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Abstract. Precise predictions of storm surges during ty- 1 Introduction

phoon events have the necessity for disaster prevention in

coastal seas. This paper explores an artificial neural network

(ANN) model, including the back propagation neural net- Storm surges are as a result of strong tropical storms called
work (BPNN) and adaptive neuro-fuzzy inference SyS»[emtyphoons in the northwestern Pacific Ocean. Abnormal sea
(ANFIS) algorithms used to correct poor calculations with level rise due to storm surge is caused by strong winds and
a two-dimensional hydrodynamic model in predicting storm atmospheric pressure disturbances (You and Seo, 2009). Tai-
surge height during typhoon events. The two-dimensionaian is located on the west side of the Pacific Ocean (Fig. 1a).
model has a fine horizontal resolution and considers the inThe country is often subjected to severe sea states that are in-
teraction between storm surges and astronomical tides, whicAuced by typhoons and occur during the summer and winter
can be applied for describing the complicated physical prop-S€asons in either the South China Sea or the northwest Pa-
erties of storm surges along the east coast of Taiwan. Thé&ific Ocean near the Philippines, which result in the extensive
model is driven by the tidal elevation at the open bound-10ss of life and property. On average, Taiwan suffers three to
aries using a global ocean tidal model and is forced by thefour typhoons annually. Typhoons act more severely on the
meteorological conditions using a cyclone model. The sim-€ast coast than on the west coast, because typhoons typically
ulated results of the hydrodynamic model indicate that this@PProach Taiwan from the east. As a typhoon approaches
model fails to predict storm surge height during the model Taiwan, its strong wind and low atmospheric pressure often
calibration and verification phases as typhoons approacheg@use storm surges that can result in severe damage to coastal
the east coast of Taiwan. The BPNN model can reproducéeas, especially on the low-lying lands near river mouths
the astronomical tide level but fails to modify the predic- Pecause of the double effects of the river floods by typhoon-
tion of the storm surge tide level. The ANFIS model sat- brought rains and backward uplifting seawater floods from
isfactorily predicts both the astronomical tide level and the Storm surges. Therefore, it is necessary to develop a reliable
storm surge height during the training and verification phasednodel to predict the height of typhoon-induced storm surge
and exhibits the lowest values of mean absolute error andor coastal management and hazard mitigation.
root-mean-square error compared to the simulated results at Several researchers have applied different numerical mod-
the different stations using the hydrodynamic model and the€!s to predict storm surges. For example, Shen et al. (2006)
BPNN model. Comparison results showed that the ANFIsapplied an unstructured grid numerical model (Unstructured,
techniques could be successfully applied in predicting wa-Tidal, Residual Intertidal, and Mudflat model — UnTRIM-

ter levels along the east coastal of Taiwan during typhoon3D) to simulate and predict the storm tide in the Chesa-
events. peake Bay. The authors found that the use of an unstruc-

tured grid provides the flexibility to represent the complex
estuarine and coastal geometry for accurately simulating
storm surges. Dietsche et al. (2007) adopted the ADvance
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Bathyme ry (m) had the capability to accurately reproduce the statistical dis-
Im0 tribution of water levels and the current in various locations
20 and could be viewed as a reliable complementary tool. De
Oliveria et al. (2009) used a neural network model to predict
coastal sea level variations related to meteorological events
in the southeastern coastal region of Brazil. The authors
found that neural network models can efficiently predict the
non-tidal residual and effectively complement the standard
harmonic analysis method. You and Seo (2009) developed a
cluster neural network model to predict storm surges in the
Korean coastal regions. Bajo and Umgiesser (2010) devel-
oped an operational surge forecast system based on a com-
bination of a hydrodynamic model and an artificial neural
network for the city of Venice. Filippo et al. (2012) used ar-
tificial neural networks to train and translate the combined
influence of meteorological and astronomical forcing to pre-
dict sea level variations.

The main objectives of this study were to apply an
unstructured grid, two-dimensional hydrodynamic model
(ADCIRC-2DDI) to simulate the astronomical tide level and
storm surge height along the east coast of Taiwan. Two ar-

tificial neural network models were subsequently adopted to
o " I:anitu.;zle (° Ez ) oo improve the calculations of the hydrodynamic model. Three
guantitative statistical measures, i.e. the mean absolute er-
Fig. 1. (a) Bathymetric map and locations of tidal gauge stations onror, root-mean-square error, and peak error, were employed
the east coast of Taiwan a(ig) an unstructured grid in the modeling  to evaluate the prediction of the tide and storm surges un-
domain for the simulation. der the five typhoon events by a hydrodynamic model and an
ANN model, including the back propagation neural network
(BPNN) and adaptive neuro-fuzzy inference system (ANFIS)
CIRCulation (ADCIRC) model to simulate the storm surge techniques.
response to two hurricane events that occurred in 1989 and
1999. Xia et al. (2008) simulated tropical cyclone storm-
induced surge, inundation, and coastal circulation at the
Cape Fear River estuary and adjacent Long Bay using th@ Hydrodynamic model
Princeton Ocean Model (POM) with a three-level nesting
approach. Etala (2009) used the nested depth-averaged nd-1 Storm surge model
merical model for the simulation of storm surge at the Ar-
gentinean Shelf. Rego and Li (2010) studied the storm surgd he water surface elevations and circulation patterns are gen-
of Hurricane Ike along the Texas—Louisiana coast using theerated using the ADCIRC-2DDI, which is a vertically aver-
fully nonlinear Finite Volume Coastal Ocean Model (FV- aged two-dimensional, fully nonlinear, hydrodynamic model
COM) with a high-resolution unstructured mesh. You et (Luettich, 1992). ADCIRC-2DDI uses the mass and momen-
al. (2010) compared simulated storm surges using the twotum conservation equations with the hydrostatic pressure ap-
dimensional operational storm surge/tide forecast system (reproximation. In the model, the baroclinic terms are neglected
gion tide/storm surge model, RTSM, which is based on theand the hybrid bottom friction formulation is used. The lat-
Princeton Ocean Model), and the three-dimensional regionaéral diffusion/dispersion terms are enabled, which leads to
ocean modeling system (ROMS) using the observed datéhe equality laws in primitive, nonconservative form ex-
from 30 coastal tidal stations from three typhoons that struckpressed in a spherical coordinate system (Kolar et al., 1994):
Korea in 2007.

