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Abstract. During the 12 May 2008, Wenchuan earth-
quake in China, more than 15 000 landslides were trig-
gered by the earthquake. Among these landslides, there were
112 large landslides generated with a plane area greater than
50 000 m2. These large landslides were markedly distributed
closely along the surface rupture zone in a narrow belt and
were mainly located on the hanging wall side. More than
85 % of the large landslides are presented within the range of
10 km from the rupture. Statistical analysis shows that more
than 50 % of large landslides occurred in the hard rock and
second-hard rock, like migmatized metamorphic rock and
carbonate rock, which crop out in the south part of the dam-
aged area with higher elevation and steeper landform in com-
parison with the northeast part of the damaged area. All large
landslides occurred in the region with seismic intensity≥ X
except a few of landslides in the Qingchuan region with seis-
mic intensity IX. Spatially, the large landslides can be cen-
tred into four segments, namely the Yingxiu, the Gaochuan,
the Beichuan and the Qingchuan segments, from southwest
to northeast along the surface rupture. This is in good ac-
cordance with coseismic displacements. With the change of
fault type from reverse-dominated slip to dextral slip from
southwest to northeast, the largest distance between the trig-
gered large landslides and the rupture decreases from 15 km
to 5 km. The critical accelerationac for four typical large
landslides in these four different segments were estimated by
the Newmark model in this paper. Our results demonstrate
that, given the same strength values and slope angles, the
characteristics of slope mass are important for slope stabil-
ity and deeper landslides are less stable than shallower land-
slides. Comprehensive analysis reveals that the large catas-
trophic landslides could be specifically tied to a particular

geological setting where fault type and geometry change
abruptly. This feature may dominate the occurrence of large
landslides. The results will be useful for improving reliable
assessments of earthquake-induced landslide susceptibility,
especially for large landslides which may result in serious
damages.

1 Introduction

Landslides and collapses triggered by strong earthquakes
have drawn more and more attention due to the serious dam-
ages they caused. For example, the vast majority of the more
than 1000 victims of the El Salvador earthquakes of 13 Jan-
uary (Mw = 7.7) and 13 February 2001 (Mw = 6.7) were
directly caused by landslides (Bommer et al., 2002). Also,
during the Wenchuan earthquake in China in 2008, about
20 000 deaths were directly caused by the geohazards in the
form of landslides, rockfalls, and debris flows (Yin et al.,
2009).

The important factors that affect landslides distribution
during a strong earthquake are in general rock mass type,
landform, slope degree, seismic intensity, earthquake mag-
nitude and distance from the seismic faults or epicenter, etc.
Many studies about earthquake-induced landslides have been
drawn on the relationship between landslide distribution and
the influencing factors mentioned above (Harp et al., 1981;
Harp and Jibson, 1996; Guzzetti et al., 1999; Rodrı́guez et
al., 1999; Keefer, 1984, 2000). Keefer (1984) compiled 40
examples of earthquake triggered landslides from all over
the world and studied their characteristics (Keefer, 1984).
His findings about the relationship between landslides and
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seismic parameters have been quoted widely (Wilson and
Keefer, 1985; Rodrı́guez et al., 1999; Bommer et al., 2002;
Qi et al., 2010; Chen et al., 2012). Except the analysis re-
search done on a number of earthquake examples, addi-
tional work has been carried out on the landslides char-
acteristics and distribution features during a single earth-
quake event, such as the 1994 Northbridge earthquake in US,
the 1999 Chi-chi earthquake in Taiwan, and especially the
2008 Wenchuan earthquake in China (Qiao and Pu, 1992;
Rodŕıguez et al., 1999; Jibson et al., 2000; Wang et al., 2003;
Wang et al., 2007; Wang et al., 2008; Huang et al., 2008;
Chen et al., 2010). Almost all the results show similar under-
standings of the relationship between influencing factors and
landslides distribution, but there are some new findings in the
recent event of the Wenhchuan Earthquake in China, 2008.

The Wenchuan earthquake occurred at the middle segment
of the Longmenshan thrust belt at the eastern margin of the
Tibetan Plateau, which is characterised by rugged topogra-
phy, steep high mountains, deep valleys and complicated ge-
ological structure. Historically, this region is famous for its
various kinds of geohazards (Qiao and Pu, 1992; Yang et al.,
2002). After the Wenchuan earthquake, post-seismic field in-
vestigations as well as the interpretation of space images and
aerial photographs have revealed more than 15 000 geohaz-
ard sites in the damaged area (Yin, 2009). Besides trigger-
ing thousands of landslides during this event, there are also
lots of landslides with great volumes exceeding several ten
million cubic meters, which often cause fatalities. For ex-
ample, the Donghekou rock avalanche, which occurred in
Qingchuan with an estimated volume of 2.3×108 m3, buried
one primary school and 184 houses, resulting in more than
780 deaths (Yuan et al., 2010).

