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Abstract. Precise predictions of storm surges during ty-
phoon events have the necessity for disaster prevention in
coastal seas. This paper explores an artificial neural network
(ANN) model, including the back propagation neural net-
work (BPNN) and adaptive neuro-fuzzy inference system
(ANFIS) algorithms used to correct poor calculations with
a two-dimensional hydrodynamic model in predicting storm
surge height during typhoon events. The two-dimensional
model has a fine horizontal resolution and considers the in-
teraction between storm surges and astronomical tides, which
can be applied for describing the complicated physical prop-
erties of storm surges along the east coast of Taiwan. The
model is driven by the tidal elevation at the open bound-
aries using a global ocean tidal model and is forced by the
meteorological conditions using a cyclone model. The sim-
ulated results of the hydrodynamic model indicate that this
model fails to predict storm surge height during the model
calibration and verification phases as typhoons approached
the east coast of Taiwan. The BPNN model can reproduce
the astronomical tide level but fails to modify the predic-
tion of the storm surge tide level. The ANFIS model sat-
isfactorily predicts both the astronomical tide level and the
storm surge height during the training and verification phases
and exhibits the lowest values of mean absolute error and
root-mean-square error compared to the simulated results at
the different stations using the hydrodynamic model and the
BPNN model. Comparison results showed that the ANFIS
techniques could be successfully applied in predicting wa-
ter levels along the east coastal of Taiwan during typhoon
events.

1 Introduction

Storm surges are as a result of strong tropical storms called
typhoons in the northwestern Pacific Ocean. Abnormal sea
level rise due to storm surge is caused by strong winds and
atmospheric pressure disturbances (You and Seo, 2009). Tai-
wan is located on the west side of the Pacific Ocean (Fig. 1a).
The country is often subjected to severe sea states that are in-
duced by typhoons and occur during the summer and winter
seasons in either the South China Sea or the northwest Pa-
cific Ocean near the Philippines, which result in the extensive
loss of life and property. On average, Taiwan suffers three to
four typhoons annually. Typhoons act more severely on the
east coast than on the west coast, because typhoons typically
approach Taiwan from the east. As a typhoon approaches
Taiwan, its strong wind and low atmospheric pressure often
cause storm surges that can result in severe damage to coastal
areas, especially on the low-lying lands near river mouths
because of the double effects of the river floods by typhoon-
brought rains and backward uplifting seawater floods from
storm surges. Therefore, it is necessary to develop a reliable
model to predict the height of typhoon-induced storm surge
for coastal management and hazard mitigation.

Several researchers have applied different numerical mod-
els to predict storm surges. For example, Shen et al. (2006)
applied an unstructured grid numerical model (Unstructured,
Tidal, Residual Intertidal, and Mudflat model – UnTRIM-
3D) to simulate and predict the storm tide in the Chesa-
peake Bay. The authors found that the use of an unstruc-
tured grid provides the flexibility to represent the complex
estuarine and coastal geometry for accurately simulating
storm surges. Dietsche et al. (2007) adopted the ADvance
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Fig. 1. (a) Bathymetric map and locations of tidal gauge stations on the east coast of 640 
Taiwan and (b) an unstructured grid in the modeling domain for the simulation. 641 
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Fig. 1. (a)Bathymetric map and locations of tidal gauge stations on
the east coast of Taiwan and(b) an unstructured grid in the modeling
domain for the simulation.

CIRCulation (ADCIRC) model to simulate the storm surge
response to two hurricane events that occurred in 1989 and
1999. Xia et al. (2008) simulated tropical cyclone storm-
induced surge, inundation, and coastal circulation at the
Cape Fear River estuary and adjacent Long Bay using the
Princeton Ocean Model (POM) with a three-level nesting
approach. Etala (2009) used the nested depth-averaged nu-
merical model for the simulation of storm surge at the Ar-
gentinean Shelf. Rego and Li (2010) studied the storm surge
of Hurricane Ike along the Texas–Louisiana coast using the
fully nonlinear Finite Volume Coastal Ocean Model (FV-
COM) with a high-resolution unstructured mesh. You et
al. (2010) compared simulated storm surges using the two-
dimensional operational storm surge/tide forecast system (re-
gion tide/storm surge model, RTSM, which is based on the
Princeton Ocean Model), and the three-dimensional regional
ocean modeling system (ROMS) using the observed data
from 30 coastal tidal stations from three typhoons that struck
Korea in 2007.

Recently, artificial neural network (ANN) models have
been extensively applied to predict the storm surge and
tide variation and to resolve the issue of nonlinear relation-
ships. For examples, Herman et al. (2007) combined a two-
dimensional hydrodynamic model and neural network mod-
els to predict the tidal levels and currents in the German
North Sea coast. The authors demonstrated that the approach

had the capability to accurately reproduce the statistical dis-
tribution of water levels and the current in various locations
and could be viewed as a reliable complementary tool. De
Oliveria et al. (2009) used a neural network model to predict
coastal sea level variations related to meteorological events
in the southeastern coastal region of Brazil. The authors
found that neural network models can efficiently predict the
non-tidal residual and effectively complement the standard
harmonic analysis method. You and Seo (2009) developed a
cluster neural network model to predict storm surges in the
Korean coastal regions. Bajo and Umgiesser (2010) devel-
oped an operational surge forecast system based on a com-
bination of a hydrodynamic model and an artificial neural
network for the city of Venice. Filippo et al. (2012) used ar-
tificial neural networks to train and translate the combined
influence of meteorological and astronomical forcing to pre-
dict sea level variations.

