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Abstract. In this paper we suggest the use of diffusion-
neural-networks, (neural networks with intrinsic fuzzy logic
abilities) to assess the relationship between isoseismal area
and earthquake magnitude for the region of Greece. It is
of particular importance to study historical earthquakes for
which we often have macroseismic information in the form
of isoseisms but it is statistically incomplete to assess mag-
nitudes from an isoseismal area or to train conventional ar-
tificial neural networks for magnitude estimation. Fuzzy re-
lationships are developed and used to train a feed forward
neural network with a back propagation algorithm to obtain
the final relationships. Seismic intensity data from 24 earth-
quakes in Greece have been used. Special attention is be-
ing paid to the incompleteness and contradictory patterns in
scanty historical earthquake records. The results show that
the proposed processing model is very effective, better than
applying classical artificial neural networks since the mag-
nitude macroseismic intensity target function has a strong
nonlinearity and in most cases the macroseismic datasets are
very small.

1 Introduction

A significant stage of modern seismic hazard techniques is
the assessment of the magnitudes (M) of the most severe
historic earthquakes. The difficulty in identifying large seis-
mogenic faults corresponding to historical events and assess-
ing their magnitudes increases the need to derive methodolo-
gies to estimate the magnitudes of historic earthquakes from
the macroseismic information depicted in the historic records
(i.e. isoseisms).

Obviously, there is no established consensus on how to get
an objective estimate of the magnitude of an earthquake from
macroseismic data alone. In the absence of a simple physical

link betweenM and macroseismic intensity, the only alterna-
tive is to investigate the validity of an empirical relationship
using statistical methodologies.

During the past years, the relationship between macroseis-
mic information and earthquake magnitude has been inves-
tigated by many researchers either by providing some func-
tional form, (e.g. Gupta and Nuttli, 1976; Vassileva, 2001;
Tselentis and Danciu, 2008), between seismic intensity, (here
when we refer to seismic intensity we mean the Modified
Mercalli intensity MMI), andM throughout regressive anal-
ysis. Destructive earthquakes are infrequent with very small
probability of occurrence. Thus, observations used in esti-
mating seismic magnitudes from intensity data are incom-
plete and form a small sample.

Recently, many researchers have established regression
analysis models based on powerful statistical tools to develop
various nonlinear relationships between MMI,M, and vari-
ous seismic engineering parameters (e.g. Tselentis and Dan-
ciu, 2008; Tselentis and Vladutu, 2010; Tselentis, 2011).
Furthermore, the empirical relationships derived from this
types of analyses are normally characterized by large scatter-
ing of the data due to the inherent uncertainty of the intensity
parameter and by the uncertainty on the hypocentral depths.
It is well known that for the same magnitude earthquake, the
deeper the hypocenter the smaller the effects on the Earth’s
surface, thus the magnitude of shallow earthquakes is over-
estimated while the magnitude of deeper events is underesti-
mated.

To overcome this depth uncertainty, Galanopoulos (1961)
proposed the use of the area or average radius of individual
isoseisms, or the felt area (the area where the earthquake was
actually felt by people). This methodology gives a better esti-
mate ofM than a single MMI value. Even with this method-
ology, however, the hypocentral depth plays a significant role
because it controls the decay of intensity with distance.
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Another approach which has also been used to estimate
seismic magnitudes from macroseismic information (iso-
seisms) was to synthesize isoseisms numerically correspond-
ing to various seismogenic faults (e.g. Suhadolc et al., 1988;
Zahradnic, 1989; Sirovich, 1996) and compare it with ob-
served data throughout a trial and error process. Recently,
for non-linear modelling, neural networks and neuro-fuzzy
modelling approaches have received a great deal of attention
(Huang and Leung, 1999; Tselentis and Vladutu, 2010; Tse-
lentis, 2011). Neuro-fuzzy modelling is concerned with the
extraction of models from numerical data representing the
behaviour of a system. The models in this case are rule-based
and use the formalism of fuzzy logic, i.e. they consists of sets
of fuzzy “if-then” rules with possibly several premises (Mor-
aga, 2000). These models, known as hybrid neural fuzzy,
combine the stochastic and artificial intelligence approaches
and they are particularly suited for data sets with very weak
statistical properties.