Compared with ordinary scale landslides, landslides with
a large scale of volume or plane area like deep-seated land-
slides and rock avalanches can cause more serious damage
(Yin et al., 2009). Remote sensing interpretation showed
that during the Wenchuan earthquake there were a total of
112 large landslides generated, each of which had a plane
area greater than 50 000 m2, blending of source area and de-
position area, and can be classified as a deep-seated landslide
or rock avalanche (Xu and Li, 2010; Qi et al., 2011). Among
them were many large landslides with a volume bigger than
ten millions cubic meters (Huang et al., 2008; Xu and Li,
2010). The fact that so many large landslides with different
types of failure mechanisms and sliding dynamics occurred
simultaneously in a single triggering event is out of expecta-
tion, thus scientists are anxious to search for the answers.

Due to such amount of large landslides in the Wenchuan
earthquake triggered by a single event, it is appropriate
to consider large landslides as a special kind of land-
slide. Although large scale landslides show some distribu-
tion rules similar to the ordinary landslides, they also present
some unique features in their distribution as well as slid-
ing mechanisms and dynamics, Hsü’s (1975) detailed stud-
ied sturzstroms mechanism and kinematics, as well as the

relationship between the rock avalanches travel distance and
their volumes. He proposed that the sturzstroms could be
compared to flow of a mass of concentrated cohesionless
grains in a fluid medium, and found that the coefficient of
friction was different when rock fall sizes changed: it de-
creased above a threshold landslide size of about 100 000 m3

(Hsü, 1975). Studies about the large landslide mechanisms
and characteristics are presented after the Wenchuan earth-
quake (Sassa et al., 2005; Yin, 2009; Huang et al., 2010; Wu
et al., 2010; Qi et al., 2011). Some researchers consider that
air cushion effect is important to long run out avalanches
(Yin, 2009; Wu et al., 2010). Also, it has been found that
most of the long run out rock avalanches have source areas
with high relief and steep inclination, and that the saturated
Holocene loose deposits could be the most important factor
causing the long run out rock avalanches (Qi et al., 2011).

Apart from the general factors composed of landslides
context setting, the effects of seismic fault mechanism and
geometry on landslides development has not been studied in
depth. Although some earthquake-induced landslides exam-
ples showed that thrust fault can cause more landslides in
a wider region and result in landslides prone to occur on
the hanging wall side rather than the foot side, such as the
1999 Chi-Chi earthquake in Taiwan, the 2004 Niigata earth-
quake in Japan and the 1994 Northridge earthquake in US as
well as the 2008 Wenchuan earthquake in China (Harp and
Jibson, 1996; Jibson et al., 2000; Wang et al., 2003; Kieffer
et al., 2006; Wang et al., 2007; Huang et al., 2008; Yin et al.,
2009; Chen et al., 2010; Dai et al., 2011), thorough inves-
tigations are still scarce. Such amounts of large landslides
occurring in a single event provide a good opportunity for
this study.

In this paper, considering large landslides as a special kind
of landslides, after analysis of the interplay between the ge-
ological setting and the distribution of large landslide devel-
opment, the influence of fault type and geometry is discussed
and preliminary estimation of the critical accelerationac for
four typical large landslides is calculated. Then a comprehen-
sive discussion of the possible causes of the large landslides
is given.

2 Interplay between tectonics and distribution of large
landslides

The 2008Ms = 8.0 Wenchuan earthquake occurred at the
Longmenshan fault zone (LSFZ) at the eastern margin of
the Tibetan Plateau, an area that is deforming as a result of
the collision between the Indian plate and the Eurasian plate.
The NE–NNE trending LSFZ, which is about 500 km long
and 30∼ 50 km wide, mainly consists of three sub-parallel
thrust faults, namely the Wenchuan-Maowen (F1), Yingxiu-
Beichuan (F2), and Guanxian-Jiangyou (F3) faults (Fig. 1).
Late Archean to Cenozoic rocks and Quaternary sediments
crop out in the region (Fig. 1). A simplified strata system is
given in Table 1.
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Table 1.Simplified geologic strata system of the area most severely damaged by theMs = 8.0 Wenchuan earthquake (revised after Qi et al.,
2011).

