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Abstract. In this paper, a number of classical and intelligent
methods, including interquartile, autoregressive integrated
moving average (ARIMA), artificial neural network (ANN)
and support vector machine (SVM), have been proposed to
quantify potential thermal anomalies around the time of the
11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4).
The duration of the data set, which is comprised of Aqua-
MODIS land surface temperature (LST) night-time snapshot
images, is 62 days. In order to quantify variations of LST data
obtained from satellite images, the air temperature (AT) data
derived from the meteorological station close to the earth-
quake epicenter has been taken into account. For the mod-
els examined here, results indicate the following: (i) ARIMA
models, which are the most widely used in the time series
community for short-term forecasting, are quickly and eas-
ily implemented, and can efficiently act through linear solu-
tions. (ii) A multilayer perceptron (MLP) feed-forward neu-
ral network can be a suitable non-parametric method to de-
tect the anomalous changes of a non-linear time series such
as variations of LST. (iii) Since SVMs are often used due
to their many advantages for classification and regression
tasks, it can be shown that, if the difference between the pre-
dicted value using the SVM method and the observed value
exceeds the pre-defined threshold value, then the observed
value could be regarded as an anomaly. (iv) ANN and SVM
methods could be powerful tools in modeling complex phe-
nomena such as earthquake precursor time series where we
may not know what the underlying data generating process
is. There is good agreement in the results obtained from the
different methods for quantifying potential anomalies in a

given LST time series. This paper indicates that the detection
of the potential thermal anomalies derive credibility from the
overall efficiencies and potentialities of the four integrated
methods.

1 Introduction

Land surface temperature (LST) anomalies may arise due
to different factors such as climatological conditions, for-
est fire, geothermal phenomena, earth’s warming, and so on.
Some researchers have professed that observed pre-seismic
thermal anomalies are precursory activities and others have
not. A pre-seismic thermal anomaly is an abnormal increase
in LST that may be observed around 1–10 days prior to an
earthquake, with increases of temperature on the order of 3–
12◦C or more, and usually disappears a few days after the
event (Qiang et al., 1991). Blackett et al. (2011) found no
convincing evidence of LST precursors to the 2001 Gujarat
earthquake, and urged care in the use of approaches aimed
at identifying such seismic thermal anomalies. This idea that
the occurrence of strong earthquakes may be accompanied
by thermal anomalies originated in Russia, China and Japan
(Tronin, 1996). In 1980, Russian researchers detected some
short-lived thermal infrared anomalies from satellite images
prior to an earthquake in central Asia (Tronin, 1996). Then,
other researchers reported a number of observations on ther-
mal anomalies before strong earthquakes (Qiang et al., 1991,
1999; Tronin et al., 2000; Ouzounov and Freund, 2004; Pu-
linets et al., 2006; Akhoondzadeh, 2011).
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Fig. 1. The geographic location of the Varzeghan earthquake epicenter in NW Iran. A black circle close to the epicenter represents the Ahar
meteorological station. The locations of the major faults are noted as red graphic overlays. (Figure fromwww.iiees.ac.ir/).

Proper detection of anomalous phenomena in a non-linear
time series could be done using the non-parametric mathe-
matical methods implementing pattern recognition indepen-
dent of physical processes. In this paper several classical and
intelligent techniques, including interquartile, autoregressive
integrated moving average (ARIMA), artificial neural net-
work (ANN) and support vector machine (SVM), have been
compared for potentially pulling out the LST anomalies, but
without stating that LST anomalies are always followed by
earthquakes (and indeed, sometimes they are not).

It should be noted that the potential thermal anomalies
may have origins other than earthquakes. In the case of earth-
quakes, emission of gases such as methane, carbon dioxide
and hydrogen due to the opening and closure of micropores
upon induced stresses and also the changes of ground water
regime have been offered as a possible cause for generation
of thermal anomalies (Qiang et al., 1991; Tronin, 1996). Fre-
und et al. (2007, 2009) have described using a laboratory ex-
periment that stimulated infrared (IR) emission due to hole–
hole recombination, and its follow-on effects may help us
to understand the enhanced IR emission seen in night-time
satellite images of the land surface before some major earth-
quakes.

