. We study all possible horizons, with
ness: the predictive cumulative distribution they provide is aeach horizon treated independently of the others.
step function, which can lead to problems in generation man-
agement tools. 2.1 The data

Many methods have been developed to obtain a smooth
and unbiased representation of the risk arising from temperThe temperatures (in degrees Celsius) that we analyze are
ature variationsagedorn201Q Wilks, 2011). However, as  spatial and temporal averages. The time extent of the average
we are interested in extremes, it excludes methods assuniS the day, and the spatial extent is France: we average the
ing Gaussianity, such as the non-homogeneous Gaussian rlemperatures measured in 26 cities in France; the vector of
gression developed i@neiting et al(2005 andUnger etal. 26 weights is chosen in order to estimate the electricity load
(2009. We then have to use one of the ensemble “dressin France Dordonnat et a.2008. The map in Figl shows
ing” methods: Bayesian model averagingaftery et al. the names, locations of the cities, as well as circles with sur-
2004, Bayesian processor of outpitrgysztofowicz 2004 faces proportional to the weight of each city. Because we use
or best member methodRulston and Smith20023. The temperatures measured at specific observation sites, a statis-
best member method is the simplest amongst these threlécal adaptation stage is included in the forecasting process.
methods, an@ogonel-Cucu et a(20113 show that it gives ~ This statistical adaptation is performed byeto-France.
better results on ECMWF ensemble forecasts than Bayesian The forecasts that we use are EPSs provided by ECMWF.
model averaging. Furthermore, we suspect that using rank€\s shown in Fig2, the ensemble spread is actually a proxy
as proposed iffrortin et al.(2006), could be very useful to ~ for the forecast error. Furthermore, the skill itself is seasonal,
improve the representation of the tails, so it will be the basisas demonstrated in Fig.
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i ~ Fy = F(y,) ~U[0,1].

The statisticF;(y;) is called the PIT. So, measuring the
reliability of a sequence of density forecasts comes down to
comparing the distribution of the PIT to the uniform distri-
bution. This condition can be checked in a straightforward
manner using the empirical distribution function (EDF).

We also use continuous ranked probability score (CRPS),
because this criterion is well known. The CRPS measures
the difference between the forecast and observed cumulative
S distribution functions (CDFs). In the case of ensemble fore-

12 3 4 5 6 7 8 9 10 11 12 13 14 casts, when the size of the sample is sufficiently large, the

Horizon forecasted CDF is approximated by the EDF of the ensem-
Season ——  Winter Spring —— Summer Fall ble. This definition has two consequences: The smaller the
CRPS, the better, and CRPS has the same units as the obser-
Wations.The CRPS can be decomposed in two components:
the reliability component tests whether the forecast system
has the correct statistical properties, whereas the potential

The data consist of two different arrays. The first array is CRPS measures the residual uncertainty of the forecast.
3-dimensional and contains the forecasts.

Mean Member RMSE (°C)

Fig. 3. Mean forecast error, using ensemble prediction system mea
as a deterministic forecast, for all horizons and seasons.

2.3 The best member method applied to ECMWF data
— The dates of the forecasts range from 27 March 2007 to

30 April 2011 (for a total of 1473 dates). 2.3.1 Principle

— The horizons of the for.ecasts provided by ECMWF The BMM was first proposed BRoulston and Smitt20023
range from 1 to 14 days in the future. and subsequently improved Bjfang and Bishop(2005),

— The member is identified by a number between 0 andFortin etal(200§ and inGogonel-Cucu et a(2011ab). The
50. For a given date, a member corresponds to a giver@st three references use the rank of a member in the sorted
initial state. ensemble. As we state later in this section, this discrete vari-

. o able is too detailed, so it is useful to aggregate some of its
The second array contains the realizations of the temperaturg;| ,es.

variablg. This array has 1 dimension corresponding to the The BMM is a statistical post-processing method, so us-
date, with approximately the same extent as the forecasts. ing this method implies choosing a training period. In all

~ The member 0 is different from others, as its initial condi- ¢iteq works, and in our work, the training period is fixed and
tions are unperturbed. Despite this, we consider the memb%rge (some months). We used cross-validation and stated

number to be uninformative, and the members of the EPSy,5¢ there is likely no effect of the training period on the per-
are assumed to be exchangeable according to the definitiopy . mances of the method.

