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Abstract. Wave-induced extreme water levels in the Puerto
Morelos fringing reef lagoon are investigated by means of
a phase-resolving non-hydrostatic wave model (SWASH).
This model solves the nonlinear shallow water equations in-
cluding non-hydrostatic pressure. The one-dimensional ver-
sion of the model is implemented in order to investigate
wave transformation in fringing reefs. Firstly, the numeri-
cal model is validated with (i) laboratory experiments con-
ducted on a physical model (Demirbilek et al., 2007) and (ii)
field observations (Coronado et al., 2007). Numerical results
show good agreement with both experimental and field data.
The comparison against the physical model results, for ener-
getic wave conditions, indicates that high- and low-frequency
wave transformation is well reproduced. Moreover, extreme
water-level conditions measured during the passage of Hur-
ricane Ivan in Puerto Morelos are also estimated by the nu-
merical tool. Subsequently, the model is implemented at dif-
ferent along-reef locations in Puerto Morelos. Extreme water
levels, wave-induced setup, and infragravity wave energy are
estimated inside the reef lagoon for different storm wave con-
ditions (Hs > 2 m). The numerical results revealed a strong
correlation between the offshore sea-swell wave energy and
the setup. In contrast, infragravity waves are shown to be the
result of a more complex pattern which heavily relies on the
reef geometry. Indeed, the southern end of the reef lagoon
provides evidence of resonance excitation, suggesting that
the reef barrier may act as either a natural flood protection
morphological feature, or as an inundation hazard enhancer
depending on the incident wave conditions.

1 Introduction

Fringing reefs are ubiquitous on tropical regions and are
thought to provide natural shore protection during extreme
wave events. The wave breaking at the shallow reef barrier
induces radiation stress gradients, which are balanced by the
water level increase inside the reef lagoon (i.e. setup). On
the other hand, long- or infragravity (IG) waves, travelling
with the short-wave group, are able to propagate into the reef
lagoon with less dissipation. Resonant conditions develop if
the incident group frequency is similar to the natural reso-
nant frequency within the basin (Mei, 1983). Previous stud-
ies have shown that this physical mechanism can increase
the coastal flooding hazard (e.g.Péquignet et al., 2009), and
hence its contribution to the wave-induced water level vari-
ability needs to be considered.

The understanding of wave transformation in this en-
vironment has motivated several mathematical (Symonds
et al., 1995) and experimental investigations (Seelig, 1983;
Gourlay, 1994; Demirbilek et al., 2007). Prior studies (e.g.
Massel and Gourlay, 2000) employed linear wave theory
to estimate the wave setup inside the lagoon. Furthermore,
spectral wave models, like SWAN (Booij et al., 1999), have
demonstrated to be a valuable tool for understanding the
role of waves on the reef-lagoon circulation (Lowe et al.,
2009; Marino-Tapia et al., 2011). However, due to the limi-
tations on the parameterizations of wave transformation pro-
cesses (e.g. wave breaking, reflection and triad interactions),
these models cannot fully resolve the wave transformation
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in this environment (Marino-Tapia et al., 2011). Therefore,
the accurate modelling of IG waves transformation on fring-
ing reefs requires the use of phase-resolving nonlinear wave
models which solve triad interactions and wave breaking.