The main objectives of this study were to apply an
unstructured grid, two-dimensional hydrodynamic model
(ADCIRC-2DDI) to simulate the astronomical tide level and
storm surge height along the east coast of Taiwan. Two ar-
tificial neural network models were subsequently adopted to
improve the calculations of the hydrodynamic model. Three
quantitative statistical measures, i.e. the mean absolute er-
ror, root-mean-square error, and peak error, were employed
to evaluate the prediction of the tide and storm surges un-
der the five typhoon events by a hydrodynamic model and an
ANN model, including the back propagation neural network
(BPNN) and adaptive neuro-fuzzy inference system (ANFIS)
techniques.

2 Hydrodynamic model

2.1 Storm surge model

The water surface elevations and circulation patterns are gen-
erated using the ADCIRC-2DDI, which is a vertically aver-
aged two-dimensional, fully nonlinear, hydrodynamic model
(Luettich, 1992). ADCIRC-2DDI uses the mass and momen-
tum conservation equations with the hydrostatic pressure ap-
proximation. In the model, the baroclinic terms are neglected
and the hybrid bottom friction formulation is used. The lat-
eral diffusion/dispersion terms are enabled, which leads to
the equality laws in primitive, nonconservative form ex-
pressed in a spherical coordinate system (Kolar et al., 1994):
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where the vertically averaged momentum dispersion in the
longitudinal and the latitudinal directions can be expressed
as follows (Kolar and Gray, 1990):
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andt = time;λ,φ = degrees longitude (east of Greenwich is
positive) and latitude (north of the Equator is positive), re-
spectively;U,V = the depth-averaged velocity in the longi-
tudinal and latitudinal directions, respectively;H = the to-
tal height of the vertical water column (= h + ζ ); h = the
bathymetric depth, relative to mean sea level (MSL);ζ = the
free surface elevation, relative to MSL;R = the radius of the
Earth;f = 2�sinφ = the Coriolis parameter;� = the an-
gular speed of the Earth;ps = the atmospheric pressure at
the free surface;ρ0 = the reference density of water;g = the
acceleration due to gravity;α = the effective Earth elasticity
factor;Eh2 = the horizontal eddy viscosity;τsλ,τsφ = the ap-
plied free surface stress in the longitudinal and the latitudinal
directions, respectively;τbλ,τbφ = the bottom shear stresses
in the longitudinal and the latitudinal directions, respectively,
andη = the Newtonian equilibrium tide potential.

In the ADCIRC-2DDI model, the hybrid bottom friction
formulation is used when the wetting and drying of elements
is executed, because this expression results in being highly
dissipative as the water depth becomes small (Grenier et al.,
1995).

The bottom friction in the model is expressed as

τbλ = Uτ∗ andτbφ = V τ∗. (5)

The hybrid bottom friction (τ∗) formulation, which pro-
vided a depth-dependent bottom friction coefficient, can be
defined by the following formula:

τ∗ =
Cf(U

2
+ V 2)1/2

H
, (6)

whereCf = Cfmin[1+ (
Hbreak

H
)θ ]γ /θ

= the bottom drag coef-
ficient. The unit ofCf is kg m−2; Cfmin = the minimum bot-
tom drag coefficient that is approached in deep water when
the hybrid bottom friction formulation reverts to a standard
quadratic bottom friction function;Hbreak= the break depth
to determine if the hybrid bottom friction formulation will
behave as a standard bottom friction function or increase with
depth similar to a Manning’s type bottom friction function;
andθ andγ = dimensionless parameters which are given in
Sect. 4.2.

ADCIRC-2DDI is Courant-limited algorithmically due to
its explicit feature, and it is also limited by the propagation

speed of any wetting fronts. The Courant number is less than
0.5 to maintain numerical stability. More details of ADCIRC-
2DDI model can be found in Luettich et al. (1992), Kolar et
al. (1994), and Westerink et al. (1994).

2.2 Global tidal model

A large fraction of the variance in many oceanographic vari-
ables is due to tides. To simulate tidal propagation in the
storm surge model, the driving tidal forces at the open bound-
aries are necessary. In the present study, a global ocean tidal
model that was developed by Oregon State University, which
is the TOPEX/Poseidon Global Inverse Solution (TPXO), is
used to specify the open boundaries of ADCIRC for simu-
lating tidal propagation. TPXO is the current version of a
global model of ocean tides, and it incorporates data from the
TOPEX/Poseidon satellite. The tides are provided as com-
plex amplitudes of the Earth-relative sea-surface elevation
for eight primary (M2, S2, N2, K2, K1, O1, P1, andQ1) and
two long-period (Mf and Mm) harmonic constituents. The
methods used to compute the model are described in detail
by Egbert et al. (1994) and Egbert and Erofeeva (2002).

2.3 Cyclone model

The meteorological driving forces underlying storm surges
consist of wind stress and an atmospheric pressure gradient.
Therefore, determining the wind field and the pressure field
of a tropical cyclone is indispensable for conducting cyclone
surge calculations.

In the present study, the atmospheric pressure field derived
from cyclostrophic flow can be expressed as follows (Jeles-
nianski, 1965):

Pr = Pc +
1
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, for0 ≤ r ≤ Rmax (7a)
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wherePc = the pressure at the typhoon center;Pn = the am-
bient pressure and was assumed to be equal to 1013 hPa;r =

the radius which is the distance from the typhoon center; and
Rmax = the radius of the maximum wind. Following Graham
and Nunn (1959),Rmax is represented by the following equa-
tion:

Rmax = 28.52tanh[0.0873(φ − 28)]

+ 12.22/exp
[
(1013− Pc)

/
33.86

]
+ 0.2Vf + 32.77,

whereφ is the latitude of the typhoon center andVf is the
forward speed of the typhoon.

The wind field comprises a rotational and a translational
component. At a distance,r, from the center of the typhoon,
the rotational wind speed,Vr, is described by the following
equation (Young and Sobey, 1981):
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/
Rmax)] for r < Rmax (8a)

Vr=Vmax · exp[(0.0025Rmax+0.05)(1−r
/
Rmax)]

for r ≥ Rmax, (8b)

whereVmax = 6.3(1013.0− P0)
1/2.

