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Abstract. This paper describes a new multi-sensor approach
for convective rain cell continuous monitoring based on rain-
fall derived from Passive Microwave (PM) remote sens-
ing from the Low Earth Orbit (LEO) satellite coupled with
Infrared (IR) remote sensing Brightness Temperature (TB)
from the Geosynchronous (GEO) orbit satellite. The pro-
posed technique, which we call Precipitation Evolving Tech-
nique (PET), propagates forward in time and space the last
available rain-rate (RR) maps derived from Advanced Mi-
crowave Sounding Units (AMSU) and Microwave Humidity
Sounder (MHS) observations by using IR TB maps of wa-
ter vapor (6.2 µm) and thermal-IR (10.8 µm) channels from
a Spinning Enhanced Visible and Infrared Imager (SEVIRI)
radiometer. PET is based on two different modules, the first
for morphing and tracking rain cells and the second for dy-
namic calibration IR-RR. The Morphing module uses two
consecutive IR data to identify the motion vector to be ap-
plied to the rain field so as to propagate it in time and space,
whilst the Calibration module computes the dynamic rela-
tionship between IR and RR in order to take into account
genesis, extinction or size variation of rain cells. Finally, a
combination of the Morphing and Calibration output pro-
vides a rainfall map at IR space and time scale, and the whole
procedure is reiterated by using the last RR map output until
a new MW-based rainfall is available. The PET results have
been analyzed with respect to two different PM-RR retrieval
algorithms for seven case studies referring to different rain-
fall convective events. The qualitative, dichotomous and con-
tinuous assessments show an overall ability of this technique
to propagate rain field at least for 2–3 h propagation time.

1 Introduction

The ability to estimate convective precipitation with a high
level of accuracy, by using Passive Microwave (PM) from
radiometers onboard satellites, has been well known for sev-
eral years (Ebert et al., 1996; Smith et al., 1998; Kummerow
et al., 2001), since the launch of the first Special Sensor Mi-
crowave/Imager (SSM/I) radiometer in 1987 – and especially
after the launch of the Tropical Rainfall Measuring Mis-
sion (TRMM) space observatory in 1997. However, due to
diffraction, in order to achieve spatial resolutions consistent
with the horizontal variability of the geophysical parameters
retrievable from PM, passive millimeter radiometers have
been flown, so far, on Low Earth Orbiting (LEO) satellites.
This brings about coarse temporal sampling that ranges from
more than 10 remote sensing per day at high latitudes to 1–2
per day at low latitudes, for any given location over the Earth.
Obviously, this temporal sampling does not provide satisfac-
tory coverage of observations for some geophysical parame-
ters rapidly evolving such as convective precipitation.

To solve this problem, some national and international
space agencies have made preliminary attempts to evaluate
the scientific/technological prospect of sub-hourly rainfall
observations from space by using millimeter-submillimeter
MW radiometers onboard geostationary (GEO) satellites
(e.g. Bizzarri et al., 2007; Di Paola and Dietrich, 2008), even
if the launch of such satellites has not be planned for the
present.

To attenuate the problem arising from the coarse tem-
poral sampling of microwave remote sensing, several MW
radiometers are presently operational on LEO satellites, as
shown in Table 1. Despite this large constellation of satel-
lites embarking MW radiometers, the real-time precipitation
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Table 1.List of the main LEO satellites carrying MW radiometers.

Satellite Operator LTAN Mean Altitude Launch date MW instrument payload

GCOM-W1 JAXA 13:30 700 km 18 May 2012 AMSR-2

Suomi-NPP USA/NOAA/NASA 13:30 833 km 27 Oct 2011 ATMS

Megha-Tropiques ISRO+ CNES non-sun-synch.
(20◦ inclination)

865 km 12 Oct 2011 MADRAS/SAPHIR

FY-3B CHINA/CMA 13:38 836 km 5 Nov 2010 MWRI/MWHS

DMSP-F18 USA/NOAA-DOD 20:08 850 km 18 Oct 2009 SSMIS

NOAA-19 USA/NOAA 13:32 870 km 6 Feb 2009 AMSU/MHS

FY-3A CHINA/CMA 20:22 836 km 27 May 2008 MWRI/MWHS

Metop-A EUMETSAT 21:30 837 km 19 Oct 2006 AMSU/MHS

DMSP-F17 USA/NOAA-DOD 17:37 850 km 4 Nov 2006 SSMIS

NOAA-18 USA/NOAA 14:22 854 km 20 May 2005 AMSU/MHS

DMSP-F16 USA/NOAA-DOD 18:51 850 km 18 Oct 2003 SSMIS

NOAA-17 USA/NOAA 20:43 810 km 24 Jun 2002 AMSU

Aqua NASA 13:30 705 km 4 May 2002 AMSR-E/AMSU-A/HSB

NOAA-16 USA/NOAA 19:45 849 km 21 Sep 2000 AMSU

DMSP-F15 USA/NOAA-DOD 17:06 850 km 12 Dec 1999 SSM/I

TRMM NASA/JAXA non-sun-synch.
(35◦ inclination)

402 km 28 Nov 1997 TMI

DMSP-F14 USA/NOAA-DOD 15:47 852 km 4 Apr 1997 SSM/I

monitoring obtained by using only a passive MW onboard
satellite, is still not possible, due to the rapid variability of
rain field with respect to the temporal frequency of LEO
satellite overpass.