provided inBernardo(1996 (in contrast to multi-model en-

= For each date and each horizon, the “best member” is the
semblesGneiting et al. 2005.

member closest to the realization (with the smallest absolute
difference). The principle of the method is to model the prob-
ability distribution of the difference between the “best mem-

On can find many verification criteria for forecasts (see for Per” and the realization. The probabilistic forecast is then a
exampleJollifie and Stephensof2013). As our goal is risk qonvolutlon of the error distribution and the discrete distribu-
management, we will focus on criteria measuring the qualitytion of the EPS members. Because all members of the EPS
of uncertainty representation. That is why we use the proba@'€ exchangeable, all of the error models and weights are the
bility integral transform (PIT) Diebold et al, 1998 Hamill ~ Same in the first step. An alternative idea, proposedayin

and Thomas2003). For each forecast horizon and each €t al.(20069, is to use the rank of a member in the sorted en-
date, we have a set of temperature simulations from BMM,sembIe. In this case, we first rank the forecasts for each date,
and a realization. The PIT is defined as the proportion ofaccording to the forecast value. The error model and weights
the simulated values that are lower than the realization. 1f2r€ then functions of the rank. In order to write down some
the forecast is reliable, then the PIT is uniformly distributed €9uations, we will use notations inspired frdfortin et al.

on [0, 1]. Formally, if we notey, the sequence of realized (2008. For each date< [1, 7], we have the following:
temperatures, and; the sequence of density forecasts (if - (x, 4))r=1.. 51 the sorted forecasts (using usual nota-
the F; are continuous), we have tions of order statistics) and

2.2 The criteria
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— y; the realized temperature.
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Then the best member is th¢ that minimizegx;, ) — y:|:
x; =argmin|x; &) — yl.
Xt, (k)

Similarly, the rank of the best member is

ki = arg n;in|x,,(k) -l

and the error of the best member is

Best member error standard deviation (°C)

* _ *
€ =Vt —X; .

1 11 21 31 41 51
For each rank, the weight assigned to the rank is Best member rank

Horizon — 3 — 8 — 14
o= (X1l =k}) /. | o
Fig. 4. Best member erroref) standard deviation, with respect to
Because we prefer to use a parametric framework, the erroP€St member rank[), for 3 horizons: 3, 8 and 14 days.
model consists of the following:

1. a model for the mean; of the error of the best member, All of the members with central ranks have nearly the
same standard deviation in their errors; however, the errors
2. amodel for the variancg? of the error of the best mem-  of the members with extreme ranks behave very differently.
ber, and We therefore propose to aggregate all of the central ranks. We
define a new variabledge thatis equal to O when the rank is
central and equal to the rank otherwise. We must specify the
Since the errors are unbounded, and approximately symmetlefinition of a “central rank”, which will be made thereafter.

3. a parametric distribution fas;*.

ric, we will use a normal distribution. We apply automated variable selection method, such as
Many variables can be used to model the mean and varithe “stepwise” selection metho®AS, 2006, which pro-
ance of the error: vides some information on significant variables. So, for each

) o possible definition of “central ranks”, it is possible to select

— variables summarizing features of the current EPS, suchig significant variables, estimate their coefficient, and finally
as the mean, square of the mean (to take account for thgompyte Akaike information criterion (AIC) or adjustéd.

effect of extreme temperatures) and spread (here defineflo||owing these criteria, the optimal choice is to consider the

as the interquartile range) of the ensemble; ranks{1, 2, 50,51} to be non-central and the remaining ranks

— variables to take account for a smooth influence of thel© P& central. Therefore, the value set of the varizlge

date (the dateitself, cog2r /365 and sin2rt/365); |t.so{no, 1,2,50,51}. Finally, we obtain the following informa-
[

— the rank of the best membkgf, considered as a discrete

variable. — The rank never appears in the model; the relevant in-

formation carried by the rank is provided by the vari-
Furthermore, we may assume that the various discrete and ableedge.
continuous variables interact with one another: for example,
the mean temperature of the EPS may have a different slope
for each rank in the model.

— The mean temperature is significant in modeling the
mean of the error.