The translational component of wind field,Vt, can be ex-
pressed as

Vt = −0.5Vf · (−cosϕ), (9)

whereVf is the moving speed of typhoon andϕ is the angle
between the radial arm and the line of maximum wind.

The resultant wind speed (Vw) inside the typhoon is given
as

Vw = Vr + Vt. (10)

2.4 Geological structure of the model

The computational domain in the Asian marginal seas and
the western Pacific Ocean includes the region within the lon-
gitudes 117◦ E to 125◦ E and the latitudes 21◦ N to 28◦ N.
The digital terrain model (DTM) bathymetric data were ob-
tained from the Global Topography data bank of the Univer-
sity of California, San Diego, and from the Ocean Data Bank
of the National Science Council, Taiwan. Figure 1a shows the
bathymetric map and the locations of the tidal gauge stations
on the east coast of Taiwan. To save computational time and
fit the coastline, coarse grids were generated in coastal seas,
whereas fine grids were used in shallow areas close to the
coastline. The modeling domain consisted of 18 543 unstruc-
tured triangular elements and 9560 nodes (Fig. 1b). To fit
the raw bathymetric data and simply define the open bound-
ary conditions at corner points, rectangular area (see Fig. 1b)
was adopted in the modeling domain. For this model grid, a
time step of1t = 20 s was used in simulations, which was
intended to maintain the Courant number less than 0.5 and
showed no sign of instability.

3 Artificial neural network (ANN) models

In the present study, two ANN models, including BPNN and
ANFIS, were introduced. The algorithms of these two ANN
models are described as follows.

3.1 Back propagation neural network (BPNN)

A back propagation neural network (BPNN) was used to
amend the simulated water levels with the two-dimensional
hydrodynamic model for precise predictions. The BPNN,
which was proposed by Rumelhart et al. (1986), is a multiple-
layer network with nonlinear differentiable transfer functions
including input layer, hidden layer, and output layer.

 27

 646 
 647 
 648 
 649 
 650 
 651 
 652 
 653 
 654 
 655 

Fig. 2. Architecture of the back propagation neural network (BPNN). 656 
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Fig. 2. Architecture of the back propagation neural network
(BPNN).

Figure 2 shows the architecture of the BPNN. In this fig-
ure, “Trans.” represents the transfer function. The connec-
tions between input and hidden layer neurons and between
hidden and output layer neurons can be illustrated by the
Eqs. (11) and (12), respectively.

a1 = f (IW × Pi+ b1) (11)

a2 = f (LW × a1+ b2) (12)

wherea1 anda2 are the values of the hidden layer and the
output layer, respectively; Pi is the input vector; IW andb1
are weights and biases, respectively, between the input layer
and the hidden layer; and LW andb2 are weight and biases,
respectively, between the hidden layer and the output layer.

A hyperbolic tangent sigmoid transfer function in Eq. (13)
is used in the hidden layer.

f (x) =
2(

1+ e−2x
)
− 1

(13)

And a linear transfer function in Eq. (14) is applied in the
output layer.

f (x) = x (14)

To scale the inputs and targets, the normalized equation is
often used in Eq. (15) so that the data always fall within a
specified range.

YN = (ymax− ymin) ×

(
xi − xmin

xmax− xmin

)
+ ymin, (15)

whereYN is the value after normalization;xmin andxmax de-
note the minimum and maximum of the data, respectively;
andymin andymax are taken as−1 and 1. The performance
of the network can be evaluated according to the mean square
error (MSE) in Eq. (16):

MSE=

N∑
i=1

(a2 − yi)
2

N
, (16)

whereyi represents the observed value andN is the total
number of data. When the leaning performance (MSE) is less
than a tolerance value, the iteration terminates. The tolerance
value, 10−3, was adopted in this model.
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In the present study, BPNN updates weight and bias val-
ues according to the Fletcher–Powell conjugate gradient
(Fletcher and Powell, 1963). The BPNN model was per-
formed in MATLAB where the Fletcher–Powell conjugate
gradient technique is applicable in the Neural Network Tool-
box.

3.2 Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS is a multilayer feed-forward neural network where
each node executes a particular function based on the incom-
ing signals. The symbols with square and circle nodes are
applied to stand for different properties of adaptive learning
(see Fig. 3). In order to yield the desired input–output char-
acteristics, the parameters of adaptive learning are updated
according to the gradient learning rules. ANFIS learns the
rules and membership functions from data sets (Jang, 1993).
The primary weakness of the ANFIS model is consuming
much time for the training and parameter determination. In
this study, ANFIS takes about 20 min to complete the train-
ing and verification, while the BPNN spends 10 s only.

Essentially, the fuzzy inference system has two input vari-
ables,x1 andx2, and one output variable,y. The assumption
is that the rule base includes two fuzzy if-then rules with a
first-order Sugeno fuzzy model (Takagi and Sugeno, 1985):

Rule 1: Ifx1 is A1 andx2 is B1, theny1 = p1x1+q1x2+r1
Rule 2: Ifx1 isA2 andx2 isB2, theny2 = p2x1+q2x2+r2,

whereAi andBi are the fuzzy sets andpi , qi andri are the
design parameters that will be determined during the train-
ing and verification processes. The architecture of ANFIS
is shown in Fig. 3, where circles represent fixed nodes and
squares indicate adaptive nodes. A brief introduction of the
ANFIS model follows.