In the present paper, we investigate the efficiency of hybrid
fuzzy-neural-network models in correlating seismic magni-
tudes with the isoseismal area using a data set of 24 earth-
quakes from Greece (Table 1), for which we have well known
macroseismic information in the form of isoseisms.

2 Data

Most of the intensity information was available through the
European Strong Motion Database (Ambraseys et al., 2004)
and completed by the macroseismic database developed by
Kalogeras et al. (2004). The macroseismic database covers
most of the strong earthquakes occurring in Greece and for
each event, MMI values are assigned to every recording sta-
tion.

The isoseisms corresponding to each earthquake were con-
structed using the kriging methodology. Kriging is a sta-
tistical technique that estimates unknown values at specific
points in space using data values from known locations. The
main assumption when using kriging is that the data anal-
ysed are samples of a regionalized variable, as is assumed
to be the case with intensity data. A regionalized variable
varies continuously in such a manner that points near each
other have a certain degree of spatial correlation, but points
that are widely separated are statistically independent.

The kriging estimator applied in the macroseismic dataset
considered in the present paper is given by

Ij =

n∑
i=1

wij MMI i (1)

whereIj is the predicted intensity value at any grid node, n is
the number of points used to interpolate at each node, MMIi

is the intensity value at thei-th point andwij is the weight
associated with thei-th data value when estimatingIj . The
weights are solutions of a system of linear equations which

Fig. 1. Example of Isoseisms constructed by the kriging method-
ology and corresponding macroseismic data for 3 earthquakes in
Attica.

are obtained by assuming thatI is a sample-path of a random
process and that the error of prediction is minimal.

The kriging algorithm assigns weights to each point based
on the distance between the point to be interpolated and the
data location (h), as well as the inter-data spacing. Other pa-
rameters, such as length scale, repeatability, and direction de-
pendence of data are also considered for assigning weights.
These parameters are entered into the algorithm via the var-
iogramγ (h), which is an analytical tool that quantifies the
degree of spatial autocorrelation of data.

In the present investigation, the isoseismals that more ac-
curately represented the observed intensity data field were
chosen by modelling a simple linear variogram based on the
kriging options of Surfer Package from Golden Software. A
detailed explanation of the kriging algorithm and the vari-
ogram parameters can be found in De Rubeis et al. (2005).
Figure 1 depicts some examples of the estimated isoseisms
for the case of 3 earthquakes in Attica (Central Greece) and
the corresponding macroseismic data.
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Table 1. Earthquake data and calculated isoseismal areas for MMI= 6.

Date Location Magnitude Area Log (Area)

07/08/1915 Kefalonia 6.7 817 2.912222057
01/03/1941 Larisa 6.3 216 2.334453751
18/03/1953 nw Turkey 7.4 4567 3.659631012
09/07/1956 Amorgos 7.5 2060 3.31386722
19/02/1968 Ag. Efsratios 7.1 1007 3.003029471
20/06/1978 Thessaloniki 6.5 243 2.385606274
24/02/1981 E. Corinthos 6.7 919 2.963315511
07/09/1999 Attica 6 104 2.017033339
5/8/1766 Chora 7.6 20 928 4.320727727
21/2/1858 Corinthos 6.5 178 2.250420002
1/8/1870 Arachova 6.8 411 2.613841822
3/4/1881 Nenita 6.5 566 2.752816431
27/8/1886 Philiatra 7.3 3145 3.49762065
20/4/1894 Atalanti 6.6 702 2.846337112
27/4/1894 St. Constantinos 7 5155 3.71222867
22/1/1899 Kuparissia 6.5 531 2.725094521
6/3/1737 Ezine 7.2 5935 3.773420723
21/8/1859 Imroz 6.9 1676 3.224274014
29/7/1880 Menemen 6.7 743 2.870988814
3/4/1881 Chios 6.5 745 2.872156273
15/10/1883 Tsesme 6.8 562 2.749736316
26/10/1889 Chidyra 6.8 1322 3.121231455
20/4/1894 Martino 6.6 3345 3.524396122
29/1/1898 Balikesir ? 14 738 4.168438552
7/3/1867 Kloumidados 6.8 1087 3.036229544