In the last twenty years, various algorithms have been de-
veloped by combining frequent IR observations from GEO
satellites with accurate MW-based precipitation estimates
(Adler et al., 1993; Xu et al., 1999; Bellerby et al., 2000;
Sorooshian et al., 2000; Huffman et al., 2001; Miller et al.,
2001; Kuligowski, 2002; Turk and Miller, 2005). While some
MW-IR combined techniques focus on rain-rate estimates
on the GEO time scale (every 15/30 min) – e.g. the Naval
Research Laboratory (NRL) blended algorithm (Turk et al.,
2002; Turk and Mehta, 2007; Torricella et al., 2007), the Uni-
versity of Birmingham algorithm (Kidd et al., 2003, 2007),
and the Climate Prediction Center (CPC) morphing algo-
rithm (CMORPH – see Joyce et al., 2004, 2007; see also
Kubota et al., 2007), other techniques aim at 3–h or longer
time scales precipitation estimates (e.g. Adler et al., 1994;
Huffman et al., 2007).

In this paper, we describe the PET algorithm which is a
new combined MW-IR technique that employs IR observa-
tions from GEO satellite to propagate forward in time the
rain field of convective storms. This technique uses the latest
available rain-rate estimates provided by MW observations
from space and produces rain-rate maps at the GEO time and

space resolution for real-time purposes. PET can be consid-
ered as a combination and evolution of the CMORPH tech-
nique and NRL blended technique using two separate mod-
ules which we call Morphing and Calibration. Even though
both the PET Morphing module and CMORPH propagate
rain field by motion vectors derived from GEO IR data, the
basic innovation of the Morphing described in this paper with
respect to CMORPH is that the former requires only one
MW-estimated rain field to allow a quasi real-time monitor-
ing, while the latter needs two MW-estimated rain fields to
generate the in-between rain fields, and obviously it does not
allow real-time applications.

The basic innovation of the PET Calibration module with
respect to NRL blended technique is that it is based on
the Global Convective Diagnostic (GCD) approach (Mosher,
2001, 2002) rather than on a single thermal infrared chan-
nel. GCD is a method for recognizing deep convection from
geostationary satellite images, both day and night, based
on the difference from thermal infrared and water vapor
channels. By using Precipitation Radar (PR) onboard the
Tropical Rainfall Measurement Mission (TRMM), Martin et
al. (2008) noted that GCD generally produces more accurate
deep-convection observation than any other monospectral in-
frared convective scheme.

As shown in a previous work (Casella et al., 2012) with
the PM-GCD technique, the combined use of SEVIRI 6.2 µm
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and 10.8 µm brightness temperatures allows to recognize
convective areas in a better way than the use of a single IR
channel, highly reducing the number of false alarms such as
those caused by the cirrus or others non-precipitating clouds
that are one of the error main sources of some IR-based rain-
rate estimate techniques. Another reason to use a 6.2 µm and
10.8 µm brightness temperature combination instead of a sin-
gle thermal-IR radiance is that the latter shows very small
variation, while GCD value tends to decrease from the core
convective cell to the anvil region. With respect to PM-GCD
that uses a statistical relationship GCD-RR, PET uses both a
deterministic and statistical approach by means of Morphing
and Calibration modules, respectively, to propagate the rain
field. In the first steps, as better explained in Sect. 4, PET
uses mainly the Morphing module. The Calibration module
becomes relevant only after some propagation steps. As a
matter of fact, at least at the beginning of propagation, the
PET output is more consistent with the MW-based rain field
when compared with PM-GCD.

It is worth considering that PET is not a method for es-
timating rain rates, rather a technique that creates spatially
and temporally complete rain field information by using ex-
isting precipitation products, like those derived from MW
observations. In this paper we use MW-derived rain rates
from the Advanced Microwave Sounding Unit-A and -B
(AMSU-A, AMSU-B) and Microwave Humidity Sounder
(MHS) radiometers onboard NOAA and MetOp operational
LEO satellites, in conjunction with IR brightness tempera-
ture from the Spinning Enhanced Visible and Infrared Im-
ager (SEVIRI) radiometer onboard the geostationary ME-
TEOSAT Second Generation (MSG) satellite.

Section 2 briefly reviews AMSU/MHS and SEVIRI data,
the two MW-based precipitation estimation algorithms used
in this study and the GCD technique used to identify con-
vective areas. Section 3 introduces a heavy rainfall occurred
over Sicily in 2009 used as a case study to better explain the
algorithm and to show its preliminary results. Sections 4 and
5 describe how PET algorithm works, analyzing both Mor-
phing and Calibration modules and its application to the se-
lected case study. In Sect. 6 a preliminary assessment of PET
is carried out by comparing the PET rain-rate maps with the
corresponding AMSU/MHS-based retrievals with reference
to seven convective storms occurred in the Mediterranean re-
gion between 2009 and 2012. Section 7 summarizes these
studies and draws the conclusions.

2 Data and algorithm

Since our purpose is to develop a method for real-time rain
rates monitoring for convective events, we have selected only
the MW radiometers onboard operational satellites – the
cross-track scanning AMSU/MHS sensors onboard NOAA-
18, -19 and MetOp-A sun-synchronous near-polar-orbiting
operational satellites, coupled with IR data from SEVIRI

onboard MSG. Even if there are others satellites equipped
with MW sensors, for this study only NOAA and MetOp
satellites have been used because the other satellites have
some radiometer malfunctions (seehttp://www.osdpd.noaa.
govandhttp://www.oso.noaa.gov) or high date latency mak-
ing them unsuitable for real-time applications. However, the
use of the latest sensors will be included in PET as soon as
the proper retrieval algorithms is developed.