Input nodes (Layer 1): Each nodei in this layer is a square
node (see Fig. 3). The node function can be expressed as

O1,i = µAi (x1) , i = 1,2 (17)

O1,i = µBi−2 (x2) , i = 3,4 (18)

wherex1 andx2 are the inputs to nodei; Ai andBi are the
linguistic labels; andµAi

andµBi−2 indicate the membership
function for theAi andBi linguistic labels, respectively. In
this study, the following bell-shaped membership function is
applied:

µAi
=

1

1+

∣∣∣ x1−ci

ai

∣∣∣2bi
µBi−2=

1

1+

∣∣∣ x2−ci

ai

∣∣∣2bi
, (19)

where ai,bi and ci are the parameter sets which are the
premise parameters in this layer.

Rule nodes (Layer 2): In this layer, every node indicates
a circle node labeledM (Fig. 3). The outputs of this layer,
named firing strengths (O2,i), are the products of the cor-
responding degrees which are obtained from input layer
(Layer 1).

O2,i = wi = µAi (x1) × µBi (x1) , i=1,2 (20)
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Fig. 3. Architecture of the adaptive network-based fuzzy interface system (ANFIS). 666 
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Fig. 3. Architecture of the adaptive network-based fuzzy interface
system (ANFIS).

Average nodes (Layer 3): in this layer, every node presents
a circle node labeledN (Fig. 3). This layer includes fixed
nodes which calculate the ratio of the firing strengths of the
rules:

O3,i = w̄i =
wi

w1 + w2
, i = 1,2. (21)

Consequent nodes (Layer 4): The nodes in this layer are
adaptive. The output of each node, which is a first-order poly-
nomial, is the product of the normalized firing strength. The
output can be illustrated as

O4,i = w̄iyi = w̄i(pix + qiy + ri), i=1,2. (22)

The parameters,pi,qi, and ri , in this layer indicate the
coefficients of linear combination.

Output nodes (Layer 5): The single node calculates the
overall output by integrating all of the input signals.

O5,1 =

2∑
i=1

w̄iyi =

2∑
i=1

wiy

w1 + w2
(23)

The detailed algorithms of ANFIS technique can be found in
Jang et al. (1993) and Nayak et al. (2004).

3.3 Indices of simulation performance

To evaluate the performance of the two-dimensional hydro-
dynamic model and the ANN model, three criteria were
adopted to compare the predicted results and the obser-
vational data: the mean absolute error (MAE), root-mean-
square error (RMSE), and peak error (PE). These criteria are
defined by the following equations:
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Table 1.The performance of the two-dimensional hydrodynamic model, BPNN model, and ANFIS model for predicting water level during
the training (calibration) phase at different stations.

Method
Suao Port Hualien Port Chenggong Fish Port

PE MAE RMSE PE MAE RMSE PE MAE RMSE
(%) (m) (m) (%) (m) (m) (%) (m) (m)

Calibration with two-dimensional
hydrodynamic model

23.52 0.17 0.23 21.57 0.20 0.25 23.28 0.24 0.29

Training with BPNN model −15.19 0.15 0.20 −17.04 0.21 0.26 −23.43 0.16 0.21
Training with ANFIS model 1.91 0.11 0.16 1.24 0.16 0.21 −0.82 0.11 0.15

Note: PE represents peak error; MAE represents mean absolute error; and RMSE represents root-mean-square error.
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Fig. 4.Tracks of Typhoon Mindulle (2004), Typhoon Sepat (2007),
and Typhoon Kalmaegi (2008) for hydrodynamic model calibration
(ANN training).

MAE =
1

N

N∑
i=1

|(Ym)i − (Yo)i | (24)

RMSE=

√√√√ 1

N

N∑
i=1

[(Ym)i − (Yo)i]2, (25)

PE=
Ym,peak− Yo,peak

Yo,peak
× 100 % (26)

whereN is the total number of data;Ym is the predicted water
level; Yo is the observational water level;Ym,peak is the pre-
dicted peak water level; andYo,peakis the observational peak
water level. The negative PE represents that the model under-
predicts the peak observed water level, while the positive PE
means that the model overpredicts the peak water level.

4 Model validity

Five data sets were used to determine the practical accu-
racy of the model and to ascertain its predictive capabilities.
Typhoon Mindulle (2004), Typhoon Sepat (2007), and Ty-
phoon Kalmaegi (2008) (792 hourly water level data) were

 30
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Fig. 5. Tracks of Typhoon Fungwoug (2008) and Typhoon Fanapi (2010) for 718 
hydrodynamic model verification (ANN verification). 719 
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Fig. 5. Tracks of Typhoon Fungwoug (2008) and Typhoon
Fanapi (2010) for hydrodynamic model verification (ANN verifi-
cation).

employed for hydrodynamic model calibration (ANN model
training), while Typhoon Fungwoug (2008) and Typhoon
Fanapi (2010) (480 hourly water level data) were adopted for
hydrodynamic model verification (ANN model verification).
Figures 4 and 5 show the paths of these five typhoon events
for model calibration (ANN training) and model verification
(ANN verification).

4.1 Hydrodynamic model calibration and ANN model
training

The terminologies for model comparisons, such as the train-
ing and verification phases with the ANN model (BPNN and
ANFIS approaches), were used as analogs for the calibration
and validation with the two-dimensional hydrodynamic (AD-
CIRC) model, respectively. The scatter plot of simulated and
observed water level using two-dimensional hydrodynamic
model is shown in Fig. 6. The hydrodynamic model obvi-
ously underpredicts storm surge height. Table 1 shows the
PE, MAE, and RMSE for the model calibration. The maxi-
mum PE, MAE, and RMSE values for Chenggong Fish Port
are 23.28 %, 0.24 m and 0.29 m, respectively.