With the recent advances in computational technology, the
use of numerical models based on the nonlinear shallow wa-
ter equations (Kobayashi et al., 1989; Watson and Peregrine,
1992) and the Boussinesq approximation (Wei et al., 1999;
Chen et al., 2003; Lynett, 2006; Cienfuegos et al., 2006) has
become available for modelling nearshore wave transforma-
tion including wave breaking. Only recently, such numerical
models have been applied to study wave transformation on
fringing reefs (e.g.Nwogu and Demirbilek, 2010; Sheremet
et al., 2011; Yao et al., 2012; Roeber and Cheung, 2012).
Nwogu and Demirbilek(2010) validated a Boussinesq-type
model using the data set ofDemirbilek et al.(2007) and
demonstrated the capability of the model for describing non-
linear processes.Sheremet et al.(2011) investigated the ca-
pability of nonlinear spectral wave models, both determin-
istic and stochastic, for the study of wave transformation
on reef environments. However, the wave breaking model
(i.e. Janssen and Battjes, 2007) requires calibration of three
free parameters. Another approach for simulating breaking
waves is the application of numerical models based on the
Reynolds-averaged Navier-Stokes (RANS) equations (e.g.
Lin and Liu, 1998), which have been validated for the study
of breaking waves (Torres-Freyermuth et al., 2007; Pedrozo-
Acuna et al., 2010) and low-frequency wave transformation
(Torres-Freyermuth et al., 2010; Torres-Freyermuth and Hsu,
2010; Lara et al., 2011) in different environments. In a re-
cent study byLanza et al.(2012), the RANS model applica-
tion over fringing reefs demonstrates its potential for describ-
ing reef hydrodynamics. However, the model application in
large-scale domains (> 3 km) is still impractical due to com-
putational constraints.

Limitations in classical nonlinear shallow water models
have been overcome by incorporating wave dispersion in
multi-layered nonlinear shallow water models.Zijlema et al.
(2011) introduced SWASH (Simulating WAves till SHore),
a numerical model based on the nonlinear shallow water
equations including non-hydrostatic pressure. This model
has been demonstrated to be relatively efficient in the study
of rapidly varying flows including wave breaking, wave-
induced setup, and nonlinear wave interactions (Zijlema
et al., 2011). Therefore, the SWASH model should be suit-
able for simulating the wave transformation on fringing reefs.

In the present study, the one-dimensional (1-D) version of
the SWASH model is employed to estimate wave-induced
extreme water levels (i.e. setup and IG waves) in Puerto
Morelos, Mexico. The numerical model allows us to eval-
uate (i) the role of the reef morphology in coastal protection;
and (ii) a conservative estimate of extreme water levels inside
the reef lagoon. It is well known that directional spreading
decreases the energy transfer from high-frequency (hf-) to
low-frequency (lf-) wave components owing to the detuning

Table 1.Cross-reef profile characteristics at different locations.

Transect hr [m] hl [m] W [m]

P0 1.00 6.00 467
P1 1.03 3.00 1409
P2 5.30 5.29 1833
P3 0.82 5.00 1940

from resonance (e.g.Herbers and Burton, 1997). Thus, in the
present study both wave-induced setup and lf-wave contribu-
tion would represent the worst case scenario. Although two-
dimensional processes (e.g. wave diffraction and refraction)
and wind effects are relevant for modelling wave-induced cir-
culation in these environments, they are out of the scope of
this study and hence were not considered.

This paper is organized as follows. In Sect. 2, the reef mor-
phology and storm wave conditions in Puerto Morelos are
briefly described. Then, the model description and its valida-
tion with laboratory (Demirbilek et al., 2007) and field obser-
vations (Coronado et al., 2007) are presented in Sect. 3. Sec-
tion 4 presents the model application to study the dependence
of wave setup, IG wave, and extreme water-levels, inside the
reef lagoon, on the wave forcing/reef geometry. Finally, con-
cluding remarks are given in Sect. 5.

2 Study area

The Puerto Morelos fringing reef lagoon is located at the
north east of the Yucatan Peninsula, in Mexico, 30 km south
of Cancun (Fig. 1). The coast of Puerto Morelos is pro-
tected by a 4 km barrier reef with variable water depthhr
(5.3< hr <0.0 m), creating a reef lagoon of variable widthW

(550< W <1500 m). The lagoon is relatively shallow with an
average depth of 3–4 m and maximum depthhl of 8 m at its
southern inlet (Coronado et al., 2007). The lagoon is con-
nected to the ocean by two gaps/inlets at the north and south,
6 and 8 m deep, respectively. Table 1 presents the reef-lagoon
characteristics at the different along-reef locations depicted
in Fig. 1.