Mainland
China

Latitude (N

120 121 122
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Latitucte {° N}

Recently, artificial neural network (ANN) models have 5, 1 QUH 9d(VHcosp)
been extensively applied to predict the storm surge ands, *+ Rcosp. an o0 =0 1)
tide variation and to resolve the issue of nonlinear relation-

) . 1 aU 1 090U tang
ships. For examples, Herman et al. (2007) combined a two—+ ——U—+ -V — — (—U + )V (2)
dimensional hydrodynamic model and neural network mod- gt~ Rcosp 9r R 9¢ R
els to predict the tidal levels and currents in the German_ ___ L1 9 . Ps _ iM T

[—+8@&—am]+ n+

North Sea coast. The authors demonstrated that the approach R COSp 92 po H poH  poH
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A% 1 av. 1 9V  tang

4 — + SV — 4+ (—U+ fHU (3) speed of any wetting fronts. The Courant number is less than

dt  Rcosp 9r R 3¢ R 0.5 to maintain numerical stability. More details of ADCIRC-
190 1 T T i i

== e —ami+ My 2 2DDI model can be found in Luettich et al. (1992), Kolar et
R3¢ po H poH  poH al. (1994), and Westerink et al. (1994).

where the vertically averaged momentum dispersion in thep 2  Global tidal model
longitudinal and the latitudinal directions can be expressed

as follows (Kolar and Gray, 1990): A large fraction of the variance in many oceanographic vari-

ables is due to tides. To simulate tidal propagation in the

M.y = Enz 1 92U, V)H n 9%(U, V)H] (@) storm surge model, the driving tidal forces at the open bound-
' R2 cog¢ 012 2 ’ aries are necessary. In the present study, a global ocean tidal

. . ~_ model that was developed by Oregon State University, which
and: =time; 4, ¢ = degrees longitude (east of Greenwich is i5 {he TOPEX/Poseidon Global Inverse Solution (TPXO), is
p05|t|ye) and latitude (north of the Equator_ is _posmve), ré- ysed to specify the open boundaries of ADCIRC for simu-
spectively;U, v =the depth-averaged velocity in the longi- |ating tidal propagation. TPXO is the current version of a
tudinal and latitudinal directions, respectivel; =the to-  gjohal model of ocean tides, and it incorporates data from the
tal height of the vertical water column=(: +¢); h =the  TOpEX/Poseidon satellite. The tides are provided as com-
bathymetric depth, relative to mean sea level (M3l the  pey amplitudes of the Earth-relative sea-surface elevation

free surface elevation, relative to MSR;= the radius of the 4, eight primary (4, Sz, N2, K2, K1, O1, P1, andQ1) and
Earth; f = 2Qsing = the Coriolis parametei2 = the an- o |ong-period §4; and Mm) harmonic constituents. The
gular speed of the Eartiys = the atmospheric pressure at methods used to compute the model are described in detalil

the free surfaceyo = the reference density of watgri=the  py Egpert et al. (1994) and Egbert and Erofeeva (2002).
acceleration due to gravity, = the effective Earth elasticity

factor; Enz = the horizontal eddy viscositys, 7sp =theap- 2.3  Cyclone model
plied free surface stress in the longitudinal and the latitudinal
directions, respectivelyt, , ny = the bottom shear stresses The meteorological driving forces underlying storm surges
in the longitudinal and the latitudinal directions, respectively, consist of wind stress and an atmospheric pressure gradient.
andn = the Newtonian equilibrium tide potential. Therefore, determining the wind field and the pressure field
In the ADCIRC-2DDI model, the hybrid bottom friction of a tropical cyclone is indispensable for conducting cyclone
formulation is used when the wetting and drying of elementssurge calculations.
is executed, because this expression results in being highly In the present study, the atmospheric pressure field derived
dissipative as the water depth becomes small (Grenier et alfrom cyclostrophic flow can be expressed as follows (Jeles-
1995). nianski, 1965):
The bottom friction in the model is expressed as

1 r 3
(5) PrZPC+Z(Pn_PC) R , for0 <r < Rmax (79)

T, = Uty andrygy = V... max

The hybrid bottom friction €,) formulation, which pro- p — p 3 (P, — pc)<
vided a depth-dependent bottom friction coefficient, can be
defined by the following formula:

-1
) B forr > Rmax, (7b)