Due to the failure in simulating surge height of the
two-dimensional hydrodynamic model as the typhoon

Nat. Hazards Earth Syst. Sci., 12, 3799–3809, 2012 www.nat-hazards-earth-syst-sci.net/12/3799/2012/
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Fig. 6. Scatter plot of simulated and observed water level using two-dimensional 733 
hydrodynamic model for the model calibration at (a) Suao Port, (b) Hualien Port, and 734 
(c) Chenggong Fish Port.  735 

Fig. 6. Scatter plot of simulated and observed water level using
two-dimensional hydrodynamic model for the model calibration at
(a) Suao Port,(b) Hualien Port, and(c) Chenggong Fish Port.

approached Taiwan, ANN models including BPNN and AN-
FIS were adopted to improve the water level calculations
of the two-dimensional hydrodynamic model. BPNN struc-
tures for the Suao Port serve as an example and are shown
in Fig. 7. The input layer includes wind speed, wind direc-
tion, and air pressure generated from cyclone model (CM) as
well as the simulated water level at the Suao Port using the

 32

 736 
 737 
 738 
 739 
 740 
 741 
 742 
 743 

Fig. 7. BPNN structures for Suao Prot. Notably, CM represents the simulated data 744 
from cyclone model, and ADCIRC represents the simulated water level, which was 745 
obtained from the two-dimensional hydrodynamic model (ADCIRC). 746 
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Fig. 7. BPNN structures for Suao Prot. Notably, CM represents
the simulated data from cyclone model, and ADCIRC represents
the simulated water level, which was obtained from the two-
dimensional hydrodynamic model (ADCIRC).
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Fig. 8. (a) Variation in the mean square error (MSE) with iterations and (b) the effect 765 
of the number of nodes in the hidden layer on the root mean square error (RMSE) for 766 
Suao Port. 767 
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Fig. 8. (a)Variation in the mean square error (MSE) with iterations
and(b) the effect of the number of nodes in the hidden layer on the
root-mean-square error (RMSE) for Suao Port.

two-dimensional hydrodynamic model, and the output layer
is the predicted water level at the Suao Port.

Figure 8a shows relationship between the mean square er-
ror (MSE) and the number of iterations for the Suao Port
during the training and verification phases. The MSE did not
significantly change when the number of iterations exceeded
300. Therefore, 400 iterations were adopted for BPNN train-
ing and verification. In this study, a learning rate of 0.01 and
a momentum coefficient of 0.3 were used. Figure 8b presents
the influence of different number of hidden nodes on the
RMSE for BPNN training and verification phases. To yield
the optimal number of nodes in the hidden layer, 16 hidden
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Table 2.The parameters used in the BPNN model.

Parameters Suao Hualien Chenggong
Port Port Fish Port

Learning rate 0.01 0.01 0.01
Momentum 0.3 0.3 0.3
Iteration 400 400 400
Input nodes 4 4 4
Hidden nodes 16 16 17
Output nodes 1 1 1

nodes in the BPNN model were chosen during the training
and verification phases. Table 2 shows the parameters used
in the BPNN model.

The statistical errors of performance with the BPNN
model for predicting water level during the training phase are
shown in Table 1. Overall, the BPNN model does not sig-
nificantly improve the prediction of water level. The MAE
values at Suao Port and Hualien Port for the BPNN model
are greater than that for the two-dimensional hydrodynamic
model. The maximum values of PE, MAE, and RMSE are
−23.43 % at Chenggong Fish Port, 0.21 m, and 0.26 m at
Hualien Port, respectively.

Table 1 also shows the performance evaluations for pre-
dicting the water levels at different stations using the ANFIS
model. The prediction of water level with the ANFIS model
is better than that with the two-dimensional hydrodynamic
model and the BPNN model. This table indicates that the
PE, MAE, and RMSE values at Suao Port, Hualien Port, and
Chenggong Fish Port of the ANFIS model are less than those
of the two-dimensional hydrodynamic model and the BPNN
model. The maximum PE, MAE, and RMSE values for AN-
FIS training phase are 1.91 %, 0.16 m, and 0.21 m, respec-
tively. A comparison of the results indicates that the ANFIS
technique is successfully used in predicting the astronomical
tide level and storm surge height.

4.2 Hydrodynamic model verification and ANN model
verification

The verification results with the two-dimensional hydrody-
namic model for simulating the water levels at different lo-
cations during the period of Typhoon Fanapi (2010) are il-
lustrated in Fig. 9. Due to space limitations, we only show
the modeling results during Typhoon Fanapi (2010). The nu-
merical model reproduces the astronomical tide level, but it
fails to simulate water levels when the storm surge occurred
on 19 September 2010. The hydrodynamic model underpre-
dicts the storm surge height. Table 3 shows the PE, MAE,
and RMSE for model verification. The results indicate that
the PE, MAE, and RMSE values at Suao Port and Hualien
Port are less than those at Chenggong Fish Port.

Through the model calibration and verification proce-
dures, the horizontal eddy viscosity parameter in Eq. (4) is
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Fig. 9. Comparison of the observed (circle mark) and simulated (black line) water 776 
levels for the two-dimensional hydrodynamic model verification at (a) Suao Port, (b) 777 
Hualien Port, and (c) Chenggong Fish Port during Typhoon Fanapi (2010). 778 
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Fig. 9. Comparison of the observed (circle mark) and simulated
(black line) water levels for the two-dimensional hydrodynamic
model verification at(a) Suao Port,(b) Hualien Port, and(c) Cheng-
gong Fish Port during Typhoon Fanapi (2010).

5.0 m2 s−1. A constant minimum bottom friction coefficient
of Cfmin =0.003, break depth ofHbreak= 10 m, and two di-
mensionless parameters ofθ = 10 andγ = 1/3 were used.