Sequence Symbol Lithology

Holocene Qh Alluvium
Pleistocene Qp Loose deposit
Cretaceous K Conglomerate
Jurassic J Sandy slate, mudstone, sandy stone intercalated with mudstone
Triassic T Sandy stone, limestone, slate
Permian P Thick limestone intercalated slate
Carboniferous C Limestone, marble and sandy stone
Carboniferous-Devonian C-D Carbonate rock, sandy conglomerate
Devonian D Quartzose sandstone
Silurian S Sandy stone, phyllite intercalated with limestone
Ordovician O Limestone, marble and phyllite of Baota formation
Cambrian ε Metomorphic sandy conglomerate, limestone
Sinian Z Metamorphic sandy stone, metamorphic limestone
Archean Pt Granite, diorite, gabbro
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Fig. 2. Area of large landslides of different segments. (1) Yingxiu
segment, (2) Gaochuan segment, (3) Beichuan segment and (4)
Qingchuan segment.

clustered along the faults, as have been proved by many stud-
ies (Keefer, 1984, 2002; Khazai and Sitar, 2003; Wang et al.,
2003; Wen et al., 2004; Wang et al., 2007; Qi et al., 2010; Dai
et al., 2011). This is the case in the Wenchuan earthquake, as
the large landslides are mainly dominated by the causative
faults from the southwest to the northeast (Fig. 1). However,
the spatial distribution of the large landslides appears un-
evenly along the seismic faults, with certain areas subject to
many failures whereas other areas are essentially unaffected.
From the epicenter at the southwest to the northeast, large
landslides can be concentrated at four segments, namely the
Yingxiu segment, the Gaochuan segment, the Beichuan seg-
ment and the Qingchuan segment (Fig. 1). The quantity and
plane areas of the large landslides are different between the
segments (Table 2). The Qingchuan segment has the largest
amount (39) of large landslides, whereas the Gaochuan seg-
ment has the biggest landslides area (20 292 454 m2). How-
ever, the average landslide plane area of these segments is
similar, except a few extra large landslides in the Gaochuan
segment such as the Daguangbao landslide (7.0× 106 m2)

and the Wenjiagou landslide (2.9× 106 m2) (Fig. 2).
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Table 2.Distribution of large landslides and their plane areas.

Segment Yingxiu Gaochuan Beichuan Qingchuan

Quantity 17 33 23 39
Total area (m2) 4 093 201 20 292 454 4 746 898 8 193 967
Average area (m2) 240 766 614 922 206 386 210 101

2.1 Correlation between large landslides and seismic
faults

Landslides triggered by earthquakes have a closer relation-
ship with tectonic settings than that triggered by other fac-
tors. Researches on earthquake-induced landslides show that
causative faults influence the distribution of landslides dur-
ing a strong shaking event (Khazai and Sitar, 2003; Wen et
al., 2004; Wang et al., 2008) and, with the increasing of the
distance from the causative fault or epicenter, the number of
triggered landslides presents a negative-exponential decline
(Simonett, 1967; Keefer, 2000; Wang et al., 2007).

Statistical analysis of the landslides in the Wenchuan
earthquake indicates that the number of earthquake-induced
landslides decreases with increasing distance to the seismic
faults. Almost 80 % of landslides are within 30 km to the
seismic faults and are spread unevenly in the damaged re-
gion. More than 87 % of landslides were located on the hang-
ing wall side of the LSFZ where most of the large aftershocks
(M ≥ 4.0) occurred (Chen et al., 2010).

Unlike normal landslides, large landslides in the
Wenchuan earthquake show distinctly close relationship with
the causative seismic faults in spatial distribution. They are
only limited to a very narrow zone from the ground surface
rupture. All the 112 large landslides are within a 15 km buffer
to the ground surface rupture. Among them, 44 large land-
slides occurred within a 1 km distance to the ground surface
rupture and more than 80 % of the large landslides are within
5 km distance (Xu et al., 2010). Meanwhile, when compared
with other normal landslides, the number of large landslides
drops more rapidly as the distance from the seismic faults in-
creases, although they all have negative-exponential decline
(Fig. 3).

2.2 Correlation between large landslides and
topography

Beside the magnitude of the Wenchuan earthquake, the
abrupt change of topography in the damaged area is another
important factor predisposing to landsliding.

Topographically, the LSFZ is a transitional zone from the
Tibetan Plateau to the Sichuan Basin plain. Its relief grad-
ually decreases eastward (Fig. 4a). On the western side of
the LSFZ, the elevation is commonly above 3000 m, while
on the east side of the LSFZ, especially in the Sichuan
Basin, it is lower than 800 m. The plateau margin has the
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Fig. 3.Relationship between large landslides and distance from the
ground surface rupture.

steepest topographic gradient among any existing plateau
edge (Densmore et al., 2007).

Geologically, the large landslides are distributed strictly
within the Longmenshan thrust fault belt, where relief
changes sharply. On the whole, elevation at the southwest re-
gion is higher than at the northeast. From southwest to north-
east, four profiles (section A, B, C, D) are drawn at the places
where large landslides are concentrated. With respect to the
Beichuan segment and the Qingchuan segment, topography
is steeper at the Yingxiu segment and the Gaochuan segment
(Fig. 4a and b).