3 Artificial neural network approximation

Since the relation between isoseismal area and seismic mag-
nitude is strongly nonlinear, artificial neural networks (ANN)
are particularly suited for treating macroseismic data (Tung
et al., 1994; Davenport, 2004; Tselentis 2011).

An ANN is an information processing paradigm that is
inspired by the way biological nervous systems, such as
the brain, process information. ANN can be understood as
a mappingf : Rn → Rm, defined byy = f (x) = g(W.x),
wherex is the input vector,y is the output vector,W is the
weight matrix andg is a nonlinear activation function. The
mappingf can be decomposed into a series of mappings re-
sulting in a multi-layer network (Fig. 2):

Rn → Rp → Rq → ... → Rm

The algorithm for computingW is the training algorithm.
The most popular ANN (this kind of ANN will be used in the
present investigation) are the multi layer back propagation
networks (Rumelhart and McClelland, 1986), whose training
algorithm is the well-known gradient descendent method. In
the learning phase of training such a network, we present the
patternxp = {ipi} as an input and ask that the network adjust
the set of weights in all the connecting links and also all the
thresholds in the nodes such that the desired outputsyp =

{tpk} are obtained at the output nodes. When this adjustment

 

 

FIG.1 

 

FIG.2 

 

FIG.3 

Fig. 2. General topology of a feed-forward ANN with one hidden
layer(b).
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is completed, we present to the network another pairxp,yp

and ask that the network also learns this association. In other
words, we ask that the network find a single set of weights
W and biases that will satisfy all the input-output pairs which
are presented to it.

In general, the output{opk} of the network will not be the
same as the target values[tpk}. For each pattern, the square
of the error is

EP =

∑
k

(
tpk −opk

)2 (2)

And the average system error is given by

E =
1

p

∑
p

∑
k

(tpk −opk)
2 (3)

whereP is the sample size. A true gradient search for
minimum system error should be based on the minimization
of Eq. (3).

Thus, an ANN is a learning machine whose function de-
pends on the training examples, it does not recognize any
functional relation between the input data but it determines
a numerical relation among the state parameters. Accord-
ing to the principle of information diffusion, (Huang, 2002),
we can increase the certainty of the determined relation if
we increase the number of the training examples with the
help of an appropriate information scattering function. ANN
trained in this manner are called diffusion neural networks
(e.g. Huang and Moraga, 2004).

However, neural information processing models generally
assume that the patterns used for training an ANN are com-
patible. If the patterns are contradictory, the neural network
does not converge because the adjustments of the weights
and thresholds do not know where to turn.

In theory, neural networks, and fuzzy systems are equiva-
lent in that they are convertible, yet in practice each has its
own advantages and disadvantages. For neural networks, the
knowledge is automatically acquired by the back propaga-
tion algorithm, but the learning process is relatively slow and
analysis of the trained network is difficult (black box). Nei-
ther is it possible to extract structural knowledge (rules) from
the trained neural network, nor can we integrate special in-
formation about the problem into the neural network in order
to simplify the learning procedure.

Fuzzy systems are more favourable in that their behaviour
can be explained based on fuzzy rules and thus their perfor-
mance can be adjusted by tuning the rules. But since, in gen-
eral, knowledge acquisition is difficult and also the universe
of discourse of each input variable needs to be divided into
several intervals, applications of fuzzy systems are restricted
to the fields where the number of input variables is small.