Figure 10 shows the prediction of water level at different
stations by the BPNN model during the verification phase.
The BPNN model fails to modify the prediction of storm
surge height at Hualien Port and Chenggong Fish Port com-
pared to the simulated results of the two-dimensional hydro-
dynamic model (Fig. 9). Because BPNN model predicts tide
and storm surge based upon the inputs, a large peak error
at the Chenggong Fish Port can be taken into account – a
bad prediction with BPNN model (Fig. 10c and Table 3).
The PE, MAE, and RMSE values at Suao Port, Hualien Port,
and Chenggong Fish Port with the BPNN model are higher
than with the two-dimensional hydrodynamic model (see Ta-
ble 3). Table 3 also indicates that the maximum PE, MAE,
and RMSE values are−43.89 %, 0.23 m, and 0.28 m, respec-
tively, for the BPNN verification phase.

Figure 11 presents the prediction of water level at dif-
ferent stations by the ANFIS model during the verification
phase. The simulated water level with the ANFIS model is
better than with the two-dimensional hydrodynamic model
and the BPNN model. It indicates that the ANFIS model sat-
isfactorily mimics the observed astronomical tide level and
surge height. Table 3 also indicates that the PE, MAE, and
RMSE values at Suao Port, Hualien Port, and Chenggong
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Table 3.The performance of the two-dimensional hydrodynamic model, BPNN model, and ANFIS model for predicting water level during
the verification phase at different stations.

Method
Suao Port Hualien Port Chenggong Fish Port

PE MAE RMSE PE MAE RMSE PE MAE RMSE
(%) (m) (m) (%) (m) (m) (%) (m) (m)

Verification with two-dimensional
hydrodynamic model

−7.16 0.13 0.16 −1.49 0.17 0.20 −20.30 0.19 0.23

Verification with BPNN model −36.10 0.17 0.21 −32.94 0.21 0.25 −43.89 0.23 0.28
Verification with ANFIS model −2.16 0.07 0.10 0.61 0.10 0.14 −13.77 0.11 0.16

Note: PE represents peak error; MAE represents mean absolute error; and RMSE represents root-mean-square error.
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Fig. 10. Comparison of the observed (circle mark) and simulated (black line) water 791 
levels for the BPNN model in the verification phase at (a) Suao Port, (b) Hualien Port, 792 
and (c) Chenggong Fish Port during Typhoon Fanapi (2010). 793 
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Fig. 10. Comparison of the observed (circle mark) and simulated
(black line) water levels for the BPNN model in the verification
phase at(a) Suao Port,(b) Hualien Port, and(c) Chenggong Fish
Port during Typhoon Fanapi (2010).

Fish Port with the ANFIS model are less than those with the
two-dimensional hydrodynamic model and BPNN model.
The maximum PE, MAE, and RMSE values are−13.77 %,
0.11 m and 0.16 m, respectively, at Chenggong Fish Port for
the ANFIS verification phase. The ANFIS model is success-
fully employed to improve the prediction of water level dur-
ing typhoon events.

The degree to which uncertainty in the prediction of tidal
elevations may influence the prediction of surge through
tide–surge interactions is of interest. Formal solutions for
the propagation of an externally forced tide and surge
into an estuary of uniform section were developed by
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Fig. 11. Comparison of the observed (circle mark) and simulated (black line) water 803 
levels for the ANFIS model in the verification phase at (a) Suao Port, (b) Hualien Port, 804 
and (c) Chenggong Fish Port during Typhoon Fanapi (2010). 805 
 806 
 807 
 808 

Fig. 11. Comparison of the observed (circle mark) and simulated
(black line) water levels for the ANFIS model in the verification
phase at(a) Suao Port,(b) Hualien Port, and(c) Chenggong Fish
Port during Typhoon Fanapi (2010).

Proudman (1955, 1957). He concluded that there are effects
of shallow water and bottom friction on the timing and mag-
nitude of high water, both for standing wave and progres-
sive wave. Rossiter (1961) assumed idealized surge with di-
urnal periodicity and showed how a negative surge would re-
tard tidal propagation, whereas a positive surge would ad-
vance high water through a combination of depth affecting
the wave propagation speed and depth-dependent frictional
terms in the equation of motion. Prandle and Wolf (1978)
reported tide–surge interactions resulting in a decrease of
the peak surge elevation and that the effect can be local-
ized, increasing in direct propagation to surge height and
tidal range. Wolf (1981) used a one-dimensional analytical
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model to demonstrate that the shallow water effect becomes
dominant over quadratic friction for tidal amplitudes in ex-
cess of 3 m and in depth of 10 m or less.

Recently, Bernier and Thompson (2006) performed a two-
dimensional barotropic ocean model in the northwest At-
lantic and adjacent shelf seas and showed that the nonlin-
ear parameterization of bottom stress is the principle con-
tributor to their model tide–surge interaction off east coast of
Canada and northeastern United States. Horsburgh and Wil-
son (2007) developed a simple mathematical explanation for
surge clustering on the rising tide and proved that because
of the interaction of the two signals, the peak of large surge
events would typically avoid the high tide period by 3–5 h,
with a secondary clustering within 1–2 h. Phase shifts oc-
cur in both the tide and the surge signals because of tide–
surge interactions. This is because both signals are shallow
water waves whose phase speed is given as(gh)1/2 whereh

is the depth andg is the acceleration due to gravity. Zhang
et al. (2010) studied the tide–surge interactions in the Taiwan
Strait using the numerical model, NCTSM (two-way Nested
Coupled Tide-Surge Model). They showed that the processes
leading to the alteration of water elevations due to the tide–
surge interactions can be classified into three nonlinear ef-
fects: nonlinear advective effects, nonlinear bottom stress ef-
fects, and nonlinear shallow water effects.