Generally, almost all the large landslides occurred at steep
slopes with the gradient of≥ 20◦. Meanwhile, more than
70 % of the large landslides have an original slope degree
of ≥ 30◦ (Fig. 5a). In respect to ordinary landslides, large
landslides are more likely to occur at steeper slopes. How-
ever, the area damaged by large landslides is not obviously
affected by the degree of the slope (Fig. 5b).
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Fig. 4. Topography of study region.(a) Elevation;(b) Slope gradi-
ent;(c) 4 cross sections at A, B, C, D.

2.3 Correlation between the large landslides and rock
mass type

Although it is generally known that landslides are likely to
occur in weak rocks, in the area affected by the Wenchuan
earthquake, slope failures can be frequently found in hard
rocks like granite and limestone, just as in large landslides
(Fig. 1).

The study area is dominated by the pre-Tertiary units. Ter-
tiary and Quaternary sediments are limited to the southeast
edge of the LSFZ, and are adjacent to Sichuan Basin (Fig. 1).
According to rock engineering standards (“Standard for engi-
neering classification of rock masses”, GB50218-94, China,
1995), the study area can be mainly classified into four rock
types: the hard rock group, second-hard rock group, the soft
rock group and second-soft rock group (Fig. 6). Near the
epicenter region, the strata are mainly composed of a set of
migmatized metamorphic rock and migmatite, named the fa-
mous “Pengguan massif”, which belongs to the hard rock
type. Second-hard rock group in this area includes carbon-
ate rock, i.e. limestone and conglomerate, while the soft rock
group includes shale and other metamorphic rocks.
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Fig. 5. Large landslides slope degrees at different segments(a) and
the relationship between landslides areas and slope degrees(b).

Statistical analysis shows that there are 15, 44 and
53 large landslides that occurred in the hard rock group
(type I), second-hard rock group (type II) and soft rock
group (type III), respectively (Fig. 6b). From the epicenter
to the northeast along the rupture direction, the rock property
changes from the hard rock group (type I) to second-hard
rock group (type II) and then to soft rock group (type III)
(Fig. 6).

Taking account of seismic rupture propagation direction
as well as elevation and landform changes, there exists an
interesting combination of geological settings for large land-
slides. The harder the rock type, the steeper relief is needed
for forming large landslides.

2.4 Correlation between large landslides and coseismic
displacements

Field investigations indicated that theMs = 8.0 Wenchuan
earthquake generated a 240 km and a 90 km long surface rup-
tures along the Beichuan-Yingxiu fault (F2 in Fig. 1) and the
Guanxian-Jiangyou fault (F3 in Fig. 1), respectively (Xu et
al., 2009).

According to Yu et al. (2010) study, the coseismic dis-
placements are not even along the surface rupture zone.
Beichuan-Yingxiu grounds ruptures can be divided into
2 main segments: the Yingxiu segment at south part and the
Beichuan segment at north part. These segments are sepa-
rated by the Gaochuan jog. Deformation along these two seg-
ments is different: reverse faulting is dominant at the Yingxiu
segment, while along the Beichiuan segment, a more 1: 1 ra-
tio between the right-lateral motion and the vertical motion
exists (Yu et al., 2010).

Based on the investigation of the coseismic displacements
along the surface ruptures (Yu et al., 2010), four bigger co-
seismic displacement centred zones can be delineated from
southwest to northeast along the surface rupture, and they are
the Yingxiu segment, the Gaochuan segment, the Beichuan
segment and the Qingchuan segment (Figs. 7 and 8). Along
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Fig. 6 Regional rock properties (a) and large landslides number distributed in different rock mass (b) 

Ⅰ: hard rock group; Ⅱ:second‐hard rock group ; Ⅲ: soft rock group; IV second‐soft rock group 

 

Statistical analysis shows that there are 15, 44 and 53  large  landslides that occurred  in the hard 

rock group  (type  I), second‐hard  rock group  (type  II) and soft  rock group  (type  III),  respectively 
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with the physical distribution of large landslides, it can be
found that the concentration distribution of the coseismic dis-
placements correlates with large landslides (Fig. 7).