The wave climate in Puerto Morelos is dominated by
easterly swell coming from the Caribbean Sea with occa-
sional influence from the northerly swell generated by winter
storms in the Gulf of Mexico. In this area, waves greater than
2 m are considered as high energy storm conditions (Coro-
nado et al., 2007; Marino-Tapia et al., 2011). The system is
micro-tidal, with average semi-diurnal oscillations of 0.40 m.
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Fig. 1. Location of the study area and reef-lagoon bathymetry. The
numbered circles represent the locations of the cross-reef profiles
extracted for the simulations. The crosses represent wave measure-
ment locations byCoronado et al.(2007).

3 Model description

3.1 Mathematical formulation

We use the open source model SWASH (http://swash.
sourceforge.net), developed at Delft University of Tech-
nology (Zijlema et al., 2011). The model solves the two-
dimensional depth-averaged shallow water equations in
non-conservative form. However, for simplicity the one-
dimensional governing equations, used in this study, are pre-
sented here:
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wheret is time,ζ is the free surface measured from the still
water level,d is the still water depth,h = ζ + d is the to-
tal depth,u is the depth-averaged flow velocity inx direc-
tion,qb is the non-hydrostatic pressure at the bottom,g is the

gravitational acceleration,cf is the friction coefficient,νt is
the horizontal eddy viscosity due to wave breaking and sub-
grid turbulence, andws andwb are the vertical velocity at the
surface and the bottom. The wave breaking is accounted for
in the model by considering the similarity between breaking
waves and bores. To initiate the wave breaking process, steep
bore-like wave fronts need to be tracked. When the steepness
exceeds a fraction of the speed of the wave front such as

∂ζ

∂t
> α

√
gh, (6)

the non-hydrostatic pressure is then neglected and remains so
at the front of the breaker. The parameterα > 0 determines
the onset of the breaking process. A value ofα = 0.6 seems
to work well for different wave conditions (The SWASH
team, 2012). This is in close agreement toLonguet-Higgins
and Fox(1977), who showed thatα = 0.585 is the limiting
slope for waves. The finite difference numerical model dis-
cretizes the vertical direction by means of a fixed number of
layers, and the Courant number is the criterion to control and
adjust dynamically the time step. For more details, interested
readers should refer to the paper byZijlema et al.(2011)
where model equations, coefficient values, and boundary and
initial conditions were first introduced.

3.2 Model validation

The SWASH model has been validated for different ranges
of model applications (Zijlema et al., 2011), but has not for
simulating wave transformation on a fringing reef. Therefore,
model validation is here presented using results from labora-
tory experiments (Demirbilek et al., 2007) and field observa-
tions (Coronado et al., 2007).

3.2.1 Laboratory experiments (Demirbilek et al., 2007)

Laboratory experiments were carried out at the University
of Michigan wind-wave flume (35 m long, 0.7 m wide, and
1.6 m high), equipped with a non-absorbing plunger-type
wavemaker installed at one end and capable of generating
irregular waves (Hs < 10 cm and 0.4< f < 10 Hz). An ide-
alized 1:64 model of a fringing reef (Fig. 2) was built inside,
consisting of a 1:12 beach followed by a 4.8-m-long reef flat
and a composite slope reef face similar to the one used by
Seelig(1983). Free-surface elevation time series were mea-
sured using nine capacitance wave gauges located at different
cross-shore locations (see Fig. 2). Different wave conditions,
including irregular and bichromatic waves, for various water
levels, were run byDemirbilek et al.(2007).

In this study, irregular waves, assuming a JONSWAP spec-
trum withγ = 0.3, for different wave conditions (Hs andTp)
and the same water levelhr were selected for the model vali-
dation (see Table 2). For validation, the numerical model was
forced with the free-surface elevation time series measured at
the offshore sensor WG1. The computational domain was set
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Fig. 2. Cross-reef bathymetry and wave gauge locations in the lab-
oratory experiments byDemirbilek et al.(2007).

Table 2.Simulated cases fromDemirbilek et al.(2007).