A detailed description of AMSU/MHS radiometers can be
found in Kramer (2002) and in Kleespies and Watts (2007).
Here we wish to give some essential information that the
reader may find useful. AMSUB/MHS are cross-track ra-
diometers, providing images with constant angular sampling
across tracks, which implies that the Instantaneous Field Of
View (IFOV) elongates as the beam moves from nadir toward
the edge of the scan. For all frequencies, AMSU-A IFOV
is approximately (48× 48) km2 at nadir and increases up
to (80× 150) km2 at the edge of the 2250 km swath, whilst
AMSU-B and MHS IFOV are approximately (16× 16) km2

at nadir and increase up (27× 50) km2 at the edge of scan
line. AMSU-A was originally developed for atmospheric
temperature sounding and most frequencies lie in the O2 ab-
sorption band at 54 GHz. AMSU-B and MHS were devel-
oped for humidity sounding and most frequencies lie in the
H2O absorption band at 183 GHz. In the presence of precip-
itating clouds, temperature and humidity profiling mission
fails and precipitation is observed instead.

In this paper we adopt two AMSU/MHS precipitation re-
trieval algorithms, in order to highlight the different results
from PET algorithm for the same case studies but different
rain-rate estimates. The first algorithm was developed at the
Massachusetts Institute of Technology (MIT) (Surussavadee
and Staelin, 2008a). This algorithm is based on neural net-
works trained with simulatedTB at AMSU/MHS frequen-
cies for 122 representative storms covering a wide range of
precipitation types, between July 2002 and June 2003. Sim-
ulatedTB are obtained by using a two-stream Mie-scattering
Radiative Transfer Model (RTM) (Rosenkranz, 2002), ap-
plied to meteorological fields simulated with a mesoscale
Numerical Weather Prediction (NWP) model (MM5) initial-
ized with the National Centers for Environmental Prediction
(NCEP) data. This algorithm uses a Principal Component
Analysis ofTB and the outputs produced are rain-rate esti-
mates at AMSU-B/MHS grid.

The algorithm was originally validated through numer-
ical comparisons with precipitation products derived from
AMSR-E onboard the Aqua satellite, SSM/I onboard the
DMSP F-13, F-14 and F-15 satellites, TMI onboard the
TRMM satellite and surface precipitation rates product
(NOWRAD) by using the Next-Generation Weather Radar
(NEXRAD) programme (Surussavadee and Staelin, 2008b).
The second algorithm was developed at the Institute of
Methodologies for Environmental Analysis of the National
Research Council of Italy (IMAA-CNR) (Di Tomaso et al.,
2009). It is entirely based on AMSU-B/MHS observations
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and it does not require the integration of additional sen-
sors wich could deteriorate the spatial resolution. It uses
both the radiometric observations made at window channel
(89 and 150 GHz) and those made in the water vapor band
(183 GHz). This algorithm has been validated on a large
number of case studies at middle and low latitudes as well
as over land and land/water surfaces. Precipitation estimates
exhibit a very good agreement with ground-based observa-
tions in the detection of rainfall. The probability of detection
of precipitation is 75 % and 90 % for rain rates greater than
1 mm h−1 and 5 mm h−1, respectively.

SEVIRI is the main payload onboard MSG geostationary
satellite, launched by Eumetsat since 2003 above the Guinea
Gulf. This radiometer consists of two visible channels cen-
tered at 0.6 and 0.8 µm, one near infrared channel centered at
1.6 µm, eight infrared channels centered at 3.9, 6.2, 7.3, 8.7,
9.7, 10.8, 12.0 and 13.4 µm and finally one visible broad-
band channel at 0.5/0.9 µm called the High Resolution Visi-
ble channel (HRV). SEVIRI combines a very high temporal
resolution of 15 min over the whole Earth disk with a good
spatial sampling of (1× 1) km2 for HRV and (3× 3) km2 for
the others channels at sub-satellite point. The level 1.5 data
used for this paper have been corrected from radiometric and
geometric non-linearity, geolocated and calibrated (Muller,
2007). A detailed description of SEVIRI radiometers can be
found in Aminou et al. (1997). The GCD technique used
for PET algorithm is based on the TB difference between
thermal-infrared (IR, 10.8 µm) and water vapor (WV, 6.2 µm)
channels (i.e.,1TBGCD

= TBIR
−TBWV) and was developed

to identify deep-convection areas from GEO observations.
Even if this method originally assigns deep convection when
the difference1TBGCD is lower than a given threshold (usu-
ally, 1 K), in this paper we use a dynamic relationship be-
tween the whole1TBGCD and rain-rate maps to identify and
propagate the convection areas for both Morphing and Cali-
bration modules.

3 A case study

To better explain this method, the PET algorithm is described
in the following section with reference to a severe convec-
tion storm that originated on 30 September 2009 with a de-
pression developed over Northern Africa and a consequent
warm advection from the Sahara to the Mediterranean region,
culminating in an extraordinary intense rainfall on 1 Octo-
ber 2009 in Sicily in southern Italy. The heavy rainfall cov-
ered approximately the region (35.0–42.5)◦ N latitude and
(7.5–17.5)◦ E longitude and discharged an amount of more
than 200 mm of rain in southern Italy, causing the death of
35 people due to a large landslide affected the area around
Messina – see Dietrich et al. (2011) for a detailed description
of this case study.