Yu and her colleagues had measured horizontal and ver-
tical coseismic displacements in the field (Yu et al., 2010).
In this paper, total displacement (Dt) is used to describe the
ground surface deformation, too. It is expressed as a combi-
nation vector value of horizontal and vertical coseismic dis-
placement following the equation at a special observation po-
sition:

Dt=

√
D2

h+D2
v

whereDh is horizontal coseismic displacement (cm) andDv
is vertical coseismic displacement (cm).
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Fig 8 Distribution of the coseismic displacements measured in the field (revised after Yu et al., 2010) 

(a: vertical coseismic displacements distribution; b: horizontal coseismic displacements distribution; c: total 

coseismic displacements distribution; (1) Yingxiu segment, (2) Gaochuan segment, (3) Beichuan segment and (4) 

Qingchuan segment) 
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Fig. 7. Distribution of the coseismic displacements measured
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Fig. 7 Maximum coseismic displacements at different segments 
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Fig. 8.Maximum coseismic displacements at different segments.

Table 3 shows the maximum coseismic displacement val-
ues of the four segments. Both the biggest vertical and hori-
zontal displacements are presented at the Beichuan segment
(Table 3, Fig. 8), they are measured 6.5 m and 5.4 m, respec-
tively (Yu et al., 2010).

For horizontal displacement, the value becomes bigger and
bigger along the rupture propagation direction from the epi-
center region to the northeast, until at the Qingchuan seg-
ment, then there is a drop. For vertical displacement, at the
epicenter section and the Beichuan segment, the values are
bigger than other segments, and the minimum value is pre-
sented at the Qingchuan segment. As to the total displace-
ments, the maximum value appears at the Beichuan segment,
that was one of the most damaged regions in the Wenchuan
earthquake. It is notable that all the horizontal, vertical and
total displacements decrease at the Qingchuan segment.

The variety of coseismic displacement values in differ-
ent segments along the ground surface ruptures reveals the
change of fault type and fault geometry (Haeussler et al.,
2004; Shen et al., 2009; Yu et al., 2010). Overlaid with large
landslides physical distribution, the concentration distribu-
tion of coseismic displacements is in good accordance with
large landslides. This means that where the bigger coseismic
offsets slipped, heavier slope failures occurred. Meanwhile,
at the places where the fault type and fault geometry changed,
the slope failures were heavier, such as at the transforming
positions (like the Beichuan county in the Beichuan segment)
and the faults junctions (like the Gaochuan segment).

2.5 Distribution of large landslides with ground motion

As the trigger of earthquake-induced landslides, seismic
ground motion plays an important role in the occurrence of
landslides. Research and reports indicate that the landslides
distribution could be closely related to the distribution of
peak ground acceleration (Harp el al., 1981; Keefer, 1984;
Wang et al., 2003; Meunier et al., 2007; Wang et al., 2007).
During the 1999 Chi-Chi earthquake in Taiwan, earthquake-
induced landslides rate generally increased with peak ground
acceleration (PGA) increasing, and more than 90 % of the

intensity  IX  in the Qingchuan region, the northeast end of the surface rupture (Fig. 9). This fact 

reveals a closer tie between the large landslides and their geological locations. The zone where it 

is  likely  to  form  large  scale  landslides  is much narrower  than  that  for  generating  comparative 

small  scale  landslides,  and  strong  ground motion  is  an  important  factor  of  determining  large 

landslide incidence.   

 

Although  hundreds  of  seismic  instrument  records  of  main  shock  were  obtained  during  the 

Wenchuan Earthquake, near  field  seismic data  is not optimal  for  further  studying. Table 4  lists 

seven seismic ground motion  records which were obtained at or around  the area damaged by 

large  landslides.  Among  them,  No.6,  named Wolong  Seismic  Station,  recorded  the  strongest 

ground motion.  Peak  accelerations  recorded  in  the  EW, NS,  and  vertical  directions  are  957.7, 

652.9, and 948.1 gal, respectively (Li et al., 2008). 

 

Fig. 9 Distribution of large landslides with seismic intensity   

 

Table 4. Peak accelerations recorded in the near stations 

Seismic 

station 

Lat. 

(°) 

Lon. 

(°) 

Distance from 

 rupture (km) 

E-W 

(gal) 

N-S 

(gal) 

U-D 

(gal) 

Total 

(gal） 

1 104.46 31.26 35.0 129.0 90.8 139.1 210.31 

2 104.41 31.77 1.6 493.4 548.6 214.4 768.54 

3 104.62 31.78 13.0 347.0 512.5 448.1 764.10 

4 104.78 31.91 17.0 470.2 519.6 210.8 731.78 

5 104.98 31.96 19.0 279.9 302.8 214.2 464.66 

6 103.2 31.0 19.2 957.7 652.9 948.1 1497.5 

7 104.1 31.5 2.3 824.1 802.7 622.9 1308.2 

*Locations of 7 seismic stations are shown in Figure 9. 
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Fig. 9.Distribution of large landslides with seismic intensity.

landslides were distributed in the area where PGA exceeded
300 gal in the horizontal component (Wang et al., 2003). In
the Wenchuan earthquake, more than 70 % of the landslides
were presented in the area with PGA greater than 354 gal,
this value corresponds to seismic intensity VIII when scaled
in China seismic intensity (Li et al., 2008; Chen et al., 2010).