Rmax

where P, = the pressure at the typhoon centBy;= the am-
CHU? + V2)1/2 bient pressure and was assumed to be equal to 1013 BPa;
=—F (6) the radius which is the distance from the typhoon center; and
Rmax = the radius of the maximum wind. Following Graham
whereCs = Cimin[1 + (HbTreak)e]y/a — the bottom drag coef- qnd Nunn (1959)Rmax is represented by the following equa-

ficient. The unit ofCt is kg M™2; Ctmin = the minimum bot- tion:
tom drag coefficient that is approached in deep water whe . _
the hybrid bottom friction formulation reverts to a standardrkmax_ 28.521anf{0.0873(¢ — 28)]

quadratic bottom friction functionHureak= the break depth  +12.22/exp[(1013— P¢) /33.86] +0.2V; +32.77,
to determine if the hybrid bottom friction formulation will
behave as a standard bottom friction function or increase wit

depth similar to a Manning'’s type bottom friction function; orward ?peeq of the typhoon. , ,
andé andy = dimensionless parameters which are given in The wind field comprises a rotational and a translational
Sect. 4.2 component. At a distance, from the center of the typhoon,

ADCIRC-2DDI is Courant-limited algorithmically due to the ro_tational wind Zpeeg{r, I des<?ribed by the following
its explicit feature, and it is also limited by the propagation equation (Young and Sobey, 1981):

*

here¢ is the latitude of the typhoon center amgis the
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Vr:Vmax' eX[I[(00025R.naX+O05)(1—r/Rmax)]

for r > Rmax (8b)

whereVmax = 6.3(10130 — Py)Y/2.
The translational component of wind field;, can be ex-
pressed as

Vi = —0.5V; - (— cosp), 9

whereV; is the moving speed of typhoon agds the angle
between the radial arm and the line of maximum wind.

The resultant wind speed) inside the typhoon is given
as

Vo= Vi + Vi (10)

2.4 Geological structure of the model

W.-B. Chen et al.: Predicting typhoon-induced storm surge tide
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Fig. 2. Architecture of the back propagation neural network
(BPNN).

Figure 2 shows the architecture of the BPNN. In this fig-
ure, “Trans.” represents the transfer function. The connec-
tions between input and hidden layer neurons and between
hidden and output layer neurons can be illustrated by the
Egs. (11) and (12), respectively.

al= f(IW x Pi+b1)
a2= f(LW x al+b2)

(11)
(12)

whereal anda?2 are the values of the hidden layer and the

The computational domain in the Asian marginal seas andutput layer, respectively; Pi is the input vector; IW arid

the western Pacific Ocean includes the region within the lon-are weights and biases, respectively, between the input layer
gitudes 117E to 125 E and the latitudes 2NN to 28 N. and the hidden layer; and LW ai@ are weight and biases,
The digital terrain model (DTM) bathymetric data were ob- respectively, between the hidden layer and the output layer.
tained from the Global Topography data bank of the Univer- A hyperbolic tangent sigmoid transfer function in Eq. (13)
sity of California, San Diego, and from the Ocean Data Bankis used in the hidden layer.

of the National Science Council, Taiwan. Figure 1a shows the
bathymetric map and the locations of the tidal gauge stationsf(x) —
on the east coast of Taiwan. To save computational time and

fit the coastline, coarse grids were generated in coastal seas, . L . _
whereas fine grids were used in shallow areas close to the And a linear transfer function in Eq. (14) is applied in the
coastline. The modeling domain consisted of 18 543 unstrucPUtPut layer.
tured triangular elements and 9560 nodes (Fig. 1b). To fitf(x) —
the raw bathymetric data and simply define the open bound-

ary conditions at corner points, rectangular area (see Fig. 1b) To scale the inputs and targets, the normalized equation is
was adopted in the modeling domain. For this model grid, aoften used in Eq. (15) so that the data always fall within a
time step ofAr = 20s was used in simulations, which was specified range.

intended to maintain the Courant number less than 0.5 and

showed no sign of instability.

2

@rea)-1 .

(14)

Xi — Xmin

—) + Ymin,
Xmax — Xmin

whereYy is the value after normalizationjnin andxmax de-

note the minimum and maximum of the data, respectively;
In the present study, two ANN models, including BPNN and and ypin, and ymax are taken as-1 and 1. The performance
ANFIS, were introduced. The algorithms of these two ANN of the network can be evaluated according to the mean square
models are described as follows. error (MSE) in Eq. (16):

YN = (Ymax— Ymin) X ( (15)

3 Artificial neural network (ANN) models

3.1 Back propagation neural network (BPNN) N 2
2 (a2 —yi)
A back propagation neural network (BPNN) was used toMSE= =
amend the simulated water levels with the two-dimensional N
hydrodynamic model for precise predictions. The BPNN, where y; represents the observed value a¥ds the total
which was proposed by Rumelhart et al. (1986), is a multiple-number of data. When the leaning performance (MSE) is less
layer network with nonlinear differentiable transfer functions than a tolerance value, the iteration terminates. The tolerance
including input layer, hidden layer, and output layer. value, 103, was adopted in this model.

(16)
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In the present study, BPNN updates weight and bias val-
ues according to the Fletcher—-Powell conjugate gradien < 4,
1

(Fletcher and Powell, 1963). The BPNN model was per- .

formed in MATLAB where the Fletcher—Powell conjugate A, "N
gradient technique is applicable in the Neural Network Tool- y
box.