We chose this case study for its disastrous consequences
that would have required the greatest possible number of

Fig. 1.AMSU/MHS rain-rate map from NOAA 18 with closest SE-
VIRI GCD map from SEVIRI.

monitoring tools. The storm was fully observed by the
AMSU radiometers onboard NOAA and MetOp satellites
only 4 times during the whole day, at 13:00, 13:05, 15:56
and 19:51 UTC, while it was continuously monitored ev-
ery 15 min by the SEVIRI radiometer on the geostation-
ary MSG satellite. To describe the PET algorithm for this
case, precipitation estimates are derived by using MIT al-
gorithm at 13:00 UTC and are propagated by using SEVIRI
observations until 15:56 UTC, when the new AMSU/MHS
overpass was available, neglecting AMSU/MHS overpass at
13:05 UTC because it was very close to the first. Figure 1
shows a precipitation retrieval obtained with MIT algorithm
at 13:00 UTC with the closest GCD map at 12:57 UTC. In the
following section we use only the MIT algorithm in conjunc-
tion with the PET algorithm because our purpose is to explain
as PET works, while in Sect. 6 we use both the AMSU-based
precipitation retrieval algorithms in order to show the differ-
ent results produced by PET when different rain-rate data are
used as input.

4 The Precipitation Evolving Technique (PET)

Figure 2 shows a general scheme of the PET algorithm.
This algorithm is an iterative method that starts both with
an AMSU/MHS overpass over the area for which rain field
should be monitored and two consecutive SEVIRI observa-
tions. The first SEVIRI observation has to be contemporary
to AMSU/MHS overpass, with a maximum tolerance in de-
lay of 7.5 min, that is half SEVIRI temporal sampling. By
coupling the AMSU/MHS-based rain-rate map at = t0 with
the GCD contemporary map1TBGCD

t0
, we obtain the first

rain-rate map RRt0 at IR scale that will be propagated by
coupling the first GCD1TBGCD

t0
map with the subsequent

GCD map1TBGCD
t0+15′ . MW-based rain rates are resampled to

SEVIRI grid, by selecting the closest RR value for each IR
grid point, in order to reduce the beam filling effects due to
the coarse AMSU/MHS resolution and to take advantage of
SEVIRI higher resolution. This downscaling simplifies the
PET algorithm because it makes it possible to work always
with the same spatial grid. Furthermore, the output of the
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algorithm that is rain field propagated forward in time and
space, has a resolution greater than that used as input.

At the first iteration, by using RRt0, 1TBGCD
t0

and

1TBGCD
t0+15′ maps on the same grid, Morphing module and

Calibration module produce two new maps RRmor
t0+15 and

RRcal
t0+15 that, when combined, produce a final result RRt0+15′

on the SEVIRI grid. When a new SEVIRI observation is
available at = t0+30′, a new iteration is performed, starting
with the RRt0+15′ output of the previous iteration coupled
with 1TBGCD

t0+15′ and1TBGCD
t0+30′ , in order to produce a new

rain-rate map RRt0+30′ . Generally speaking, for each time
step tn=t0+n1t , with 1t equal to SEVIRI temporal sam-
pling, Morphing and Calibration modules use1TBGCD

t0+n1t

and1TBGCD
t0+(n+1)1t , to propagate RRt0+n1t forward in time

and space to obtain RRt0+(n+1)1t , until a new AMSU/MHS
overpass is available and new RRt0 estimates are produced.

4.1 Morphing module

The goal of this module is to drive precipitating cells of the
latest rain-rate map by modifying their positions and shapes
so as to derive a new rain-rate map, using a multi-scale and
multi-threshold pattern recognition approach. The express
purpose of the Morphing module is not to estimate a new
rain field but to derive a morphed rain field starting from the
previous one, so that, different MW-based rain-rate estimates
can produce different results.

This module uses as input a rain-rate map RRt0+n1t and
two consecutive GCD maps1TBGCD

t0+n1t and1TBGCD
t0+(n+1)1t

to produce as output a morphed rain-rate map RRmor
t0+(n+1)1t

and a morphed1TBGCD,mor
t0+(n+1)1t map. In detail, at the first step,

the Morphing algorithm uses1TBGCD
t0+n1t matrix to compute

a flag matrix of 0/1Ft0+n1t , assigning for each pixel the
value 1 if the corresponding pixel of1TBGCD

t0+n1t is lower than

aP -th percentile computed on a (N × N ) pixel2 box around
the considered pixel, and 0 otherwise. Then this algorithm

identifies allM 8-connected regions
[
1TBGCD

t0+n1t

]m=1:M

of

1TBGCD
t0+n1t map by using a flag matrixFt0+n1t – where 8-

connected region means that for each pixel with flag matrix
equal to 1 of the region, there is at least another pixel with
flag matrix equal to 1 of the same region that is vertically,
horizontally or diagonally contiguous to the considered one.