Various researchers (e.g. Monostori and Egresits, 1994;
Hernandez et al., 1995; Radeva and Radev, 2002; Radeva,
2002) have developed fuzzy neural networks with stronger
nonlinear mapping abilities than the conventional ANN. This

kind of ANN have promising application prospects in nonlin-
ear modeling, fuzzy identification and self-organizing fuzzy
control for complex systems such macroseismic data sets
(Huang and Liu, 1985).

Hybrid-fuzzy-neural-networks are expected to be very ef-
fective in estimating the relationship between isoseismal area
and earthquake magnitude although data are usually scanty,
incomplete and contradictory. The basics of information dif-
fusion and fuzzy theory will be presented in the next section.

4 Information diffusion

If there are only few data available in the examination of a
phenomenon, we can assign these to some already existing
statistical distribution (e.g. the Bayes method), and the struc-
tured sample will have an informational value. The question
arises: what to do in the case when we do not know a priori
statistical distribution? From a small data sample, any clas-
sical ANN cannot recognize a nonlinear function. This is the
case we mostly encounter when we deal with macroseismic
datasets.

In such a case, the theory offuzzy setscan be applied with
a very good efficiency. This theory enables the processing
of uncertain information, to be more precise, it writes down
the fuzzy logical assertions in an exact mathematical form
(Zadeh, 1974).

Suppose that we haven observationsX, of magnitudes
mi and isoseismal areassi obtained fromn historical earth-
quakes. Our task is to find some sort of relationR between
them. Letf be an operator (mathematical procedure) of the
observations which is employed to estimateR. Let R(f,X)

denote the estimation ofR by f .
If n is large, thenf can be a probabilistic or statistical op-

erator andR(f,X) is a statistical relationship. In the case
thatn is small (inadequate data sample), we generally cannot
obtain a statistical or physical relation fromX. Under this
situation we need to employ fuzzy relationship based onX.
Let us suppose that we are given a sampleX of n real val-
ued observations,xi (i = 1,n), which have two components,
earthquake magnitudemi and isoseismal areaAi , whose un-
derlying relationship is to be estimated

X = {x1,x2,...,xn} = {(A1,m1),(A2,m2),...,(An,mn)} (4)

To reduce scattering it is preferable to use the logarithm of
the isoseismal area

s = log10A (5)

and in this case our sample becomes

X = {x1,x2,...,xn} = {(s1,m1),(s2,m2),...,(sn,mn)}

Let S= {s1,s2,...,sn} be a sample taken from the universe
of discourseU, any mapping fromSxU to [0,1]

µ : SxU → [0,1]

(s,u) → µ(s,u);s,uεSxU (6)
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FIG.3 
Fig. 3. The information diffusion function is used to diffuse infor-
mationsi to all the elements of the universe of discourseU .

is called an information diffusion ofS on U if it satisfies
the following condition for everysi in S and for everyu′,u′′

in U if |u′
−s| ≤ |u′′

−s|

thenµ(s,u′) ≥ µ(s,u′′) (7)

µ(si,u) is called an information diffusion function ofSon
U. If U is discrete,µ can be written asµ(si,ui). As we can
deduce from Eq. (7),µ is a convex function aboutU.

In other wordsµ defines a fuzzy subset on the universe of
discourseSxU. Obviously, an available fuzzy relation would
approximately reveal the information structure implied by
the observationsX.

The trivial diffusion function is defined as
1, if u = s

µ(s,u)= sεS,uεU (8)

0, otherwise
The simplest diffusion function is the linear distribution

function with respect to a discrete monitoring spaceU. When
S= {si |i = 1,n} and the monitoring spaceU = {uj |j = 1,m}

has steps of equal length1 we get the 1-dimensional linear
information distribution which can be written as

1−|s −u|/1, if |s −u| ≤1

µ(s,u)= sεS,uεU (9)

0, otherwise
where1 = uj+1−uj .
The principle of information diffusion (Huang and Shi,

2002) alerts that, when we use an incomplete data set to es-
timate a relationship, there must exist reasonable diffusion
means to change observations into fuzzy sets to partly fill the
gap caused by incompleteness and improve the original esti-
mate.