Bl
3.2 Adaptive neuro-fuzzy inference system (ANFIS) X, Wy,

w

ANFIS is a multilayer feed-forward neural network where B,

2
gach.node executes a partlcglar function basgd on the incon [input nodes> Rule nodes >E\::‘;:§ej>to:;:::
ing signals. The symbols with square and circle nodes are Layer1 tayer2” Layer3’ Layerd” Layers
applied to stand for different properties of adaptive learning
(see Fig. 3). In order to yield the desired input-output char-rjg 3 Architecture of the adaptive network-based fuzzy interface
acteristics, the parameters of adaptive learning are updateglsiem (ANFIS).
according to the gradient learning rules. ANFIS learns the
rules and membership functions from data sets (Jang, 1993).
The primary weakness of the ANFIS model is consuming Average nodes (Layer 3): in this layer, every node presents
much time for the training and parameter determination. Ina circle node labele& (Fig. 3). This layer includes fixed
this study, ANFIS takes about 20 min to complete the train-nodes which calculate the ratio of the firing strengths of the

ing and verification, while the BPNN spends 10 s only. rules:
Essentially, the fuzzy inference system has two input vari- ) w;
ables,x; andxy, and one output variable, The assumption O3, = w; = —— wz,i =12 (21)

is that the rule base includes two fuzzy if-then rules with a
first-order Sugeno fuzzy model (Takagi and Sugeno, 1985): Consequent nodes (Layer 4): The nodes in this layer are
Rule 1: Ifx1 is A1 andxz is B1, theny; = p1x1+qix2+r1 adaptive. The output of each node, which is a first-order poly-
Rule 2: Ifx1 is A andxz is Bo, thenys = pox1+gox2+ro, nomial, is the product of the normalized firing strength. The
whereA; and B; are the fuzzy sets angl, ¢; andr; are the  output can be illustrated as
design parameters that will be determined during the train-
ing and verification processes. The architecture of ANFISOa,; = w;y; = w;(pix +q;y +1;), i=1,2. (22)
is shown in Fig. 3, where circles represent fixed nodes and _ ] o
squares indicate adaptive nodes. A brief introduction of the Theé parametersp;,g;, andr;, in this layer indicate the
ANFIS model follows. coefficients of linear combination.
Input nodes (Layer 1): Each nodén this layer is a square Output nodes (Layer 5): The singl_e nodt_a calculates the
node (see Fig. 3). The node function can be expressed as ©verall output by integrating all of the input signals.

01 =pa; (x1),i=1,2 (17) 2
o - 2 Z wiy
01, = UB;_» (x2),i=3,4 (18) 0 Z _ i=1 (23)
. 51= ) Wjyi=
wherex; andx, are the inputs to node A; and B; are the = T witwe

linguistic labels; angk 4, andy. g, _, indicate the membership _ _ _ _
function for theA; and B; linguistic labels, respectively. In  The detailed algorithms of ANFIS technique can be found in

this study, the following bell-shaped membership function isJang et al. (1993) and Nayak et al. (2004).

applied: . . .
1 1 3.3 Indices of simulation performance

MHA; = | 2b; I'LB,',2=
l+ X1—Cj

ai

(19

To evaluate the performance of the two-dimensional hydro-

dynamic model and the ANN model, three criteria were

where a;,b; and¢; are the parameter sets which are the adopted to compare the predicted results and the obser-

premise parameters in this layer. vational data: the mean absolute error (MAE), root-mean-
Rule nodes (Layer 2): In this layer, every node indicatessquare error (RMSE), and peak error (PE). These criteria are

a circle node labeleds (Fig. 3). The outputs of this layer, defined by the following equations:

named firing strengthsdy ;), are the products of the cor-

responding degrees which are obtained from input layer

(Layer 1).

02, = w; = pa, (x1) X pup; (x1), i=1,2 (20)

1+

X2—Cj
ai
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Table 1. The performance of the two-dimensional hydrodynamic model, BPNN model, and ANFIS model for predicting water level during
the training (calibration) phase at different stations.

Suao Port Hualien Port Chenggong Fish Port

Method

PE MAE RMSE PE MAE RMSE PE MAE RMSE

(%) (m) (m) (%) (m) (m) (%) (M) (m)
Calibration with two-dimensional 23.52 0.17 0.23 21.57 0.20 0.25 23.28 0.24 0.29
hydrodynamic model
Training with BPNN model —-15.19 0.15 0.20 —17.04 0.21 0.26 —23.43 0.16 0.21
Training with ANFIS model 191 0.11 0.16 124 0.16 021 -0.82 0.11 0.15

Note: PE represents peak error; MAE represents mean absolute error; and RMSE represents root-mean-square error.

26 26
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Fig. 4. Tracks of Typhoon Mindulle (2004), Typhoon Sepat (2007), Fig. 5. Tracks of Typhoon Fungwoug (2008) and Typhoon
and Typhoon Kalmaegi (2008) for hydrodynamic model calibration Fanapi (2010) for hydrodynamic model verification (ANN verifi-
(ANN training). cation).

employed for hydrodynamic model calibration (ANN model
L training), while Typhoon Fungwoug (2008) and Typhoon
MAE = — Z |(Ym)i — (Yo)i (24)  Fanapi (201(_)) (480 hourl.y_water level data) were ggopFed for
N = hydrodynamic model verification (ANN model verification).
Figures 4 and 5 show the paths of these five typhoon events

1Y for model calibration (ANN training) and model verification
- | = _ 12
RMSE = N ;[(Ym)’ (Yo)il% (25) (ANN verification).
PE= M“X 100 % (26) 4.1 Hydrodynamic model calibration and ANN model
Yo peak training

where¥ is the total number of datdf, is the predicted water The terminologies for model comparisons, such as the train-

level; Yo is the observational water levellin peaxis the pre- ing and verification phases with the ANN model (BPNN and

dicted peak water level; anth peails the observational peak = g approaches), were used as analogs for the calibration
water level. The negative PE represents that the model under- S : . . i
nd validation with the two-dimensional hydrodynamic (AD-

predicts the peak observed water level, while the positive P IRC) model, respectively. The scatter plot of simulated and

means that the model overpredicts the peak water level. . : : :
observed water level using two-dimensional hydrodynamic
model is shown in Fig. 6. The hydrodynamic model obvi-

4 Model validity ously underpredicts storm surge height. Table 1 shows the
PE, MAE, and RMSE for the model calibration. The maxi-

Five data sets were used to determine the practical accunum PE, MAE, and RMSE values for Chenggong Fish Port

racy of the model and to ascertain its predictive capabilities.are 23.28 %, 0.24 m and 0.29 m, respectively.