Thus, we can consider these 8-connected regions as rep-
resentative of different precipitating regions, and the aim is
to follow their evolutions in time and space. To this end, at
the second step the Morphing module tries to identify the
translational movements of the various 8-connected regions.
This is accomplished by evaluating the sum of the difference

modules of each 8-connected region
[
1TBGCD

t0+n1t

]m

with the

corresponding region in1TBGCD
t0+(n+1)1t matrix that is within

a ∼ 40 km radius, a requirement necessary to limit ambigui-
ties in detecting cell movements (the 40 km value for 15 min

corresponds to an upper limit of 160 km h−1 for the con-
vective cells velocity). In a similar way, also the correlation
index are evaluated between the smallest sub-matrices that
include the 8-connected regions and the corresponding sub-
matrices of1TBGCD

t0+(n+1)1t matrix that are within a∼ 40 km
radius. Then, the translational movement having the mini-
mum sum of the difference modules and the maximum cor-
relation index is chosen and it is applied both to RRt0+n1t

and1TBGCD
t0+n1t .

In case of different translational movements generating the
same values of sum of the difference modules and the cor-
relation index, the smallest movement is preferred. When
we have a cells overlap, the cell with the minimum value
of 1TBGCD

t0+n1t maps and the maximum rain field value will
be chosen. Once this computation is executed for all cells
and the resulting translation movements are applied both
to rain field and1TBGCD

t0+n1t maps, the first computation of

RRmor
t0+(n+1)1t and1TBGCD,mor

t0+(n+1)1t is done. At the end of this
computation, the entire procedure is reiterated, varying flag
matrix Ft0+n1t , by means of differentP percentiles andN
box sides, starting with the last computation of RRmor

t0+(n+1)1t

and1TBGCD,mor
t0+(n+1)1t and updating their values.

N andP parameters have to vary by means of two nested
loops, the first starts with a large value ofN and decreases
it in some steps until a small box size is reached, whilst the
second starts with a smallP value and increases it until a
high percentile. By varyingN from high to small values,
the Morphing algorithm tries to identify and move different
cell scale sizes while varyingP from small to high values, it
tries to identify and move the portions of the same cell differ-
ently. In doing so, for each iteration, translate regions grad-
ually decrease in size and increase in number. In this way
they produce, for each updating, a more and more accurate
reconstruction of morphed rain-rate map RRmor

t0+(n+1)1t and

morphed1TBGCD,mor
t0+(n+1)1t map.

Conceptually the best choice for nested loops is to start
from N equal to the maximum side of the examined area
down to 2 pixels, and fromP equal to 1 % up to 99 %, with
a very small step for bothP andN (i.e. 1 pixel and 1 %).
To do it, computational cost may be too high for near real-
time purposes. In the attempt to reach a good compromise
between performance and computational cost, we chose to
start withN equal to the minimum side of the examined area
and to decrease this value by 10 % for each step, whilst for
P a good compromise is to start from 50 % and to decrease
this value by 5 % for each step. Figure 3 shows examples of
differentFt0+n1t flag matrices for the adopted case study at
12:57 UTC and for someN andP values.

4.2 Calibration module

The goal of this module is to obtain a precipitation map a
tn=t0+(n + 1)1t by using the GCD-RR relationship dynam-
ically computed at the previous time steptn = t0 + n1t . As
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Fig. 2.Scheme of the Precipitation Evolving Technique (PET).

previously explained for the Morphing module, Calibration
module uses as input a rain-rate map RRt0 + n1t and two
consecutive GCD maps1TBGCD

t0+n1t and 1TBGCD
t0+(n+1)1t to

produce as output a calibrated rain-rate map RRcal
t0+(n+1)1t .

To this end, the Calibration module computes the RRt0+n1t

and1TBGCD
t0+n1t histograms by using coincident rain-rate and

GCD maps, then it uses a probabilistic histogram match-
ing relationship (Calheiros and Zawadski, 1987) to calculate
an RR-1TBGCD lookup table (LUT). By applying this LUT
to 1TBGCD

t0+(n+1)1t a new rain-rate map RRcal
t0+(n+1)1t is ob-

tained. In some cases it may happen that1TBGCD
t0+(n+1)1t con-

tains values lower than those present in the calculated LUT,
i.e. when there are convective events not completely covered
by AMSU/MHS overpass but observed by SEVIRI radiome-
ter, or when AMSU/MHS overpass observes convective cells
before their complete development. For this reason, Calibra-
tion module uses also the last ten calculated LUTs jointly
with a more general LUT obtained on the basis of 20 case
studies selected in 2011. For each RRcal

t0+(n+1)1t computa-

tion, when the LUT does not cover all1TBGCD
t0+(n+1)1t val-

ues, Calibration module searches these values in the other
LUTs, starting from the latest up to the more general LUT.
Obviously, in doing so, precipitation estimates are less accu-
rate than those obtained by using only MW/IR simultaneous
observations, but this approach allows recognizing precipi-
tating areas also out of AMSU/MHS overpass or far from the
mature stage.

4.3 Precipitation results

The PET algorithm final output is RRt0+(n+1)1t , obtained as
a linear combination of RRmor

t0+(n+1)1t and RRcal
t0+(n+1)1t com-

puted pixel-by-pixel, on the same grid of IR data. In addi-
tion to the morphed rain field map RRmor

t0+(n+1)1t , Morphing

module produces also a morphed GCD map1TBGCD,mor
t0+(n+1)1t .