Test Hs0 [cm] Tp [s] hr [cm]

26 5.8 1.0 1.6
28 4.7 1.5 1.6
29 7.1 1.5 1.6
31 8.5 2.0 1.6
32 7.9 2.5 1.6

to be 14-m-long with a regular grid of1x = 0.01 m. The bot-
tom friction coefficientcf was set equal to 0.002 and the wave
breaking parameterα equal to 0.6 for all simulated cases.

The peak frequencyfp of the wave spectrum at the off-
shore location was employed in order to define the fre-
quency threshold between high-frequency (f > 0.5fp) and
low-frequency (f < 0.5fp) wave components (see Fig. 3).
The high- (low-) significant wave height is calculated as four
times the standard deviation of the high- (low-) passed wa-
ter level fluctuation. The cross-shore variations of the hf-
and lf- significant wave heights (Hs hf andHs lf, respectively)
for Test 29 are shown in Fig. 4. The hf-wave components
(f > 0.5fp Hz) experience strong energy dissipation due to
wave breaking at the reef crest (Fig. 4a). On the other hand,
the low-frequency wave (f < 0.5fp Hz) is partially transmit-
ted into the reef lagoon and increases its energy with respect
to the offshore conditions as it propagates shoreward. It is
concluded that the numerical model predicts satisfactorily
the measured value at the onshore location WG9 in Test 29
(Fig. 4a and Table 3).

With respect to wave-induced setup, the numerical model
accurately predicts the relatively constant mean water level
above the flat reef-top (e.g. Fig. 4b). Some discrepancies in
the measured and predicted mean water level are observed at
the breaking point (i.e. WG6). These differences have been
also reported in other modelling studies (i.e.Nwogu and
Demirbilek, 2010) employing the same data set.

Table 3 presents the summary of results for the simu-
lated cases of measured and predicted wave setupη, Hs hf,
andHs lf at the onshore sensor (Table 2). In general, a good
agreement between measured and predicted values of water
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Fig. 3. Definition of peak wave frequency (fp), low-frequency (lf-)
and high-frequency (hf-) waves for a given offshore wave spectrum.
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Fig. 4. Numerical model setup and results:(a) High- (red open-
circles: observations; red solid line: model prediction) and low-
frequency significant wave height (blue open-circles: observations;
blue solid line: model prediction) as a function of cross-reef po-
sition for Test 29 (Hs = 7.1 cm andTp = 1.5 s). (b) Wave-induced
setup (black open circles: observations; black solid line: model pre-
diction). (c) Reef-profile.

level statistics is found, with a mean relative error of 7%
for all cases. Larger discrepancies (relative errors of 29%,
13 %, and 13 %) between measured and predicted water level
statistics (Hs hf, η, andHs lf) are found in the less energetic
case (i.e. Test 26), whereas relative errors of only 6% are
found for other cases (e.g. Test 29). By conducting a sensitiv-
ity analysis, with different values ofcf , we found no signifi-
cant differences when thecf value is halved (i.e.cf = 0.001),
whereas increasing thecf value by one order of magnitude
(cf = 0.01) decreases both the hf- and lf-wave height by 18 %
and 32 %, respectively, whereas the wave setup remained un-
changed.
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Fig. 5. Free-surface elevation (sea-swell wave: light, thin line; low-
frequency wave: dark, thick line) as measured at 22 m water depth
(LPM3).

Table 3. (a)Measured and(b) predicted wave-induced setup (η), hf-
(Hs hf) and lf- (Hs lf) significant wave height at the onshore sensor
WG9. Units in cm.

Test η Hs hf Hs lf

(a) Laboratory
26 0.81 0.37 1.43
28 0.99 0.45 1.38
29 1.44 0.62 1.92
31 1.85 0.97 2.95
32 1.97 1.15 3.21

(b) Model
26 0.70 0.48 1.24
28 0.90 0.51 1.42
29 1.35 0.65 1.94
31 1.80 0.95 2.58
32 1.88 1.03 2.91

3.2.2 Field observations (Coronado et al., 2007)

An array of four Aquadopp acoustic Doppler current profilers
(ADCP) was deployed in the study area between September
2003 and July 2005 byCoronado et al.(2007). The instru-
ments were located at (i) the southern inlet, (ii) the shallow
interior of the lagoon (LPM1), (iii) the lagoon northern inlet,
and (iv) the fore reef at approximately 500 m offshore from
the barrier at a depth of 22 m (LPM3). The LPM1 and LPM3
locations are shown in Fig. 1. Pressure and horizontal veloc-
ity components were measured at 1 Hz during 1024 s bursts.
Based on the observations,Coronado et al.(2007) concluded
that the reef lagoon circulation in Puerto Morelos is domi-
nated by waves.