Typhoon Mindulle (2004), Typhoon Sepat (2007), and Ty- Due to the failure in simulating surge height of the

phoon Kalmaegi (2008) (792 hourly water level data) weretwo-dimensional hydrodynamic model as the typhoon

Nat. Hazards Earth Syst. Sci., 12, 3798809 2012 www.nat-hazards-earth-syst-sci.net/12/3799/2012/
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* {b) Hualien Port the simulated data from cyclone model, and ADCIRC represents
s the simulated water level, which was obtained from the two-
dimensional hydrodynamic model (ADCIRC).
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Fig. 8. (a)Variation in the mean square error (MSE) with iterations
20 and(b) the effect of the number of nodes in the hidden layer on the

20 -1.5 -1.0 0.5 0.0 0s 1.0 15 20

Observation (m) root-mean-square error (RMSE) for Suao Port.

Fig. 6. Scatter plot of simulated and observed water level using
two-dimensional hydrpdynamic model for the mod_el calibration at yyo-dimensional hydrodynamic model, and the output layer
(a) Suao Port(b) Hualien Port, andc) Chenggong Fish Port. is the predicted water level at the Suao Port.

Figure 8a shows relationship between the mean square er-
ror (MSE) and the number of iterations for the Suao Port
during the training and verification phases. The MSE did not

approached Taiwan, ANN models including BPNN and AN- significantly change when the number of iterations exceeded
FIS were adopted to improve the water level calculations300. Therefore, 400 iterations were adopted for BPNN train-
of the two-dimensional hydrodynamic model. BPNN struc- ing and verification. In this study, a learning rate of 0.01 and
tures for the Suao Port serve as an example and are showaamomentum coefficient of 0.3 were used. Figure 8b presents
in Fig. 7. The input layer includes wind speed, wind direc- the influence of different number of hidden nodes on the
tion, and air pressure generated from cyclone model (CM) alRMSE for BPNN training and verification phases. To yield
well as the simulated water level at the Suao Port using thehe optimal number of nodes in the hidden layer, 16 hidden
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Table 2. The parameters used in the BPNN model.

T ® (a) Suao Port
Parameters Suao Hualien Chenggong E Y
Port Port Fish Port 2 o0 A
3
Learningrate  0.01 0.01 0.01 &
; [ ] Observation
Momentum 0.3 0.3 0.3 20 Numerical model (ADCIRC)
Iteratlon 400 400 400 ’ ;9/15 09/16' 09/17' 09/13' 09/19' 09/20' 09/21' 09/22
In_put nodes 4 4 4 _ 20 (b) Hualien Port
Hidden nodes 16 16 17 E .,
Output nodes 1 1 1 3 A3 Pl
QD oo
&
H . .. ‘;u " [ ] Observation
nodes in the BPNN model were chosen during the training = Numerical moel (ADCIRC) verification
and verification phases. Table 2 shows the parameters used s ooris oon7 oo oo oo oo ooz
in the BPNN model. 0 (c) Chenggong Fish Port
The statistical errors of performance with the BPNN 15,1.0.
model for predicting water level during the training phase are % " AN
shown in Table 1. Overall, the BPNN model does not sig- 5 v A\
nificantly improve the prediction of water level. The MAE § o Obsorvation *
values at Suao Port and Hualien Port for the BPNN model = Numerical model (ADCIRC) verification

are greater than that for the two-dimensional hydrodynamic os1s orts oon7 oos o o ot ooz
model. The maximum values of PE, MAE, and RMSE are _.

. ig. 9. Comparison of the observed (circle mark) and simulated
_23'_43% at Che”99°”9 Fish Port, 0.21m, and 0.26m a black line) water levels for the two-dimensional hydrodynamic
Hualien Port, respectively.

. model verification afa) Suao Port(b) Hualien Port, angc) Cheng-
Table 1 also shows the performance evaluations for preyong Fish Port during Typhoon Fanapi (2010).