The rain field RRmor
t0+(n+1)1t and GCD maps are obtained by

identical sequences of translation movements calculated to

get1TBGCD
t0+(n+1)1t starting from1TBGCD

t0+n1t . Conceptually,
if the differences of these two GCD maps were due only to
the position of some cold areas,1TBGCD,mor

t0+(n+1)1t would be a

perfect reconstruction of1TBGCD
t0+(n+1)1t and would be rea-

sonable to consider RRmor
t0+(n+1)1t as a perfect reconstruc-

tion of RRt0+(n+1)1t . In practice, for each SEVIRI observa-
tion, obviously1TBGCD varies not only in the positions of
cold areas, but also in shape and intensity, and consequently
1TBGCD,mor

t0+(n+1)1t and RRmor
t0+(n+1)1t are not perfect reconstruc-

tions of their corresponding fields. For this reason, the map of
difference between1TBGCD,mor

t0+(n+1)1t and1TBGCD
t0+(n+1)1t can

be considered as a measure of the Morphing module perfor-
mance. In this map, the regions characterized by low values
indicate a good Morphing module performances, whilst re-
gions characterized by high values denote bad performance,
that is a bad propagation of rain-rate maps. On the basis of
these considerations, in order to combine RRmor

t0+(n+1)1t and

RRcal
t0+(n+1)1t so as to obtain a final RR map PET algorithm

uses

1mor= abs
(
1TBGCD,mor

t0+(n+1)1t

∣∣∣n − 1TBGCD
t0+(n+1)1t

∣∣∣n) (1)

where abs(•) denotes absolute value and•|
n indicates a ma-

trix whose higher values thann have been set equal ton.
GCD maps are upper limited ton value in order to evalu-
ate the Morphing module performance only for cold regions
that are associated to precipitating regions, neglecting large
differences in warm regions.

Even if the GCD technique defines the convective regions
with 1TBGCD > 1 K, we prefer to improve this value for se-
curity reasons in order to avoid skipping precipitating areas.
For this papern = 10 is used, even if the differences in the
final results are very limited, varyingn in the range [1/10].
Morphing module works well in the first applications of PET
algorithm and its performance degrades over time as it moves
away from AMSU/MHS overpass. This is an obvious con-
sequence of how the Morphing module treats precipitating
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Fig. 3. Flag matrices computed on 1 October 2009 at 12:57 UTC, used for pattern recognition in Morphing module. From top to bottomN

box size decreases from 250 px to 25 px by step of 25 px, while from left to rightP percentile decreases from 50 % to 10 % by step of 5 %

cells, because it can recognize translations and changes in
shape but not extinction, creation or large and quick varia-
tions of area. Moreover, Calibration module works less well
than the other module in the first PET propagations, because
it is based on statistic relationships but it is more stable over
time. Because of this, in addition to1mor also a time fac-
tor tmor is used in order to take into account the morphing
mechanism progressive degradation and to combine the out-
puts of both modules. Good results are obtained by making

heuristic choice oftmor range from 0 to 1 with 12 regular
steps, so that after 3 h only the Calibration output is used. In
detail, to compute the final rain-rate map, PET algorithm uses
1mor, scaling it between 0 and 1 by subtracting the mini-
mum and dividing by the maximum value, and then it com-
putesCmor factor as(1− 1mor− tmor) limiting its value
between 0 and 1. The Final rain-rate map is:
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Fig. 4. Example of output of Morphing and Calibration modules,
with coefficient matrixCmor used to combine both outputs in final
rain-rate map that is the result of first propagation of PET algorithm
for event over on southern Italy, 1 October 2009.

RRt0+(n+1)1t=Cmor · RRmor
t0+(n+1)1t + (1− Cmor)

· RRcal
t0+(n+1)1t (2)

In doing so, in the first PET propagations, precipitating
regions with low differences between1TBGCD,mor

t0+(n+1)1t and

1TBGCD
t0+(n+1)1t are propagated mainly by means of Morph-

ing module, whilst regions with high differences between the
previous values are propagated mainly by means of Calibra-
tion module. As time passes,Cmor goes to zero and only
Calibration output becomes reliable. Figure 4 shows an ex-
ample of Morphing and Calibration rainfall outputs, with
Cmor matrix and the final rainfall output of PET algorithm
for the adopted case study at 13:12 UTC that is the first prop-
agation after the latest AMSU/MHS overpass.

5 Application to the selected case study

Figure 5 shows the precipitation evolution every 15 min on
the SEVIRI grid, from 12:57 UTC to 15:42 UTC, as esti-
mated by the PET algorithm starting from the rain field pro-
vided by MIT algorithm by using AMSU/MHS overpass at
13:00 UTC. In each panel1TBGCD maps have also been in-
cluded as references. The first panel shows an overall corre-
lation between the pattern of precipitation, as provided by the
AMSU/MHS-based algorithm, and the closest1TBGCD map
at 12:57 UTC. Pattern similarities are more evident where
higher precipitations are estimated, such as over the Strait of
Sicily. The correlation decreases with the decrease in precip-
itation intensity and the increase in1TBGCD values, as over
eastern Sicily or Sardinia. The good correlation between low

values of1TBGCD map and heavy precipitating storms is a
consequence of deep convection well recognized by the GCD
approach. The low correlation between low precipitation in-
tensity and medium-high1TBGCD values is a consequence
not only of shallow convection but also of the fact that MW
remote-sensing is more efficient in observing high precipita-
tion (Bennartz et al., 2006). For our purposes, this correlation
is enough to hook precipitation to1TBGCD and propagate
the rain field by using SEVIRI data until a new precipita-
tion estimation from one of the LEO satellites updates storm
view.