A number of stationary and sun-synchronous remote sens-
ing satellites can sense the radiation coming up from the
earth in thermal bands and might provide useful informa-
tion prior the earthquakes. Due to their suitable temporal,
spatial and spectral resolutions, thermal infrared bands of
NOAA-AVHRR, Terra-MODIS, and Meteosat-5 data have
been used in most of the recent studies connected with
thermal anomaly. In this study, LST variations close to the
studied earthquake epicenter have been analyzed using the

LST night-time images of Aqua-MODIS provided by NASA
(http://modis.gsfc.nasa.gov/data). These data are generated
on a daily basis at a temperature resolution of 0.02◦C. Each
pixel of a LST image covers an area of 1× 1 km2 on the
ground.

In order to quantify the variations of LST data obtained
from satellite images, this study applied the air tempera-
ture (AT) data downloaded from the website: (http://www.
wunderground.com/). These data have been collected by the
Ahar meteorological station (38.4◦ N, 47.1◦ E) close to the
studied earthquake epicenter (Fig. 1).

The selected case study is an earthquake which occurred in
NW Iran (Fig. 1), 60 km NE Tabriz, Ahar region (38.33◦ N,
46.83◦ E), with a magnitude ofMw = 6.4 on 11 August 2012
at 16:53:18 LT (UTC= LT−04:30). This earthquake caused
306 people to be killed, 3037 to be injured and 30 000 to
become homeless.

2 Methodology

Daily variations of the land surface temperature depend on
season, geographic location, climatological conditions and
other unknown parameters. The unknown variations preclude
the possibility of using methods based on normal distribution
of data for anomaly detection.

ARIMA, ANN and SVM methods could be powerful tools
in modeling complex phenomena such as LST time series,
even though we may not know what the underlying data gen-
erating process is.

ARIMA models are the most popular class of models
for forecasting of a time series where the future value of a
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variable is assumed to be a linear function of several past
observations and random errors.

Artificial neural networks are a class of intelligent systems
that can discover patterns with a few a priori assumptions
and can learn any complex functional relationship from the
data to model a phenomenon. Neural networks are suitable
tools to capture the autocorrelation structure in a time series
even if the underlying law governing the series is unknown
or too complex to describe (Faraway and Chatfield, 1995).
A large number of successful applications have shown that
neural networks can be a very effective tool in modeling and
forecasting of non-linear time series. The most popular and
successful model is the feed-forward multilayer perceptron
(MLP) network. In a MLP, neurons are grouped in layers and
only forward connections are included.

In order to detect an anomaly, the total available data are
split into a training set and a test set. The training set is used
for construction of the neural network, whereas the test set is
used for measuring the predictive error of the model. In or-
der to determine the best network configuration, the effective
parameters, which influence the value of predictive error, in-
cluding the number of pattern input, lag value: the number
of hidden layers and their number of neurons, the activation
functions and the learning algorithm, have been obtained via
an iterative process to assess the minimum predictive error
when the training process was implemented.

To start the prediction process,N observations,y1,y2,. . .,
yN , are selected as the training set and the remaining ones,
yN+1,yN+2,. . ., yN+m, are considered as the test set. The
number of input nodes corresponds to the number of lagged
observations used to discover the underlying pattern in a time
series. Different input nodes can affect either the learning or
predictive capability of the network. In this study a network
with three nodes in input layer, two nodes in hidden layer and
one node in output layer has been proposed. In other words,
each four observations in the training set constitute a pattern
vector, which three of them are input values and the last one
is output value.

The training patterns in the proposed network are

X4 = f (X1,X2,X3) (1)

X5 = f (X2,X3,X4)

. . .

XN = f (XN−3,XN−2,XN−1).

The training process is executed to find the optimized con-
nection weights such that the prediction error (PE) is mini-
mized. The PE equation can be written as

PE=

N∑
i=4

(Xi − X̂i), (2)

where,X̂i is the output from the network.

The testing patterns are

XN+4 = f (XN+1,XN+2,XN+3) (3)

XN+5 = f (XN+2,XN+3,XN+4)

. . .

XN+m = f (XN+m−3,XN+m−2,XN+m−1.

In the case of the testing process, if the difference value
DXi between the actual valueXi and the predicted valuêXi

is outside the pre-defined bounds (M ± IQR), the anomaly
is detected.

SVMs have been applied for classification and regression
tasks, but their principles can be extended feasibly to the time
series forecasting (Cao and Tay, 2001; Muller et al., 2007).