dicting the water levels at different stations using the ANFIS
model. The prediction of water level with the ANFIS model
is better than that with the two-dimensional hydrodynamic
model and the BPNN model. This table indicates that the5-0 M s™. A constant minimum bottom friction coefficient
PE, MAE, and RMSE values at Suao Port, Hualien Port, and®f Ctmin =0.003, break depth affpreak= 10 m, and two di-
Chenggong Fish Port of the ANFIS model are less than thos@ensionless parameters @ 10 andy = 1/3 were used.
of the two-dimensional hydrodynamic model and the BPNN
model. The maximum PE, MAE, and RMSE values for AN-  Figure 10 shows the prediction of water level at different
FIS training phase are 1.91%, 0.16 m, and 0.21 m, respecsStations by the BPNN model during the verification phase.
tively. A comparison of the results indicates that the ANFIS The BPNN model fails to modify the prediction of storm
technique is successfully used in predicting the astronomicafurge height at Hualien Port and Chenggong Fish Port com-
tide level and storm surge height. pared to the simulated results of the two-dimensional hydro-
dynamic model (Fig. 9). Because BPNN model predicts tide
4.2 Hydrodynamic model verification and ANN model ~ and storm surge based upon the inputs, a large peak error
verification at the Chenggong Fish Port can be taken into account — a
bad prediction with BPNN model (Fig. 10c and Table 3).
The verification results with the two-dimensional hydrody- The PE, MAE, and RMSE values at Suao Port, Hualien Port,
namic model for simulating the water levels at different lo- and Chenggong Fish Port with the BPNN model are higher
cations during the period of Typhoon Fanapi (2010) are il-than with the two-dimensional hydrodynamic model (see Ta-
lustrated in Fig. 9. Due to space limitations, we only show ble 3). Table 3 also indicates that the maximum PE, MAE,
the modeling results during Typhoon Fanapi (2010). The nu-and RMSE values are43.89 %, 0.23 m, and 0.28 m, respec-
merical model reproduces the astronomical tide level, but ittively, for the BPNN verification phase.
fails to simulate water levels when the storm surge occurred Figure 11 presents the prediction of water level at dif-
on 19 September 2010. The hydrodynamic model underpreferent stations by the ANFIS model during the verification
dicts the storm surge height. Table 3 shows the PE, MAE phase. The simulated water level with the ANFIS model is
and RMSE for model verification. The results indicate that better than with the two-dimensional hydrodynamic model
the PE, MAE, and RMSE values at Suao Port and Hualienand the BPNN model. It indicates that the ANFIS model sat-
Port are less than those at Chenggong Fish Port. isfactorily mimics the observed astronomical tide level and
Through the model calibration and verification proce- surge height. Table 3 also indicates that the PE, MAE, and
dures, the horizontal eddy viscosity parameter in Eq. (4) iSRMSE values at Suao Port, Hualien Port, and Chenggong
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Table 3. The performance of the two-dimensional hydrodynamic model, BPNN model, and ANFIS model for predicting water level during
the verification phase at different stations.

Suao Port Hualien Port Chenggong Fish Port
Method

etho PE MAE RMSE PE MAE RMSE PE MAE RMSE
(%) (m) (m) (%) (m) (m) (%) (M) (m)
Verification with two-dimensional —7.16 0.13 0.16 -1.49 0.17 0.20 —20.30 0.19 0.23

hydrodynamic model
Verification with BPNN model —36.10 0.17 0.21 —32.94 0.21 0.25 —43.89 0.23 0.28
Verification with ANFIS model —-2.16  0.07 0.10 0.61 0.10 0.14 -13.77 0.11 0.16

Note: PE represents peak error; MAE represents mean absolute error; and RMSE represents root-mean-square error.
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(black line) water levels for the ANFIS model in the verification
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Fig. 10. Comparison of the observed (circle mark) and simulate
(black line) water levels for the BPNN model in the verification
phase a(a) Suao Port(b) Hualien Port, andc) Chenggong Fish
Port during Typhoon Fanapi (2010).

Proudman (1955, 1957). He concluded that there are effects
Fish Port with the ANFIS model are less than those with theof shallow water and bottom friction on the timing and mag-
two-dimensional hydrodynamic model and BPNN model. nitude of high water, both for standing wave and progres-
The maximum PE, MAE, and RMSE values ar&3.77 %,  sive wave. Rossiter (1961) assumed idealized surge with di-
0.11m and 0.16 m, respectively, at Chenggong Fish Port fournal periodicity and showed how a negative surge would re-
the ANFIS verification phase. The ANFIS model is success-tard tidal propagation, whereas a positive surge would ad-
fully employed to improve the prediction of water level dur- vance high water through a combination of depth affecting
ing typhoon events. the wave propagation speed and depth-dependent frictional
The degree to which uncertainty in the prediction of tidal terms in the equation of motion. Prandle and Wolf (1978)
elevations may influence the prediction of surge throughreported tide—surge interactions resulting in a decrease of
tide—surge interactions is of interest. Formal solutions forthe peak surge elevation and that the effect can be local-
the propagation of an externally forced tide and surgeized, increasing in direct propagation to surge height and
into an estuary of uniform section were developed bytidal range. Wolf (1981) used a one-dimensional analytical
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model to demonstrate that the shallow water effect become8 Conclusions
dominant over quadratic friction for tidal amplitudes in ex-
cess of 3m and in depth of 10 m or less. A high-resolution, two-dimensional, hydrodynamic model
Recently, Bernier and Thompson (2006) performed a two-(ADCIRC), which uses an unstructured grid, was applied to
dimensional barotropic ocean model in the northwest At-simulate the astronomical tide level and storm surge height.
lantic and adjacent shelf seas and showed that the nonlinfo save computational time and fit the coastline boundary,
ear parameterization of bottom stress is the principle concoarse grids were generated in coastal seas, whereas fine
tributor to their model tide—surge interaction off east coast ofgrids were used in shallow areas close to the coastline. A
Canada and northeastern United States. Horsburgh and Wiglobal ocean tidal model developed by Oregon State Univer-
son (2007) developed a simple mathematical explanation fosity, the TOPEX/Poseidon Global Inverse Solution (TPXO),
surge clustering on the rising tide and proved that becausés used to specify the open boundaries of ADCIRC for sim-
of the interaction of the two signals, the peak of large surgeulating tidal propagation in the sea. A cyclone model is used
events would typically avoid the high tide period by 3-5 h, for the meteorological conditions. Five typhoon events, Ty-
with a secondary clustering within 1-2 h. Phase shifts oc-phoon Mindulle (2004), Typhoon Sepat (2007), and Typhoon
cur in both the tide and the surge signals because of tideKalmaegi (2008), Typhoon Funfwoug (2008) and Typhoon
surge interactions. This is because both signals are shallowanapi (2010), were used for model calibration and verifi-
water waves whose phase speed is give(zas'/? whereh cation. To determine the performance of the hydrodynamic
is the depth ang is the acceleration due to gravity. Zhang model and the ANN model, three criteria (i.e. the peak error,
et al. (2010) studied the tide—surge interactions in the TaiwarPE; mean absolute error, MAE; and the root-mean-square er-
Strait using the numerical model, NCTSM (two-way Nested ror, RMSE) were adopted to evaluate the model results and
Coupled Tide-Surge Model). They showed that the processethe observational data.
leading to the alteration of water elevations due to the tide— We found that the hydrodynamic model can satisfactorily
surge interactions can be classified into three nonlinear efreproduce the astronomical tide level but fails to mimic the
fects: nonlinear advective effects, nonlinear bottom stress efstorm surge height for the model calibration and verifica-
fects, and nonlinear shallow water effects. tion phase. Therefore, the ANN model including the BPNN
Ippen (1966) classified water waves according to the raimodel and the ANFIS model was applied to amend the poor
tio of water depth k) to the wavelength(). The ratiok/L predictions in storm surge height during typhoon events with
is called the “relative depth”. For the small amplitude wave the two-dimensional hydrodynamic model. The simulation
theory, the equations expressing the various wave characteresults reveal that the BPNN model can reproduce the as-
istics are greatly simplified; the ratig/ L lies within certain ~ tronomical tide but fails to improve the prediction of water
ranges. If the relative depth is below 1/20, then the depthlevel during storm surge. Moreover, the ANFIS model pre-
is small in comparison with the wavelength and the wavesdicts both the astronomical tide level and the surge height
are termed “shallow water” waves (the term “long wave”); and shows the lowest PE, MAE, and RMSE values at Suao
if the ratio is greater than 1/2, the waves are called “deepPort, Hualien Port, and Chenggong Fish Port compared to the
water” waves (also “short waves”). Foy20 < h/L < 1/2, simulated results with the two-dimensional hydrodynamic
the waves are called “intermediate depth” waves, and in thignodel and the BPNN model. This study asserts that the AN-
range the wave equations do not simplify. However, in a largeFIS technique can be successfully employed in the prediction
number circumstances the waves are either in the “shallowpf water levels along the east coast of Taiwan during typhoon
water” or “depth water” category. The propagation of tides events.
is attributed to long wave which has longer wavelength com- In complex near shore regions, a high degree of uncer-
pared with the shorter (high-frequency) surge componentstainty in predicted tides may induce uncertainty in the surge