In the following 5 panels of Fig. 5, from 13:12 UTC to
14:12 UTC, it is possible to observe that the coldest region
of 1TBGCD tends to stretch and move toward the south
and that the PET algorithm correctly follows this develop-
ment, stretching and shifting the most intense precipitation
cell to the Strait of Sicily, and decreasing the precipitation
area over the Tyrrhenian Sea. It is worth considering that the
PET algorithm restructures the shape of the low precipitation
cell over Sardinia, remodulating it along the corresponding
1TBGCD cold region. In addition, the weak precipitation cell
over Eastern Sicily at 13:00 UTC follows the1TBGCD evo-
lution falling rapidly. In the last 6 panels of Fig. 5, between
14:27 UTC and 15:42 UTC, one can observe a progressive
movement eastward of the cold region of1TBGCD, accom-
panied by the gradual decrease of the cold region over east
Sicily and the Tyrrhenian Sea. This evolution of the1TBGCD

map is well followed by the PET algorithm with the equiv-
alent changes in the rain field, and the resulting formation
of two high precipitation regions over western Sicily as well
as the strong decrease in the low precipitation areas over the
Tyrrhenian Sea and eastern Sicily.

6 Evaluation of PET performances

Generally speaking, the comparison with available radars or
rain gauge measurements represents a good reference to un-
derstand the reliability of the satellite-based rain field es-
timates. This paper focuses on the evaluation of the PET
algorithm in reproducing the AMSU/MHS-based rain-rate
estimates when these instruments are not passing over the
region. So that, to exclude the uncertainties related to the
performance of the AMSU/MHS-based retrieval algorithm
from the evaluation of PET results, it is more interesting
to compare the PET performance versus the first available
AMSU/MHS-based retrieved rain field successive to that
used for initializing PET algorithm. For these reasons, both
MIT and IMAA-CNR AMSU/MHS precipitation retrieval
algorithms described in Sect. 2 are used, to further highlight
the performances of PET, regardless of the MW-based re-
trieval rain rates used. The PET algorithm performances are
evaluated in this section by means of the convective events
listed in Table 2, both through a qualitative assessment, to
verify the overall performance of the product, and continuous
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Fig. 5. Event over southern Italy, 1 October 2009. PET estimated rain-rate evolution from 13:12 UTC to 15:42 UTC, starting from the rain
rates at 13:00 UTC provided by MIT algorithm applied to TB from AMSU/MHS onboard NOAA 18 satellite, and contemporary GCD maps
from SEVIRI onboard MSG, used for PET algorithm
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Table 2.List of case studies selected for PET performance evaluations.

Case AMSU/MHS overpass PET propagation AMSU/MHS overpass
study # used for PET algorithm time used for comparison

(1) 01-10-2009, 13:00 UTC (NOAA-18) 180′ 01-10-2009, 15:54 UTC (NOAA-15)
(2) 22-11-2010, 09:40 UTC (MetOp-A) 120′ 22-11-2010, 11:46 UTC (NOAA-19)
(3) 07-10-2011, 09:38 UTC (MetOp-A) 120′ 07-10-2011, 11:39 UTC (NOAA-19)
(4) 27-10-2011, 20:49 UTC (MetOp-A) 285′ 28-10-2010, 01:32 UTC (NOAA-19)
(5) 12-11-2011, 08:56 UTC (MetOp-A) 180′ 12-11-2011, 12:00 UTC (NOAA-19)
(6) 03-02-2012, 20:01 UTC (MetOp-A) 300′ 04-02-2012, 00:55 UTC (NOAA-19)
(7) 12-02-2012, 01:05 UTC (NOAA-19) 30′ 12-02-2012, 01:35 UTC (NOAA-18)

Fig. 6. Case study (1) – Comparison between PET rain-rate es-
timates obtained using both MIT and IMAA-CNR algorithm and
closest corresponding AMSU/MHS-based rain-rate estimates. Gray
area denotes first AMSU/MHS overpass.

and dichotomous statistical assessments, to verify the accu-
racy of rain-rate propagation. For the latter evaluation, PET
output is spatially resampled to the AMSU/MHS overpass
grid used for comparison.

For qualitative assessments, Fig. 6 shows the final re-
sults of PET rain field propagation compared with the clos-
est AMSU/MHS-based rain field, by using both MIT and
IMAA-CNR algorithms, for case study 1. When comparing
the results obtained by coupling PET and MIT algorithm
with those obtained by coupling PET and IMAA-CNR al-
gorithm, it is evident that PET is not an RR algorithm but
rather a propagation method of starting rain field. The left
panels of Fig. 6 show different distributions of rain-rate val-
ues and slightly different patterns. The PET results obtained
with MIT algorithm have precipitations up to∼ 30 mm h−1

and a large area of about 1 mm h−1, whilst those obtained
with IMAA-CNR algorithm have a maximum rain rate at
∼ 15 mm h−1 and a smaller area of low precipitation. Com-
paring the right panels of Fig. 6 with the corresponding
left panels, although the precipitation values are different

Table 3. Contingency table for the definition of statistics indexes
POD, FAR, CSI, Bias and Accuracy.