Obviously, if our macroseismic observations (data set)X
is incomplete, this implies that the patterns are insufficient.
In other words, we need more patterns to train the BP net-
work for obtaining a more accurate estimate of input-output
relation. The simplest model to derive the required patterns
is based on the similarities of information and molecules.

Fig. 4. Information diffusion function ofsi on a continuous universe
of discourseU .

Taking into consideration the molecular diffusion theory, we
consider the following normal diffusion function

µ(sj ,u)= e
−(u−sj )2

2h2 sεS,uεU (10)

h is the normal diffusion coefficient which can simply be cal-
culated (Huang, 1997) by

h =


1.6987(b−a)/(n−1) for 1< n≤ 5
1.4456(b−a)/(n−1) for 6≤ n ≤ 7
1.4230(b−a)/(n−1) for 8≤ n ≤ 9
1.4208(b−a)/(n−1) for 10≤ n

(11)

Whereb = max{si}, 1≤ i ≤ n; a = min{si}, 1≤ i ≤ n; and
n the number of pairs (si,mi).

Thus, it is obvious that with the help of the normal diffu-
sion function, we can transform any one input-output obser-
vation (si,mi) into two fuzzy subsets

Ai =

∫
U

µ(si,u)

u

Bi =

∫
V

µ(mi,v)

v
(12)

Obviously, for a particular pair of observations (si,mi) we
haveAi → Bi .

Information diffusion can be represented schematically in
Fig. 3, where observationsi is diffused to every point ofU
with different values. In the case of a continuous universe of
discourse, information diffusion ofsi can be represented by
a fuzzy membership functionµ(si,u) as presented in Fig. 4.

In order to preserve more information we use the corre-
lation product enconding (Kosko, 1992), to produce the re-
quired fuzzy relationships, therefore we can write

µRi(u,v) = µAi(u)µBi(v),uεU,vεV (13)

with Ri depicting the corresponding rule (relation between
u,v). Thus, we getn fuzzy relationships fromn earthquake
observations.
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For the case that we haven observations
(s1,m1),(s2,m2),...,(sn,mn) then, using the informa-
tion distribution approach, we can obtain n fuzzy IF-THEN
rules (Ri) : A1 → B1,A2 → B2,...,An → Bn (as it is shown
in Fig. 5).

Let us suppose thatso is a known crisp input value and that
we want to find a way to estimate the corresponding mag-
nitudemo from so andRi . Considering that the universe of
discourseU where allsi belong (the monitoring space) is dis-
crete. Its elementsuj are the controlling points. Thus,so is
not just equal to some valueuj in universeU. We can apply
the information distribution formula (9) to get the following
fuzzy subset (information diffusion ofso)

1−|so −uj |/1 if |so −uj | ≤1

µso(uj ) =

0 if |so −uj | ≥1 (14)

where1 = uj+1−uj

Then, a fuzzy consequent∼ mo from ∼ so andRi can be
written as

µmo(v) =

∑
v

µso(v)µRi
(u,v) (15)

Changing the intensity componentµBi(v) in Eq. (13) into
the following fuzzy subsets:

1 if v = mi

µBi(v) =

0 if v 6= mi (16)

And

µAi(v) if v = mi

µRi(u,v) =

0 if v 6= mi (17)

Equation (15) can be written as

if v = mi

µmo(v) =

0 if v 6= mi (18)

Let

Wi =

∑
v

µSo(v)µAi
(v) (19)

Wi , can be considered as the possibility that component
mo may bemi .