The wave propagation is quite different depending on thelf tide—surge interactions are significant. The coasts in Tai-

localized nature of tide—surge interaction in shallow water V&N _have complex top_ography and bathymetry. Ther(_afore,
70nes the tide—surge interactions off east coast of Taiwan will be

X . . . studied with hydrodynamic modeling and dynamic analysis
Tide—surge interactions are one of the most importan y y g y 4

; . lin the future.
problems in the study and affect the prediction of storm
surges. However the study of tide—surge interactions is be- _ _
yond the scope of present research. In the future work, thé‘cknowledgementsthe project was funded by the National
complex characteristics of tide—surge interactions off easEC'ence Council, Taiwan, grant Nos. NSC 98-2625-M-239-001,

. . . . . 9-2625-M-239-001, 100-2625-M-239-001 and International
coast ofTalyvan can _belnvestlgated with the numerical mode esearch-Intensive Centers of Excellence (I-RICE) in Taiwan-
and dynamic analysis.

Supercomputing Research Center, under grant No. NSC 103-2911-
I-006-301. The authors would like to express their appreciation to
the Taiwan Center Weather Bureau for providing the observational
data. Appreciation and thanks are also given to two reviewers for
their constructive comments and suggestions to improve this paper.

Nat. Hazards Earth Syst. Sci., 12, 3798809 2012 www.nat-hazards-earth-syst-sci.net/12/3799/2012/



W.-B. Chen et al.: Predicting typhoon-induced storm surge tide 3809

Kolar, R. L., Gray, W. G., Westerink, J. J., and Luettich, R. A.:
Edited by: S. Tinti Shallow water modeling in spherical coordinates-equation for-
Reviewed by: D. Prandle and one anonymous referee mulation, numerical implementation and application, J. Hydraul.
Res., 32, 3-24, 1994.
Luettich, R. A., Westerink, J. J., and Scheffner, N. W.: ADCIRC:
An advanced three-dimensional circulation model for shelves,
References coasts, and estuaries, Report I: theory and methodology of
ADCIRC-2DDI and ADCIRC-3DL, US Army Corps of Engi-
Bajo, M. and Umgiesser, G.: Storm surge forecast through a com- neers, Technical Report DRP-92-6, 1992.
bination of dynamic and neural network models, Ocean Model.,Nayak, P. C., Sudheer, K. P., Ragan, D. M., and Ramasastri, K. S.:
33, 1-9, 2010. A neuro fuzzy computing technique for modeling hydrological
Bernier, N. B. and Thopmson, K. R.: Predicting the frequency of time series, J. Hydrol., 291, 52—66, 2004.
storm surges and extreme sea levels in the northwest Atlantic, JPrandle, D. and Wolf, J.: The interaction of surge and tide in the
Geophys. Res., 111, C100@#i:10.1029/2005JC003163006. North Sea and River Thames, Geophys. J. Astron. Soc., 55, 203—
De Oliveira, M. M. F., Ebecken, N. F. F., De Oliveira, J. L. F., and 216, 1978.
De Azevedo Santos, I.: Neural network model to predict a stormProudman, J.: The propagation of tide and surge in an estuary, Proc.
surge, J. Appl. Meteorol. Climatol., 48, 143-155, 2009. R. Soc. Lond., A231, 8-24, 1955.
Dietsche, D., Hagen, S. C., and Bacopoulos, P.: Storm surge simulaProudman, J.: Oscillations of tide and surge in an estuary of finite
tion for Hurricane Hugo (1989): on the significance of inundation  |ength, J. Fluid Mech., 2, 371-381, 1957.
areas, J. Waterw. Port Coast. Ocean Eng., 133, 183-191, 2007.Rego, J. L. and Li, C.: Storm surge propagation in Galveston Bay
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of  during Hurricane Ike, J. Mar. Syst., 82, 265-279, 2010.
barotropic ocean tides, Journal of Atmos. Ocean. Technol., 19Rossiter, J. R.: Interaction between tide and surge in the Thames,
183-204, 2002. Geophys. J. R. Astron. Soc., 6, 29-53, 1961.
Egbert, G. D., Bennett, A. F, and Foreman, M. G.. Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning rep-
TOPEX/POSEIDON tides estimated using a global inverse resentations by back-propagating errors, Nature, 323, 533-536,