Extreme water levels were measured during the nearby
passage of Hurricane Ivan in September 2004. The signifi-
cant wave heightHs and peak wave periodTp at LPM3 were
3.8 m and 14 s. Figure 5 shows the free-surface elevation

Table 4. Model–data comparison of significant wave height (Hs),
low-frequency significant wave height (Hs lf), mean water level (η),
and extreme water level (η2 %) at LPM1. Wave conditions at LPM3
areHs = 3.8 m andTp = 14 s.

Parameter [m] Data Model % error

Hs 0.93 0.87 6.2
Hs lf 0.66 0.55 16.7
η 0.36 0.39 8.3
η2% 0.65 0.61 6.2

time series recorded at LPM3 and the corresponding low-
frequency (f < 0.5fp) wave component during one burst in-
terval. Significant sea-swell dissipation occurred at LPM1
due to wave breaking at the barrier reef. The maximum
wave setup (η = 0.36 m) was recorded at LPM1 when the
lf-significant wave height inside the reef lagoon was impor-
tant (Hs lf > 0.6 m). Field observations suggest that, under
extreme wave conditions, the tidal level modulates the wave
setup inside the reef lagoon by determining the breaking type
over the reef barrier (not shown), whereas theHs lf inside
the lagoon is mainly controlled by the offshore wave energy
at LPM3. The wave setup and IG wave energy were con-
sidered for estimating the long period water level fluctua-
tions inside the lagoon and were obtained by averaging the
free-surface elevation time series over a time interval equal
to 2Tp (e.g.Seelig, 1983) whereTp (i.e. Tp = 1

/
fp) is the

peak wave period at LPM3. Figure 6 (lower panel) shows
the instantaneous water level and its long-term water level
fluctuation at LPM1. Moreover, the water level probability
distribution curve during Hurricane Ivan is also calculated
(Fig. 6, upper panel), where the extreme water levelη2% is
here defined as the value above the still water level that is ex-
ceeded only two percent of the time. An across-reef transect
extracted from the bathymetry, passing through the measur-
ing locations (LPM3 and LPM1) and extending further to the
shore, is employed in the numerical model. The computa-
tional domain is 3000 m long with a regular grid of1x =1
m. The numerical model is forced with the free-surface time
series measured at LPM3, and the still water level is refer-
enced to the mean water level at the most offshore location
LPM3 (i.e. 9 cm). The bottom friction in the numerical model
is employed as the calibration parameter (cf =0.001), which
is an order of magnitude smaller than the one reported at
this site byCoronado et al.(2007). Thus, the calibration pa-
rameter seems to compensate other processes not accounted
for in the modelling such as the wind setup, which can
have an important contribution to water level increase during
hurricane conditions. The significant wave heightHs, low-
frequency significant wave height, wave setup, and extreme
water levelη2% are computed at the LPM1 location and com-
pared with observations (see Table 4). The numerical model
slightly overpredicts (underpredicts) the wave-induced setup

www.nat-hazards-earth-syst-sci.net/12/3765/2012/ Nat. Hazards Earth Syst. Sci., 12, 3765–3773, 2012
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taneous free-surface elevation (light, thin line).

(low-frequency wave energy) at this location, whereas the ex-
treme water level is underpredicted by only 6 %. However, an
overall good agreement between measured data at LPM1 and
numerical results is observed.