An important point is that it is impossible to estimate all _ The spread is significant in modeling the error variance,
of the parameters Simultaneously for all horizons as the vari- as are the mean temperature and its square.
ance of the residuals is approximately 3 times larger for hori-
zon 14 than for horizon 1. All models are built separately for — Nothing is gained by taking account of the date.

each horizon. The following models were finally selected:
2.3.2 Rank aggregation €f = a(edge,) +b(edge,) -m; +n;
(€ —€)? = e(edge ) + f(edge ) -m+

In this type of modeling, the rank of the member is a useful
P J y(edge ) - m? +§(edge,) - IQR, +&,

variable but is too detailed, at least in the case of ECMWF
ensembles, as shown in Fig. where
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— ¢/ is the error of the best member, Table 1. The continuous ranked probability score (CRPS) and
) ) . ) its decomposition, for raw ensemble prediction system (column
— my (respectivelylQR;) is the mean (respectively in- “Raw”) and usual best member method (column “BMM"), for all

terquartile range) of the ensemble forecast, horizons (column “h.”). “BMM Score” is computed assuming that
a perfect forecast has reliability component equal to 0. Temperature
— edge, is equal to the rank/x if k'« e {1,2,50,51}, unit is degrees Celsius.
to O elsewhere, and
) Potential CRPS Reliability component
— 1, andn;, are the disturbances.
h. Raw BMM Raw BMM  BMM Score
So, we may ass.lgn values to the parameters of the best mem- 024 025 26102 44x10-3 83%
ber error model: 2 031 032 16102 43x10°3 73%
A 3 038 039 6.%103 3.9x10°3 43%
He=¢€ 4 0.49 050 4.%10°3 32x10°3 32%
02 — (¥ — )2 5 063 064 35103 4.0x10°3 —16%
F = —€¢)%
6 0.78 080 3510°% 22x10°3 39%
To account for possible evolution in the data, we used 7 0.96 0.98 4.6 10—2 2.2x 10—2 51%
cross-validation, with a partitioning into two equal parts: 8 1.10 112 5.4107° 2.4x10° 56 %
9 124 1.26 4.%10°% 24x10°3 48%

we first estimated the BMM model on the period from 3 5
27 March 2007 to 12 April 2009, and used it on the period 10 1.35 138 48107 2.7x10 44%

. A 11  1.43 147 46103 23x10°3 41%

from 13 April 2009 to 30 April 2011, and we exchanged the
roles in a specond stage P 9 12 1.49 152 4%103 22x10°3 47 %
The BMM vield 9 bstanial i the relia. 12 154 156 4x10° 30x10° 29%
e yields a substantial improvement in the relia- 156 150 36103 3.1x10-2 16%

bility of the temperature density forecast, compared to raw
EPS.

In Fig. 5, we plot the difference between the EDF of the
PITs and the functioy (x) = x for horizon 3 for three tem-
perature density forecasts: raw EPS, EPS post-processed us-
ing BMM, and EPS post-processed using BMM, with error 3.1 Criteria to measure tail representation
modeling using quantile regression (which will be described
in Sect.3). We see the improvement in the reliability using
the BMM is substantial for this horizon. Note we must plot A5 we aim to model the tails, it is important to account for
thedifferencebetween the PIT and its theoretical distribution he relative errors in theextremequantiles. Indeed, if we es-
to observe the improvement; otherwise, we would see Onltimate the blackout risk is 2%, while it is actually 1%, we
two very close lines. _ would plan much more emergency power supply than neces-

In order to compare raw EPS and BMM for all horizons, sary. Therefore, we should neither employ the CRPS measure
we need a numerical criterion: we will use continuous rankednor consider the PIT graph globally.
probability score (CRPSHersbach2000, and more specif- If accounting for the relative errors were the only issue,
ically the reliability component of CRPS. We only performed then we could employ measures based on likelihood ratio,
statistical tuning, and we observe in Talll¢hat the poten- g g, the ignorance scor&gulston and Smith2002h and
tial CRPS does not vary substantially. On the contrary, thejts gecompositionsWeijs et al, 201Q Todter, 2011), or even
reliability component is substantially decreased, except forgtatistical tests of the goodness-of-ftager and Wellner
horizon 5. 2005.