model, J. Geophys. Res., 99, 24821-24852, 1994. 1986.
Etala, P.. Dynamic issues in the SE South America storm surgeshen, J., Wang, H. V., Sisson, M., and Gong, W.: Storm tide simu-
modeling, Nat. Hazards, 51, 79-95, 2009. lation in the Chesapeake Bay using an unstructured grid model,

Filippo, A., Torres Jr., A. R., Kjerfve, B., and Monat, A.: Applica- Estuar. Coast. Shelf Sci., 68, 1-16, 2006.
tion of artificial neural network (ANN) to improve forecasting of Takagi, T. and Sugeno, M.: Fuzzy identification of systems and its

sea level, Ocean Coast. Manage., 55, 101-110, 2012. applications to modeling and control, IEEE Trans. Syst. Man Cy-
Fletcher, R. and Powell, M. J. D.: A rapid convergent descent bern., 15, 116-132, 1985.
method for minimization, Comput. J., 6, 163-168, 1963. Westerink, J. J., Luettich, R. A., and Muccino, J. C.: Modeling tides

Graham, H. E. and Nunn, D. E.: Meteorological conditions perti- in the Western North Atlantic using unstructured graded grids,
nent to standard project hurricane, Atlantic and Gulf Coasts of Tellus Ser. A-Dyn. Meteorol. Oceanol., 46, 178-199, 1994.
United States, National Hurricane Research Project, Report Nowolf, J: Surge-tide interaction in the North Sea and River Thames,
3, US Weather Service, 1959. Floods die to High Winds and Tides, edited by: Peregrine, D. H.,

Grenier, R. R., Luettich, R. A., and Westerink, J. J.: A comparison Elsevier, New York, 75-94, 1981.
of the nonlinear frictional characteristics of two-dimensional and Xia, M., Xia, L., Pietrafesa, L. J., and Peng, M.: A numerical study
three-dimensional models of a shallow water tidal embayment, J.  of storm surge in the Cape Fear River Estuary and adjacent coast,
Geophys. Res., 100, 13719-13735, 1995. J. Coast. Res., 24, 159-167, 2008.

Herman, A., Kaiser, R., and Niemeyer, H. D.: Modelling of a You, S. H. and Seo, J. W.: Storm surge prediction using an artificial
medium-term dynamics in a shallow tidal sea, based on com- neural network model and cluster analysis, Nat. Hazards, 51, 97—
bined physical neural network methods, Ocean Model., 17, 277— 114, 2009.

299, 2007. You, S. H., Lee, W. J., and Moon, K. S.: Comparison of storm

Horsburgh, K. J. and Wilson, C.: Tide-surge interaction and its role  surgef/tide predictions between a 2-D operational forecast sys-
in the distribution of surge residuals in the North Sea, J. Geophys. tem, the regional tide/storm surge model (RTSM), and the 3-D

Res., 112, C080028i0i:10.1029/2006JC004032007. regional ocean modeling system (ROMS), Ocean Dyn., 60, 443—
Ippen, A. T.: Estuary and coastline hydrodynamics, McGraw-Hill 459, 2010.
Inc., 1-92, 1966. Young, I. R. and Sobey, R. J.: The numerical prediction of tropi-

Jang, J. S. R.: 1 ANFIS: adaptive-network-based fuzzy inference cal cyclone wind-waves, Department of Civil and Systems Engi-
system, IEEE Trans. Syst. Man Cybern., Part A-Syst. Hum., 23, neering, James Cook University of North Queensland, Townville,
665-685, 1993. Research Bulletin No. CS20, 1981.

Jelesnianski, C. P.: A numerical calculation of storm tides inducedzhang, W., Shi, F., Hong, H., Shang, S., and Kirby, J.: Tide-surge
by a tropical storm impinging on a continental shelf, Mon.  intensified by the Taiwan Strait, J. Geophys. Res. 115, C06012,
Weather Rev., 93, 343-358, 1965. doi:10.1029/2009JC005762010.

Kolar, R. L. and Gray, W. G.: Shallow water modeling in small wa-
ter bodies, edited by Gambolati, G., Computational Methods in
Surface Hydrology, WIT Press, Billerica, Massachusetts, 149—

155, 1990.

www.nat-hazards-earth-syst-sci.net/12/3799/2012/ Nat. Hazards Earth Syst. Sci., 12, 373889 2012


http://dx.doi.org/10.1029/2005JC003168
http://dx.doi.org/10.1029/2006JC004033
http://dx.doi.org/10.1029/2009JC005762