Ippen (1966) classified water waves according to the ra-
tio of water depth (h) to the wavelength (L). The ratioh/L

is called the “relative depth”. For the small amplitude wave
theory, the equations expressing the various wave character-
istics are greatly simplified; the ratioh/L lies within certain
ranges. If the relative depth is below 1/20, then the depth
is small in comparison with the wavelength and the waves
are termed “shallow water” waves (the term “long wave”);
if the ratio is greater than 1/2, the waves are called “deep
water” waves (also “short waves”). For 1/20< h/L < 1/2,
the waves are called “intermediate depth” waves, and in this
range the wave equations do not simplify. However, in a large
number circumstances the waves are either in the “shallow
water” or “depth water” category. The propagation of tides
is attributed to long wave which has longer wavelength com-
pared with the shorter (high-frequency) surge components.
The wave propagation is quite different depending on the
localized nature of tide–surge interaction in shallow water
zones.

Tide–surge interactions are one of the most important
problems in the study and affect the prediction of storm
surges. However the study of tide–surge interactions is be-
yond the scope of present research. In the future work, the
complex characteristics of tide–surge interactions off east
coast of Taiwan can be investigated with the numerical model
and dynamic analysis.

5 Conclusions

A high-resolution, two-dimensional, hydrodynamic model
(ADCIRC), which uses an unstructured grid, was applied to
simulate the astronomical tide level and storm surge height.
To save computational time and fit the coastline boundary,
coarse grids were generated in coastal seas, whereas fine
grids were used in shallow areas close to the coastline. A
global ocean tidal model developed by Oregon State Univer-
sity, the TOPEX/Poseidon Global Inverse Solution (TPXO),
is used to specify the open boundaries of ADCIRC for sim-
ulating tidal propagation in the sea. A cyclone model is used
for the meteorological conditions. Five typhoon events, Ty-
phoon Mindulle (2004), Typhoon Sepat (2007), and Typhoon
Kalmaegi (2008), Typhoon Funfwoug (2008) and Typhoon
Fanapi (2010), were used for model calibration and verifi-
cation. To determine the performance of the hydrodynamic
model and the ANN model, three criteria (i.e. the peak error,
PE; mean absolute error, MAE; and the root-mean-square er-
ror, RMSE) were adopted to evaluate the model results and
the observational data.

We found that the hydrodynamic model can satisfactorily
reproduce the astronomical tide level but fails to mimic the
storm surge height for the model calibration and verifica-
tion phase. Therefore, the ANN model including the BPNN
model and the ANFIS model was applied to amend the poor
predictions in storm surge height during typhoon events with
the two-dimensional hydrodynamic model. The simulation
results reveal that the BPNN model can reproduce the as-
tronomical tide but fails to improve the prediction of water
level during storm surge. Moreover, the ANFIS model pre-
dicts both the astronomical tide level and the surge height
and shows the lowest PE, MAE, and RMSE values at Suao
Port, Hualien Port, and Chenggong Fish Port compared to the
simulated results with the two-dimensional hydrodynamic
model and the BPNN model. This study asserts that the AN-
FIS technique can be successfully employed in the prediction
of water levels along the east coast of Taiwan during typhoon
events.

In complex near shore regions, a high degree of uncer-
tainty in predicted tides may induce uncertainty in the surge
if tide–surge interactions are significant. The coasts in Tai-
wan have complex topography and bathymetry. Therefore,
the tide–surge interactions off east coast of Taiwan will be
studied with hydrodynamic modeling and dynamic analysis
in the future.

Acknowledgements.The project was funded by the National
Science Council, Taiwan, grant Nos. NSC 98-2625-M-239-001,
99-2625-M-239-001, 100-2625-M-239-001 and International
Research-Intensive Centers of Excellence (I-RICE) in Taiwan-
Supercomputing Research Center, under grant No. NSC 103-2911-
I-006-301. The authors would like to express their appreciation to
the Taiwan Center Weather Bureau for providing the observational
data. Appreciation and thanks are also given to two reviewers for
their constructive comments and suggestions to improve this paper.

Nat. Hazards Earth Syst. Sci., 12, 3799–3809, 2012 www.nat-hazards-earth-syst-sci.net/12/3799/2012/



W.-B. Chen et al.: Predicting typhoon-induced storm surge tide 3809

Edited by: S. Tinti
Reviewed by: D. Prandle and one anonymous referee

References

Bajo, M. and Umgiesser, G.: Storm surge forecast through a com-
bination of dynamic and neural network models, Ocean Model.,
33, 1–9, 2010.

Bernier, N. B. and Thopmson, K. R.: Predicting the frequency of
storm surges and extreme sea levels in the northwest Atlantic, J.
Geophys. Res., 111, C10009,doi:10.1029/2005JC003168, 2006.

De Oliveira, M. M. F., Ebecken, N. F. F., De Oliveira, J. L. F., and
De Azevedo Santos, I.: Neural network model to predict a storm
surge, J. Appl. Meteorol. Climatol., 48, 143–155, 2009.

Dietsche, D., Hagen, S. C., and Bacopoulos, P.: Storm surge simula-
tion for Hurricane Hugo (1989): on the significance of inundation
areas, J. Waterw. Port Coast. Ocean Eng., 133, 183–191, 2007.

Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of
barotropic ocean tides, Journal of Atmos. Ocean. Technol., 19,
183–204, 2002.

Egbert, G. D., Bennett, A. F., and Foreman, M. G.:
TOPEX/POSEIDON tides estimated using a global inverse
model, J. Geophys. Res., 99, 24821–24852, 1994.

Etala, P.: Dynamic issues in the SE South America storm surge
modeling, Nat. Hazards, 51, 79–95, 2009.

Filippo, A., Torres Jr., A. R., Kjerfve, B., and Monat, A.: Applica-
tion of artificial neural network (ANN) to improve forecasting of
sea level, Ocean Coast. Manage., 55, 101–110, 2012.