4 Model application: Puerto Morelos fringing reef

4.1 Numerical implementation

Following the results of the previous section, the model is
applied to different cross-reef transect extracted from the
Puerto Morelos fringing reef lagoon bathymetry (Fig. 1). De-
spite the fact that two-dimensional effects are important, the
one-dimensional mode is employed in order to simulate a
broad range of wave conditions with affordable computa-
tional time. This allows us to investigate the IG growth mech-
anism and the coastal flooding hazard induced by the wave
alone. For this task, cross-reef bathymetry profiles were ex-
tracted at different along-reef locations (see Fig. 7) and em-
ployed for the 1-D simulations. The profile locations were
chosen in order to capture the strong spatial variability of the
reef-lagoon geometry. The transects were oriented orthogo-
nal to the shoreline for given locations (Fig. 1) that represent
the southern area (P0), the main lagoon (P1), the northern
reef-barrier gap (P2), and the northern end (P3). The reef
profile characteristics, including water depth at the reef crest
(hr), maximum depth inside the lagoon (hl), and reef-lagoon

Table 5. Range of the reef geometry and the wave conditions pa-
rameters employed for the simulated cases.

Basin geometry Wave conditions

W = 467–1940 m Hs = 2–7 m
hr = 5.30–0.82 m T p = 6–14 s
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Fig. 7.Cross-reef profiles at selected locations.

width (W ), at each location are summarized in Table 1. The
fore-reef slope presents values close to 1: 50. As shown in
Fig. 7, the reef geometry presents a strong spatial variability;
therefore differences in the wave transformation processes
would be expected between locations.

The numerical model is forced at 20 m water depth with
(synthetic) irregular waves time series based on different
wave parameters (Hs and Tp) and assuming a JONSWAP
spectrum with a peak enhancement factor of 3.3. The ranges
of wave conditions employed for the simulated cases are
shown in Table 5. The computational domain is 3.5 km long
with a uniform grid system and cell size of1x = 1 m. All
simulations are 3600 s long and assume a constant tidal level
during the computation period. The wave statistics are calcu-
lated from the last 1024 s of the computed signal of each sim-
ulation. The time step,1t , is automatically adjusted during
the computation in order to satisfy the stability constraints.
The computational time for each simulation is of the order
of few minutes on an Intel Xeon (quad-core) 2.53 GHz com-
puter. The friction coefficient was set as a constantcf = 0.001
which is the value estimated during the model calibration in
the study area (Sect. 3.2.2).
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4.2 Wave-induced extreme water levels

4.2.1 Wave-induced setup

The wave setup is calculated at the intersection between
the still water level (z = 0) and the cross-reef profile. Fig-
ure 8a shows the wave-induced setup at four along-reef lo-
cations (Fig. 7) for different wave conditions (Table 3). In
general, the wave setup increases with increasing wave en-
ergy density (H 2

s Tp) at all locations. For low energy values
(H 2

s Tp < 1× 102 m2 s) the wave setup is relatively uniform
along the reef-lagoon, with slightly lower values at P0. How-
ever, a strong dependence of wave-induced setup on the wa-
ter depth at the reef cresthr is observed for the more energetic
cases (H 2

s Tp > 1× 102 m2 s), with maximum values occur-
ring at locations with the higher reef crest (i.e. P0 and P3),
whereas smaller setup estimates are presented at the north-
ern gap (P2, see Fig. 8a). This suggests that barrier reef only
provides natural protection against wave-induced setup un-
der less energetic wave conditions. On the other hand, for
very large waves, the reef barrier induces a larger setup due to
the increase in the radiation stress gradients associated with
the wave breaking process. Consistent with previous stud-
ies (Seelig, 1983), results show that the reef-lagoon widthW

does not play an important role on the wave-induced setup.