Lots of references indicate that the threshold intensity for
triggering small landslides is of approximately seismic inten-
sity VI (Harp et al., 1981; Keefer, 1984), as is also proved to
be true in the Wenchuan earthquake (Chen et al., 2010; Qi
et al., 2010). But as to large scale landslides triggered by the
Wenchuan earthquake, it is found that almost all the large
landslides occurred in the region of seismic intensity higher
than X except several events that occurred in seismic inten-
sity IX in the Qingchuan region, the northeast end of the sur-
face rupture (Fig. 9). This fact reveals a closer tie between
the large landslides and their geological locations. The zone
where it is likely to form large scale landslides is much nar-
rower than that for generating comparative small scale land-
slides, and strong ground motion is an important factor of
determining large landslide incidence.

Although hundreds of seismic instrument records of main
shock were obtained during the Wenchuan earthquake, near
field seismic data is not optimal for further studying. Ta-
ble 4 lists seven seismic ground motion records which were
obtained at or around the area damaged by large land-
slides. Among them, No. 6, named Wolong Seismic Station,
recorded the strongest ground motion. Peak accelerations
recorded in the EW, NS, and vertical directions are 957.7,
652.9, and 948.1 gal, respectively (Li et al., 2008).
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Table 3.Maximum coseismic displacements at different segments.

Segment Horizontal displacement Vertical displacement Total displacement)
name (cm) (Dh) (cm) (Dv) (cm) (Dt)

(1) Yingxiu 450 620 620.0
(2) Gaochuan 470 520 674.759
(3) Beichuan 540 650 752.928
(4) Qingchuan 350 240 388.104

Table 4.Peak accelerations recorded in the near stations.

Seismic Lat. Long. Distance from E–W N–S U–D Total
station (◦) (◦) rupture (km) (gal) (gal) (gal) (gal)

1 104.46 31.26 35.0 129.0 90.8 139.1 210.31
2 104.41 31.77 1.6 493.4 548.6 214.4 768.54
3 104.62 31.78 13.0 347.0 512.5 448.1 764.10
4 104.78 31.91 17.0 470.2 519.6 210.8 731.78
5 104.98 31.96 19.0 279.9 302.8 214.2 464.66
6 103.2 31.0 19.2 957.7 652.9 948.1 1497.5
7 104.1 31.5 2.3 824.1 802.7 622.9 1308.2

* Locations of 7 seismic stations are shown in Fig. 9.

3 Discussion

3.1 Influence of seismic fault mechanism and geometry
on the triggered landslides

As important influencing factors of landslides, the effects
of seismic fault mechanism as well as fault geometry are
not clear. Landslides triggered byMs = 8.0 Wenchuan earth-
quake provide a good opportunity to explore this relation-
ship.

Oglesby’s study on the Chi-Chi earthquake indicated the
effects of fault geometry, nonuniform prestress, and dy-
namic waves on the physics of the Chi-Chi earthquake and
dip-slip faults (Oglesby and Day, 2001). Abrahamson and
Somerville’s study proposed that thrust and reverse faults can
cause stronger ground motion in their hanging walls (Abra-
hamson and Somerville, 1996). Studies on the Wenchuan
earthquake revealed faults spatially distribution features have
controlling effects on the aftershocks occurrence, and at the
same time, aftershocks relocation of the Wenchuan earth-
quake supported that most of the aftershocks occurred within
the LSFZ and on the hanging walling sides (Zhu et al., 2008;
Zhang et al., 2009; Zhao et al., 2010). The fact that landslides
were likely to occur on the hanging wall side can be con-
tributed to the abnormally high ground motions on it (Abra-
hamson and Somerville, 1996; Harp and Jibson, 1996; Jib-
son et al., 2004). It is apparently that during the Wenchuan
earthquake, which was caused by thrust faults, hanging wall
and footwall sides experienced different intensity of ground
motion and consequent high concentrations of landslides on
hanging wall, as appeared in other earthquakes caused by

thrust faults, such as the 1999 Chi-Chi earthquake in Tai-
wan, the 2004 Niigata earthquake in Japan and the 1994
Northridge earthquake in US (Harp and Jibson, 1996; Wang
et al., 2003; Jibson et al., 2004).