Then integrating all results coming fromR1, R2,...,Rn the
required valuemo can be derived from the following (gravity
center)

mo =

n∑
i=1

wimi

n∑
i=1

Wi

(20)

 

FIG.4 

 

FIG.5  

Fig. 5. Fuzzy rule “IFu = A THEN v = B” through observation
si ,mi using information diffusion.

This result means that we have estimated the required
valuemo, by fuzzy influence based on the diffusion method
of the known valueso. The above procedure is summarized
in the flow chart depicted in Fig. 6.

Thus, throughout the information diffusion approxima-
tion reasoning technique, we can transform the original
X = {x1,x2,...,xn} = {(s1,m1),(s2,m2),...,(sn,mn)} sample
of observations to∼ X = {(s1,∼ m1),(s2,∼ m2),...,(sn,∼

mn)}, which is finaly used to train the BP ANN (Fig. 7).

5 Results

After trying a various number of hidden layers of the BP
ANN, we found that the optimum network which resulted in
the least errors is that consisting of 7 hidden layers (Table 2,
Fig. 8).

For supervised training of the ANN, a subset of two thirds
of the total data was used. The individual sites assigned to the
training set were selected at random from the complete set of
records. The other third of the data was used for testing the
ANN after it had been trained.

Next, we used Eq. (20) to calculate the new magnitudes by
applying the information diffusion technique and used them
again to train the ANN. Figure 9 depicts the three results
of our model corresponding to conventional ANN, linear re-
gression and the hybrid-neural-fuzzy and the neural network.

In order to compare the mean square errorsE of the three
estimators, the linear regression (LR), the hybrid fuzzy neu-
ral network (HFN), and the conventional neural network es-
timator (NN) are computed as follows:

ELR =
1

24

24∑
i=1

(yi −yLRi)
2
= 0.39
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Table 2. Parameters of tested neural networks. Bold numbers correspond to the selected network.

ANN # Fitness Trainr Test AIC Correlation
Type Weights Error Error

[1-1-1] 4 3.2142 0.1476 0.3111 −78.460 0.8447
[1-7-1] 22 3.8909 0.1070 0.2570 −48.254 0.9196
[1-4-1] 13 1.4644 0.1110 0.6828 −65.593 0.9160
[1-5-1] 16 1.7609 0.1123 0.5678 −59.379 0.9151
[1-6-1] 19 1.3948 0.1116 0.7169 −53.480 0.9162

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG.6 

 

 

 

 

 Fig. 6. Flowchart depicting the information diffusion method.

 

 

FIG.7 

 

 

 

(a)                                                         (b) 

FIG.8 

Fig. 7. System architecture of the hybrid neural-fuzzy network
adopted in the present investigation.

EHFN =
1

24

24∑
i=1

(yi −yHFNi)
2
= 0.16

ELR =
1

24

24∑
i=1

(yi −yNNi)
2
= 0.23

Obviously, the HFN estimator is better than the linear regres-
sion estimator and the conventional neural network estimator
since it is more precise, nearer to real value, and more stable
than the conventional neural estimator.
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FIG.7 

 

 

 

(a)                                                         (b) 

FIG.8 Fig. 8. The selected neural network consisting of 7 hidden layers(a) and the corresponding convergence curve(b).

 

FIG.9 
Fig. 9. Relationship between logarithmic isoseismal area and earth-
quake magnitude estimated by the back propagation NN (dashed
curve) and the proposed hybrid fuzzy-neural methodology (solid
curve). The lines corresponds to the list square fit of the data.

6 Conclusions

Neural information processing models largely assume that
the samples for training a neural network are sufficient. Oth-
erwise, there exists a non-negligible error between the real
function and estimated function from a trained network. To
reduce the error in this paper, we suggest a hybrid fuzzy neu-
ral network to learn from a small sample.

The obtained error is less than the error of the conventional
ANN. The results show that the hybrid fuzzy neural model is
very effective in the case of treating macroseismic M,MMI
datasets of historic earthquakes where the target function has
a strong nonlinearity and the given sample is very small.
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