4.2.2 Infragravity wave energy

The other important contribution to the water level is the
IG waves defined here asf < 0.5fp (Roelvink and Stive,
1989). The standard deviationσ of the low-passed signal
is taken as an indicator of the amount of energy in this fre-
quency band. Figure 8b presents the IG energy as a function
of incident wave conditions. For relatively low wave energy
conditions (H 2

s Tp < 1× 102 m2 s), the IG energy is signif-
icantly higher at the northern gap (i.e. P2) with respect to
the other locations, in particular P3. Under such conditions,
the IG energy increases within the fringing reef lagoon due
to nonlinear energy transfer from higher frequencies. More-
over, reef-induced wave reflection seems to be significantly
smaller than at the other locations where the reef barrier is
present. For the more energetic cases (H 2

s Tp > 1×102 m2 s),
the IG energy is highly correlated with the lagoon width, with
larger values occurring at the locations with the smallerW

values (i.e. P0 and P1). At some instances, the IG energy at
P0 is twice as large as at any other along-reef location. No-
tably, the reported oscillations in low-frequency energy at P0
(Fig. 8b) would suggest that resonance occurs at this loca-
tion. The resonant modes can be estimated followingKowa-
lik and Murty (1993) as

Tn =
4

(2n + 1)

W∫
0

x
√

gh(x)
dx (7)
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Fig. 8. (a)Wave setup and(b) infragravity-wave energy as a func-
tion of wave conditions for all simulated cases at the intersection
between the still water level and the cross-reef profile for the loca-
tions shown in Fig. 1.

Table 6.The first three oscillation periods for each transect.

Transect T0 [s] T1 [s] T2 [s]

P0 639 213 128
P1 1122 374 224
P2 1326 442 265
P3 1605 535 321

wheren = 0,1,2, .. is the n-th mode of oscillation. The
first three periods of oscillation were estimated for the dif-
ferent cross-reef profiles. The oscillation periods at the five
locations are presented in Table 6.

According to Table 6, theTn values in P0 are within the
range of the incoming (IG) wave periods and hence it is very
likely that resonant conditions will occur at this location. It
would appear that in Puerto Morelos the width of the reef-
lagoon has a greater influence on the resonant periods than
the water depth (W = 460 m at P0; see Table 1). This is in
agreement with results presented byPomeroy(2011).
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Fig. 9. Extreme water level as a function of incoming wave energy
at the intersection between the still water level and the cross-reef
profile for the locations shown in Fig. 1.

4.2.3 Extreme water levels

Finally, the extreme water levelη2% at each location was cal-
culated, following the methodology described in Sect. 3.2.2,
for the different wave conditions (Fig. 9). In general, the ex-
treme water level is highly correlated with the IG energy con-
tribution at most locations (Fig. 8a) with larger values at P2
and P0 for the less (H 2

s Tp < 1×102 m2 s) and more energetic
wave conditions (H 2

s Tp > 1×102 m2 s), respectively. There-
fore, the numerical results suggest that IG energy is very im-
portant for determining the hazardous areas behind this reef-
lagoon system. The cross-reef transect located at the northern
end (i.e. P3) presents the lower extreme water levels for all
range of wave conditions.

5 Conclusions

Wave transformation on fringing reefs is simulated using a
one-dimensional nonlinear shallow water equations model.
The numerical model is validated with both laboratory ex-
periments and field observations. The model is in agree-
ment with laboratory measurements of wave-induced setup
and low-frequency significant wave height over the reef flat,
whereas significant differences are observed forHs hf dur-
ing mild wave conditions. The model is further applied to
simulate wave transformation and wave-induced water levels
inside the Puerto Morelos reef lagoon. Extreme water levels
during Hurricane Ivan were satisfactorily predicted inside the
reef lagoon. The numerical simulation of storm wave con-
ditions suggests that wave-induced setup increases with de-
creasing depth at the reef-barrier for the more energetic wave
conditions, while the IG energy increases with decreasing

reef-lagoon width under such conditions. The northern end
presents the lower values of IG energy and extreme water
level for all range of wave conditions. It is very likely that
IG wave resonance happens at the southern end of the reef-
lagoon for highly energetic waves. Thus, the reef geometry
may increase or decrease the flood hazard in coastal areas at
Puerto Morelos depending on incident wave conditions and
reef geometry. Non-uniformity of extreme water levels sug-
gests that two-dimensional effects must be incorporated in
the modelling of this system and deserve further investiga-
tion.
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