Furthermore, this reliability improvement substantially af-  However, in this study, we know the range of probabili-
fects some practically relevant quantities. For example, th&ies that are of interest: around the 1% quantile and around
variance of the temperature 1 day ahead can be used astfe 99 % quantile. Therefore, to measure the dissimilarity be-
rough risk indicator. Using the raw EPS, we obtain (on aver-yyeen the PIT distribution and the uniform distribution, we
age) a value of 0.2 for this indicator, while we obtain a value yse ay 2 distance with the class¢8; 0.01], [0.01; 0.02] and
of 0.44 using the BMM. For horizon 14, the values are 2.6 0,02 0.05] for the lower tail and the symmetric classes for

and 2.9. Note that this example does not prove that BMM isthe upper tail. This strategy will be used to assess all of the
better than raw EPS; this proof is provided by comparisonjmprovements.

of the reliability component of CRPS. What it proves is the  \ore formally, we will compute
usefulness of the reliability improvement provided by BMM.
Despite the substantial reliability improvement using the ( - N T )2
BMM, the tails are still not well represented, as shown in ,, _ (Ferr (M) = Fpir(mi)) = (M —mi)
Fig. 5. » M; —m; ’

3 Improving the tail representation using quantile
regression

improvement

www.nat-hazards-earth-syst-sci.net/13/1161/2013/ Nat. Hazards Earth Syst. Sci., 13, 118168 2013
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Fig. 5. Comparison of probability integral transform deviations from theoretical distribution for horizon 3. The point labeled “1”, with
coordinateq0.02,0.095), shows that, for raw ensemble prediction system (“raw EPS"), the realized temperature is lower than 2% of the
simulated values on2 9.5 = 11.5% (rather than 2 %) of the dates. For best member method, denoted by “Usual BMM” (respectively best
member method with error modeling using quantile regression, denoted by “BMM with QR”), point labeled “2” (respectively “3”) realized
temperature is lower than 2 % of the simulated values on 2.9 % (respectively 2.2 %) of the dates.

where 3.3 Implementation
— m; = (0;0.01;0.02 0.95; 0.98; 0.99) is the sequence of We modeled the quantileg(1/3) and Q(2/3) of the error
the classes lower bounds, and of best membet;, using the variabledge together with
_ M; = (0.01: 0.02: 0.05; 0.98 0.99, 1) is the sequence of ensemple mean and spread. For both quantiles, the chosen
model is
the classes upper bounds.
. . ) Q(i/3); = a(edge,) + B(edge,) - m;+
3.2 Grounds for using quantile regression y(edge,) -m2 +5(edge,) - IQR,,

We are interested in the tail representation, so we have t@uhere
focus on the error of the extreme members. The dispersion
of distribution of these errors is much larger (approximately — ¢ =1,2is the index of the tercile,
5 times) than the errors of central members. So, a first pos-
sibility to improve the quality of tail representation is to im-
prove the estimation of the dispersion.

The error distribution of the extreme members is highly — edge, is equal to the rank;x if K« € {1,2,50,51},
asymmetric, with some very large values. That is why using to 0 elsewhere.

mean and standard deviation to locate and scale a normal dis-

tribution has no theoretical ground. We therefore propose t(ﬁS we aim to simulate the errors using the pormal distribu-
model two different quantilesy 3 and Q2/3) of the error in tion, the normal parameters are those required to obtain the

a single stage, using quantile regressikngnker and Bas- €Stimated third and first terciles. We have

— m; (respectivelylQR;) is the mean (respectively in-
terquartile range) of the ensemble forecast, and

sett 1978, with the same regressors as in OLS regression. , = 2@/3+01/3),
Then, we choose the mean and variance of the normal dis-a 0@/3),201/3),
tribution such that its quantile§1,3 and Q0,3 are equal to P70 2x¢712/3)
the empirical quantiles. The key point is that this estimation, - ¢ is the cumulative normal distribution function

does nat rely on an assumed distribuion. and ¢~1(2/3) = 0.431. The rest of the model remains the
same as in Seck.3.

Nat. Hazards Earth Syst. Sci., 13, 11611168 2013 www.nat-hazards-earth-syst-sci.net/13/1161/2013/



A. Gogonel et al.: Improving calibration of best member method using quantile regression 1167

0.32 — The distribution of the errors of the extreme members is
0.30 highly asymmetric, with some very large values, and it
g-gg suggests using the extreme value distribution to model
g 0:24 It.
3 gzi — In our modeling, the probability that a member of a
[ - . .
5 0.18 given rank is the best member does not depend on any
§ 0.16 exogenous variables. Testing and possibly rejecting this
5 81‘2‘ independence assumption may help to improve the tail
0.10 estimation.
0.08
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