Analysis of Global Positioning System and Interferomet-
ric Synthetic Aperture Radar data about the Wenchuan earth-
quake indicates that the geometry of the fault changes along
its length: in the southwest, the fault plane dips moderately
to the northwest but becomes nearly vertical in the north-
east (Shen et al., 2009). Besides, the motion along the fault
changes from predominantly thrusting to strike-slip (Shen et
al., 2009). Moreover, as to the landslides concentrated places
such as Yingxiu town, Gaochuan town and Beichuan County,
these regions are the intersections of fault segments where
peak slip along the fault occurs (Shen et al., 2009). Inte-
grating coseismic displacements with the occurrence of large
landslides, it is found that with the change of fault type from
reverse dominated to dextral from southwest to northeast, the
maximum distance between large landslides and the ground
surface rupture decrease (Fig. 10). This fact indicates that a
reverse fault can trigger large landslides in a wider region
(at southwest part) than a strike-slip fault does (at northeast
part). Therefore, a primary study shows fault type and geom-
etry may influence the landslides spatial distribution on the
landslides location, size, density, and so on.

3.2 Influences of peak ground motion on landslides

Strong correlations were found between the variations of
landslide density and both the vertical and horizontal com-
ponents of recorded peak ground accelerations (Meunier et
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Table 5.Slopes composed of coherent rock material with thickness of 20 m.

Landslide c′ (Mpa) α (◦) ϕ′ (◦) t (m) λ (kN m−3) Fs ac (gal)

Niujuangou 2.5 40 65 20 30.0 9.037 4871.0
Daguangbao 2.0 45 55 20 27.0 6.666 3776.0
Wangjiayan 1.0 37 45 20 25.0 4.650 2152.0
Donghekou 1.0 40 45 20 24.0 4.433 2162.0

Table 6.Slopes composed of coherent rock material with thickness of 10 m.

Landslide c′ (Mpa) α (◦) ϕ′ (◦) t (m) λ (kN m−3) Fs ac (gal)

Niujuangou 2.5 40 65 10 30.0 15.520 9146.7
Daguangbao 2.0 45 55 10 27.0 11.904 7556.0
Wangjiayan 1.0 37 45 10 25.0 7.973 4112.9
Donghekou 1.0 40 45 10 24.0 7.674 4204.1

 

Fig. 10 Maximum distances of large landslides to the ground surface rupture at different segments 
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Fig. 10.Maximum distances of large landslides to the ground sur-
face rupture at different segments.

al., 2007). Studies on the distribution characteristics of the
Wenchuan earthquake induced landslide also support this
viewpoint (Wang et al., 2003; Keefer et al., 2006; Wang et
al., 2008; Qi et al., 2010; Chen et al., 2010).

After selecting four typical large landslides from the four
large landslides concentrated segments separately, the au-
thors tried to estimate critical accelerationac for generat-
ing the events based on the Newmark model and compare
calculatedac with the peak ground acceleration obtained
by seismic instruments records. These four large landslides
are the Niujuangou landslide in the Yingxiu segment, the
Daguangbao landslide in the Gaochuan segment, the Wangji-
ayan landslide in the Beichuan segment and the Donghekou
landslide in the Qingchuan segment (Fig. 11).

In the Newmark model (1965), it is shown that critical
acceleration of a potential landslide block is a simple func-
tion of the static factor of safety and landslide geometry, ex-
pressed as

ac = (FS− 1)g sina

whereac is the critical acceleration in terms ofg, the acceler-
ation of Earth’s gravity;FS is the static factor of safety; and
α is the angle from the horizontal that the centre of mass of

the potential landslide block first moves, which can generally
be approximated as the slope angle.

FS is expressed as:

FS =
c′

γ t sinα
+

tanϕ′

tanα
−

mγw tanϕ′

γ tanα

whereϕ′ is the effective friction angle,c′ is the effective co-
hesion,α is the slope angle,γ is the material unit weight,γw
is the unit weight of water,t is the slope-normal thickness of
the failure slab, andm is the proportion of the slab thickness
that is saturated. Because the season when the Wenchuan
earthquake took place was not the wet season, superficial
slope materials were dry. Therefore, no pore-water pressure
is included (m = 0) in this calibration, and the third term
drops from the equation.

Two situations of the slopes are calculated here, one is
where slopes are composed of coherent rock material, and
another is where slopes are composed of fractured rock mate-
rial. Under different conditions, the parameters of rock mate-
rials are different. The varied parameters are effective friction
angleϕ′ and effective cohesionc′. Based on the landslides’
material components and for simplicity, rock materials pa-
rameters are assigned as showing in Tables 5–8 according
to “Standard for engineering classification of rock masses”
(GB50218-94, China). Meanwhile, the slope angles for dif-
ferent landslides are taken from their practical typical slope
angles, while the thickness is taken the same value of 10 m
and 20 m, respectively. After calculation, the results of criti-
cal accelerationac and static factor of safetyFS are also listed
in Tables 5–8.