To start prediction process by SVMs, one input object
(xi) to the SVM is a time series of consecutive measure-
ments:xi = {x(ti),x(ti − s), . . . ,x(ti − τs)}, wheres is the
sampling time step (i.e. 1 day) andτ determines the time
window and, thus, the number of elements of the input vector.
The output of the regression,yi , is equal tox(ti + h), where
h is the prediction horizon. The parameter ofh is selected
as 3. When performing time series prediction, the input win-
dow becomes an additional tunable parameter (Thissen et al.,
2003).

To implement the SVM method, training, validating and
testing data were initially set respectively to 30 %, 20 % and
50 % of all LST data. The parameter ofτ is selected as 2.

At each step, using the training data, the SVM method is
implemented and then the predictive error (Eq. 2) is min-
imized during the validation of data, whereXi and X̂i in
Eq. (2) are the observed value and the output from the SVM
method, respectively.

Finally, the LST value is predicted and then compared to
the true value in the testing set. Increasing the size of the
training set does not lead to a decrease of the predictive error.
The training set is used to determine the best model settings,
while the test set is used to determine the final predictive er-
rors for each prediction horizon (Thissen et al., 2003). At
the next step, the size of the validating set increases, while
the size of the testing set decreases. The SVM algorithm is
executed, and again the LST value is estimated at the next
time. The process is repeated until the all of the LST values
are predicted. In the case of the testing process, if the value
of DXi (i.e. the difference between the actual valueXi and
the predicted valuêXi) is outside the pre-defined bounds,
M ± IQR, the anomaly is detected.

3 Implementation

The blue line in Fig. 2a illustrates the time series of AT data
close to the epicenter during the period of 1 July to 31 Au-
gust 2012. It should be mentioned that August is usually a dry
period with little or no cloud cover and rain. The mean of AT
data during the period of 1 July to 31 August from 2007 to

www.nat-hazards-earth-syst-sci.net/13/1077/2013/ Nat. Hazards Earth Syst. Sci., 13, 1077–1083, 2013
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Fig. 2. (a)Results of air temperature data analysis for the Varzeghan earthquake (11 August 2012) from 1 July to 31 August 2012. The blue
line with open squares represents the AT variations in 2012. The mean of AT during the same period from 2007 to 2011 is represented as
a magenta line with open squares.(b) Same as(a) but for land surface temperature data.(c) The variations of the averaged LST of pixels
along the fault line close to the epicenter from 01 July to 31 August 2012.(d) LST variations of epicenter obtained from night-time MODIS
satellite images. The x-axis represents the day relative to the earthquake day. Median, and higher and lower bounds (M ± IQR) are seen as
blue and green horizontal lines, respectively. The earthquake day is represented as a vertical dotted line.

2011 is shown as a magenta line (Fig. 2a). The x-axis repre-
sents the days relative to the earthquake day. The vertical dot-
ted line shows the earthquake date. Median, and higher and
lower bounds (M±IQR) are seen as blue and green horizon-
tal lines, respectively. The interquartile method has been used
to find the signal fluctuations beyond the lower and higher
bounds. When implementing the interquartile method, the
AT value exceeds the higher bound (M+IQR) 4 days before
the earthquake and reaches its maximum value of 33.33 % of
the higher bound (Fig. 2a). These unusual variations are also
seen 2, 3, 4 and 5 days after the event. It can be seen that the
difference values between the AT in 2012 (blue line) and the
averaged AT during the 5 yr preceding the earthquake year
(magenta line) reach maximum values from 8 days before to
9 days after the earthquake.

The red line in Fig. 2b illustrates the time series of LST
data averaged over a 5× 5 pixel area centered on the earth-
quake epicenter during the period of 1 July to 31 August
2012. The mean LST data during the period of 1 July to 31
August from 2007 to 2011 years is shown as a green line.
It can be seen that the difference values between the LST
in 2012 and the averaged LST during the same period from
2007 to 2011 are noticeable in period of 7 to 13 August 2012.

A description of the robust satellite-based thermal infrared
(RST) method and its implementation can be found in the
paper of Filizzola et al. (2004). Using the RST approach, the

following index is computed:

⊗V (r, t) =
V (r, t) − µV (r)

σV (r)
, (4)

wherer represents location coordinates on a satellite image,
t is the acquisition time of image, andV (r,t) is the value of
a variableV (i.e. LST) at locationr and at acquisition timet .
µV (r) andσV (r) are the time average value and the standard
deviation of LST at locationr, respectively.