Fletcher, R. and Powell, M. J. D.: A rapid convergent descent
method for minimization, Comput. J., 6, 163–168, 1963.

Graham, H. E. and Nunn, D. E.: Meteorological conditions perti-
nent to standard project hurricane, Atlantic and Gulf Coasts of
United States, National Hurricane Research Project, Report No.
3, US Weather Service, 1959.

Grenier, R. R., Luettich, R. A., and Westerink, J. J.: A comparison
of the nonlinear frictional characteristics of two-dimensional and
three-dimensional models of a shallow water tidal embayment, J.
Geophys. Res., 100, 13719–13735, 1995.

Herman, A., Kaiser, R., and Niemeyer, H. D.: Modelling of a
medium-term dynamics in a shallow tidal sea, based on com-
bined physical neural network methods, Ocean Model., 17, 277–
299, 2007.

Horsburgh, K. J. and Wilson, C.: Tide-surge interaction and its role
in the distribution of surge residuals in the North Sea, J. Geophys.
Res., 112, C08003,doi:10.1029/2006JC004033, 2007.

Ippen, A. T.: Estuary and coastline hydrodynamics, McGraw-Hill
Inc., 1–92, 1966.

Jang, J. S. R.: 1 ANFIS: adaptive-network-based fuzzy inference
system, IEEE Trans. Syst. Man Cybern., Part A-Syst. Hum., 23,
665–685, 1993.

Jelesnianski, C. P.: A numerical calculation of storm tides induced
by a tropical storm impinging on a continental shelf, Mon.
Weather Rev., 93, 343–358, 1965.

Kolar, R. L. and Gray, W. G.: Shallow water modeling in small wa-
ter bodies, edited by Gambolati, G., Computational Methods in
Surface Hydrology, WIT Press, Billerica, Massachusetts, 149–
155, 1990.

Kolar, R. L., Gray, W. G., Westerink, J. J., and Luettich, R. A.:
Shallow water modeling in spherical coordinates-equation for-
mulation, numerical implementation and application, J. Hydraul.
Res., 32, 3–24, 1994.

Luettich, R. A., Westerink, J. J., and Scheffner, N. W.: ADCIRC:
An advanced three-dimensional circulation model for shelves,
coasts, and estuaries, Report I: theory and methodology of
ADCIRC-2DDI and ADCIRC-3DL, US Army Corps of Engi-
neers, Technical Report DRP-92-6, 1992.

Nayak, P. C., Sudheer, K. P., Ragan, D. M., and Ramasastri, K. S.:
A neuro fuzzy computing technique for modeling hydrological
time series, J. Hydrol., 291, 52–66, 2004.

Prandle, D. and Wolf, J.: The interaction of surge and tide in the
North Sea and River Thames, Geophys. J. Astron. Soc., 55, 203–
216, 1978.

Proudman, J.: The propagation of tide and surge in an estuary, Proc.
R. Soc. Lond., A231, 8–24, 1955.

Proudman, J.: Oscillations of tide and surge in an estuary of finite
length, J. Fluid Mech., 2, 371–381, 1957.

Rego, J. L. and Li, C.: Storm surge propagation in Galveston Bay
during Hurricane Ike, J. Mar. Syst., 82, 265–279, 2010.

Rossiter, J. R.: Interaction between tide and surge in the Thames,
Geophys. J. R. Astron. Soc., 6, 29–53, 1961.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning rep-
resentations by back-propagating errors, Nature, 323, 533–536,
1986.

Shen, J., Wang, H. V., Sisson, M., and Gong, W.: Storm tide simu-
lation in the Chesapeake Bay using an unstructured grid model,
Estuar. Coast. Shelf Sci., 68, 1–16, 2006.

Takagi, T. and Sugeno, M.: Fuzzy identification of systems and its
applications to modeling and control, IEEE Trans. Syst. Man Cy-
bern., 15, 116–132, 1985.

Westerink, J. J., Luettich, R. A., and Muccino, J. C.: Modeling tides
in the Western North Atlantic using unstructured graded grids,
Tellus Ser. A-Dyn. Meteorol. Oceanol., 46, 178–199, 1994.

Wolf, J: Surge-tide interaction in the North Sea and River Thames,
Floods die to High Winds and Tides, edited by: Peregrine, D. H.,
Elsevier, New York, 75–94, 1981.

Xia, M., Xia, L., Pietrafesa, L. J., and Peng, M.: A numerical study
of storm surge in the Cape Fear River Estuary and adjacent coast,
J. Coast. Res., 24, 159–167, 2008.

You, S. H. and Seo, J. W.: Storm surge prediction using an artificial
neural network model and cluster analysis, Nat. Hazards, 51, 97–
114, 2009.

You, S. H., Lee, W. J., and Moon, K. S.: Comparison of storm
surge/tide predictions between a 2-D operational forecast sys-
tem, the regional tide/storm surge model (RTSM), and the 3-D
regional ocean modeling system (ROMS), Ocean Dyn., 60, 443–
459, 2010.

Young, I. R. and Sobey, R. J.: The numerical prediction of tropi-
cal cyclone wind-waves, Department of Civil and Systems Engi-
neering, James Cook University of North Queensland, Townville,
Research Bulletin No. CS20, 1981.

Zhang, W., Shi, F., Hong, H., Shang, S., and Kirby, J.: Tide-surge
intensified by the Taiwan Strait, J. Geophys. Res. 115, C06012,
doi:10.1029/2009JC005762, 2010.

www.nat-hazards-earth-syst-sci.net/12/3799/2012/ Nat. Hazards Earth Syst. Sci., 12, 3799–3809, 2012

http://dx.doi.org/10.1029/2005JC003168
http://dx.doi.org/10.1029/2006JC004033
http://dx.doi.org/10.1029/2009JC005762