The Newnark model has been applied widely and suc-
cessfully in seismic landslides hazard assessment (Jibson
et al., 2000; Jibson and Michael, 2010; Scott and Keefer,
2001). Although our calculation about the four large land-
slides is based on the Newnark model with simplified pa-
rameters, some preliminary useful understanding is achieved
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Table 7. Slopes composed of fracture rock with thickness of 20 m.

Landslide c′ (Mpa) α (◦) ϕ′ (◦) t (m) λ (kN m−3) Fs ac (gal)

Niujuangou 0.25 40 40 20 30.0 1.648 408.33
Daguangbao 0.22 45 35 20 27.0 1.2763 191.466
Wangjiayan 0.15 37 25 20 25.0 1.117 69.18
Donghekou 0.15 40 25 20 24.0 1.042 26.45

Table 8.Slopes composed of fracture rock with thickness of 10 m.

Landslide c′ (Mpa) α (◦) ϕ′ (◦) t (m) λ (kN m−3) Fs ac (gal)

Niujuangou 0.25 40 40 10 30.0 2.296 816.667
Daguangbao 0.22 45 35 10 27.0 1.853 590.772
Wangjiayan 0.15 37 25 10 25.0 1.616 363.183
Donghekou 0.15 40 25 10 24.0 1.528 332.636

1g = 980 gal.

when comparing outcomes under various slope conditions:
first, it is seen that with the increasing of the slope thick-
ness, the critical accelerationac is reduced, then it seems that
deeper landslides are less stable than shallower landslides
given the same strength values and slope angles; secondly,
rock materials are important for slope stability, the harder the
rock, the more stable the slopes. This agrees with our normal
knowledge of slope stability; thirdly, it needs very big PGA
to generate large landslides under natural conditions when
the slope material is composed of coherent rock material.

After combining our calculation results of critical acceler-
ationac with seismic records obtained during the Wenchuan
earthquake, the calculated value ofac in Table 8 seems realis-
tic. Comparing the recorded peak ground accelerations at the
epicenter region (957.7, 652.9, and 948.1 gal in the EW, NS,
and vertical directions, respectively) with the estimatedac
values of 408 gal (for slope thickness 20 m) and 817 gal (for
slope thickness 10 m), it is found that the real ground motion
is strong enough to fail the slope composed of fracture rocks
with a thickness either of 10 m or 20 m, but not the coherent
rock material. From its initialised calculating conditions, it
can be concluded that most of the very large landslides may
be occurring on pre-existing fractures or discontinuity planes
that were undetectable prior to the earthquake, and in this
case, it seems that bigger peak ground acceleration is needed
to generate large landslides in epicenter region than in the
northeast terminal region because of the hard rock mass at
the epicenter region.

4 Conclusions

The Wenchuan earthquake triggered numerous landslides,
and among them many large scale landslides are responsible
for the majority and tragic fatalities related to single land-
slides. Taking it as a special kind of landslides, our study

analysed their distribution characteristics and suggests this
kind of large and deep slope failures could be specifically
tied to some particular geologic settings. This is in agree-
ment with what is found in Chi-Chi earthquake (Khazai and
Sitar, 2003).

1. The large landslides are dominantly developed in a nar-
row belt along the LSFZ, its numbers drop more rapidly
with the increasing of the distance from the seismic
faults when compared with other normal landslides.
More than 80 % of the large landslides are presented
within a 5 km distance from the ground surface rupture;

2. Most of large landslides occurred in the region with
seismic intensity higher than X except of several events
occurred in IX in Qingchuan region, the northeast end
of the surface rupture. This means that large landslides
have a closer relationship with geological locations than
ordinary landslides. The calculation of critical accelera-
tions in different segments suggests that large landslides
may have occurred on pre-existing fractures or discon-
tinuities that were undetectable prior to the earthquake
and be composed of fracture rocks. For the same scale,
a greater PGA is needed to trigger large landslides when
the slope is in a region covered with hard rocks;

3. The physical concentration distributions of large land-
slides are in good accordance with coseismic displace-
ments measured in the field, the bigger the coseismic
displacements appear, the heavier the landslides that oc-
cur. Taking account of the fact that the components of
coseismic displacement value can reflect the changes of
fault type and fault geometry, it can be concluded that
fault type and geometry are important factors influenc-
ing the occurrence of large landslides and its concen-
trations. Thus, we are given the hope of predicting the
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Fig. 11.Locations of the four large landslides(a) and their images
(b) and photos(c).

potential area of the large landslides when doing seis-
mic hazard assessment, if fault geometry could be de-
termined in advance.

4. From southwest to northeast, fault type changing from
reverse dominated to dextral, the furthest distance be-
tween the large landslides to the rupture decreases. This
suggests that reverse fault could cause large landslides
in a wider region than a strike-slip fault.
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