Using the RST method, the LST anomalies maps were ob-
tained (Fig. 3). According to Eq. (4), if the absolute value
of ⊗V (r, t) would be greater thank (|⊗V (r, t)| > k), the be-
haviour of the relevant parameter (V ) is regarded as anoma-
lous. Therefore, in Fig. 3 all the pixel values greater than
1.5 (|⊗V (r, t)| > 1.5) could be considered as anomalies. We
see a positive temperature excursion with a maximum of
⊗V (r, t) = 2.25 (∼ 8◦C) compared to the background LST
from 6 to 9 August 2012 for the area close to the epicenter.
They develop rather rapidly five days before the earthquake
and disappear within a few days after the event. In each pan-
els of Fig. 3, a red line illustrates the nearest fault line to the
epicenter. The average of LST values of pixels along the fault
line for each image were computed, and then the variations
of the mentioned LST values during the period of 1 July to
31 August 2012 were obtained (Fig. 2c). After applying the
interquartile method, variations of LST values exceed the up-
per bound (M+IQR) on the order of 21.12 %, 2 days before
event.

Nat. Hazards Earth Syst. Sci., 13, 1077–1083, 2013 www.nat-hazards-earth-syst-sci.net/13/1077/2013/
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Fig. 3.Night-time land surface temperature images obtained from the RST (robust satellite-based thermal infrared) method during the period
of 6 to 13 August 2012. Red asterisk and curve represent the epicenter and fault line, respectively.

Figure 2d represents the variations of LST data close to the
Varzeghan earthquake epicenter during the period of 1 July
to 31 August 2012. After applying the interquartile method,
variations of LST exceed the upper bound (M+IQR) on the
order of 0.02 % 2 days before the event. An unusual increase
in LST values is also observed with the value of 26.10 % and
30.92 % of the higher bound 2 and 5 days after the event,
respectively. It should be noted that aftershocks with magni-
tudes ofMw = 4.4 and 4.6 occurred 1 day and 2 days after
the earthquake.

To implement the ARIMA method, training data were set
to 50 % of all data. In the other words, using the ARIMA
method, the best fitted model to 50 % of data was selected
and then applied to predict the future value during the test
data set. In the case of the testing process, if the difference
value DXi between the actual valueXi and the predicted
value X̂i is outside the pre-defined bounds,M ± IQR, the
anomaly is detected. Red and green lines in Fig. 4a represent
the observed and the predicted LST values using the ARIMA
method, respectively, during the days selected as testing set.
It can be seen that the predicted values vary around the mean
value of the test set. Figure 4b represents the differences be-
tween the observed and the predicted LST values using the
ARIMA method for the testing data. The results illustrate that
the prediction error increases during the test set and reaches
the maximum value 2 days prior to earthquake. The predic-
tion error exceeds the higher bound (M + IQR) with the
value of 14 %. TheDX value also exceeds the higher bound
2 days after the earthquake with the value of 26.76 % of the

higher bound. It should be noted that since the predicted val-
ues obtained from ARIMA model move around the mean of
data, therefore it can not be a very good candidate for strictly
non-linear time series forecasting.

To implement the neural network method, training and
testing data were set respectively to 40 % and 60 % of all
data. Red and green lines in Fig. 4c represent the observed
and the predicted LST values using the MLP neural network,
respectively, during the days selected as the testing set. Fig-
ure 4d represents the differences between the observed and
the predicted LST values during the testing data. This fig-
ure clearly shows the unusual differences 2 days before and
2 days after the earthquake. The value of the prediction er-
ror exceeds the higher bound (M + IQR) 2 days prior to the
earthquake with the value of 12.20 % of the higher bound.
2 days after the earthquake, theDX value passes the higher
bound with the value of 23.95 %. In other words, on these
days, the MLP neural network was unable to predict the
LST values based on the model deduced from the training
data. Therefore, the observed values on these mentioned days
could be considered as anomalies.

When implementing the SVM method, training, validating
and testing data were initially set respectively to 35 %, 15 %
and 50 % of all LST data. Red and green lines in Fig. 4e rep-
resent the observed and the predicted LST values using SVM
during the days selected as the testing set. It can be seen that
the differences between these two values reach noticeable
values 3, 4 and 6 days before and 3 days after the earthquake.
Figure 4f illustrates the differences between the observed and

www.nat-hazards-earth-syst-sci.net/13/1077/2013/ Nat. Hazards Earth Syst. Sci., 13, 1077–1083, 2013
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Fig. 4. (a), (c) and(e) represent the variations of the observed (red line with open squares) and the predicted (green line with open squares)
LST values obtained from ARIMA, ANN and SVM methods, respectively, during days selected as testing set.(b), (d) and (f) represent
the variations of the differences between the observed and the predicted values of LST obtained from ARIMA, ANN and SVM methods on
days selected as testing set. The earthquake day is represented as a vertical dotted line. The red horizontal lines indicate the upper and lower
bounds (M ± IQR). The green horizontal line indicates the median value (M). The x-axis represents the day relative to the earthquake day.

the predicted LST values for the testing data. This figure in-
dicates that the difference values reach the higher bound 3
days after the earthquake. The value of prediction error ex-
ceeds the upper bound with the value of 108.3 % 3 days af-
ter the main event. In other words, on these days, the SVM
was unable to predict the LST values based on the model de-
duced from the training data. Therefore, the observed values
at mentioned days could be considered as anomalies.

4 Discussion and conclusions

In this study, night-time LST time series have been an-
alyzed to locate relevant anomalous variations prior to
the Varzeghan (12 August 2012) earthquake. The detected
anomalies in LST variations derived from MODIS satellite
data were quantified using the observed anomalies in AT
variations obtained from the meteorological station close to
the earthquake epicenter.

It is seen that each method has to some extent different
lead times for the anomalies even when using the same data
source of LST values. These differences in the results might
be related to the intrinsic differences of each method. The
interquartile method detects any unusual variations falling
outside the predefined bounds. Therefore, this method may
exclude non-seismic signals. A traditional method such as
ARIMA is easily and quickly implemented, but it efficiently
acts for linear solutions. In other words, traditional methods
assume that the future value of a time series is linearly re-

lated to the past observations. Therefore, they can not be
a very suitable tool to model a non-linear time series such
as LST variations. Contrary to these classical models, neural
networks are able to identify the patterns from noisy data and
hence give better forecasts (Zhang, 2001). The ANN method
appreciably detects any unpredictable values of the studied
time series. The efficiency of the ANN method in proper
detection of thermal anomalies depends on the type of ac-
tivation function, duration of training data and also related
parameters such as number of neurons and hidden layers in
the training process. Therefore, this method does not lead to
unique solutions due to differences in its initial parameters.
The mentioned parameters play a major role in determining
the non-linear autocorrelation structure of the non-linear time
series.

Since SVMs are non-parametric methods and do not re-
quire any assumptions about the underlying model, they
could be powerful tools in modeling complex phenomena,
such as LST time series, for which we may not know what
the underlying data generating process is. Appropriate selec-
tion of the applied parameters such as the number of lagged
observations and inner parameters of the kernel function is
another challenging task of the SVM modeling. For anomaly
detection, SVMs could be a good candidate because (1) they
can model non-linear relations in an efficient and stable way,
(2) a limited set of training points contribute to the solution,
and (3) the SVM is trained as a convex optimization problem
resulting in a global solution which yields unique solutions.
These advantages stem from the specific formulation of a

Nat. Hazards Earth Syst. Sci., 13, 1077–1083, 2013 www.nat-hazards-earth-syst-sci.net/13/1077/2013/
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convex objective function with constraints, which is solved
using Lagrange multipliers (Thissen et al., 2003). But the
training time in SVMs can be large for data sets containing
many objects. It should be noted that the training phase of the
SVM was not feasible with the large data set, and therefore
in some cases, the SVM performed slightly worse than the
neural network. Mattera and Haykin (1999) have shown that
in contrast to other models, SVMs perform efficiently due to
the use of a non-linear kernel which to some extent reduces
the effect of the noise.

It can be concluded that the proposed method in this pa-
per gains some credibility from the overall capabilities of the
four integrated methods. This can be done by voting among
the mentioned methods and selecting the anomalies detected
in the majority of the methods while ignoring the minor ones
obtained only by some methods.
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