AMSU rain rate

YES NO

PET rain-rate
YES Hits False alarms
NO Misses Correct negatives

pixel-by-pixel, the maps describe quite a similar precipitat-
ing pattern and similar values, showing an overall reliability
of this technique.

The most interesting result is the correct identification of
the two most intense cells, at∼ 30 mm h−1 or ∼ 15 mm h−1,
by using MIT and IMAA-CNR algorithms, respectively, and
the tail of the main precipitation cell near the coast of Tunisia,
even if over the Strait of Messina the values are a bit too in-
tense for PET with MIT algorithm. The main problem that
emerges in observing Fig. 6 is that the PET precipitation pat-
tern is a bit too large, mostly at low precipitation areas, with a
few pixels at low rain-rate values. Case studies number 2/7,
whose figures are omitted for simplicity, show similar behav-
iors, with an overall capability of this method in reproducing
quite a similar precipitating pattern and similar values.

All case studies show, as expected by construction, that
the Morphing module works well close to AMSU/MHS over-
pass, but its performance decays rapidly after a few minutes
(120/180). Conversely, Calibration module has a more regu-
lar performance with time, this works worse than Morphing
module in the first 2–3 h, but its performance does not de-
cay as fast as that of the latter Qualitative analysis indicates
an overall good agreement between the MW-based rain rates
and contemporary PET rain rates.

For dichotomous assessment, in this paper we use the skill
scores Probability Of Detection (POD), False Alarm Rate
(FAR), Critical Success Index (CSI), Bias and Accuracy,
which are categorical measures based on a rain contingency
table (Table 3). POD is the number of hits divided by the
total number of rain observations, and gives a simple mea-
sure of the rain events fraction that is correctly identified by
PET algorithm. A perfect POD has a value of one and the
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Table 4. Dichotomous statistics results for all cases studies, obtained using both MIT and IMAA-CNR algorithms for PM precipitation
retrieval.

Statistics MW RR> RR> RR> RR> RR> RR>

Algorithm 0 mm h−1 0.2 mm h−1 1 mm h−1 2 mm h−1 5 mm h−1 10 mm h−1

POD
MIT 0.75 0.67 0.72 0.72 0.66 0.51
IMAA-CNR 0.67 0.66 0.70 0.71 0.75 0.60

FAR
MIT 0.34 0.24 0.32 0.33 0.28 0.38
IMAA-CNR 0.38 0.33 0.38 0.40 0.41 0.38

CSI
MIT 0.54 0.55 0.54 0.53 0.52 0.39
IMAA-CNR 0.48 0.50 0.49 0.49 0.49 0.44

Bias
MIT 1.13 0.88 1.07 1.06 0.92 0.81
IMAA-CNR 1.08 0.98 1.11 1.18 1.28 0.97

Accuracy
MIT 0.97 0.98 0.99 0.99 1.00 1.00
IMAA-CNR 0.95 0.97 0.98 0.99 1.00 1.00

worst possible POD has a value of zero. FAR is the number
of false alarms divided by the total number of rain identified
by PET algorithm, and gives a simple measure of the PET
algorithm tendency to identify rain where none is observed.
A perfect FAR is zero and the worst FAR is one. CSI is the
number of hits divided by the total number of hits, misses
and false alarms; it is a function of both FAR and POD, but
unlike these, it takes both false alarms and missed events into
account; therefore, it is a more balanced score. A perfect CSI
is one and the worst CSI is zero. The Bias is the total num-
ber of rain identified by PET algorithm, divided by the total
number of rain observations. The perfect PET rain identifi-
cation with perfect Bias has a value of one, over estimation
results in Bias greater than one, and under estimation results
in Bias less than one. The Accuracy is the sum of hits and
correct negatives identified by PET algorithm divided by the
total number of rain observations. Perfect Accuracy is one
and the worst Accuracy is zero.

Table 4 shows statistical scores obtained with all case stud-
ies for both MW-based rain-rate algorithms by using 0, 0.2,
1, 2, 5 and 10 mm h−1 as rain/no-rain thresholds. The POD
score shows that about 60–70 % of area is detected rightly,
while about 30 % of the area detected as rainy is a false alarm
(FAR). The POD is a little better for results obtained with
MIT algorithm with respect to those obtained with IMAA-
CNR algorithm, even if FAR is better for the last mentioned.
This is probably a consequences of PM-RR retrieval algo-
rithms rather than of PET algorithm, because IMAA-CNR
algorithm appears a little more conservative with respect to
MIT algorithm. Taking into account both POD and FAR, CSI
indicates that the results obtained are roughly constant for
different precipitation levels, except for precipitation with
rain rates higher than 10 mm h−1, for which CSI is the worst,
even if the total amount of pixels with high precipitation
is low and then statistical scores are less reliable. Bias val-
ues are generally close to 1, without a strong tendency to

Fig. 7. All case studies – Binned scatter plot between average PET
rain field estimates and 1 mm h−1 AMSU rain field estimates bins,
using both MIT and IMAA-CNR algorithm with the corresponding
RR distributions.

overestimate or underestimate the precipitation area. Accu-
racy values are close to 1, to indicate a high probability to
detect correctly both rain and no-rain events. The results ob-
tained for each case study follow the trend described for
the qualitative analysis, with better performances for cases
with short propagation times. These results, conducted over
a small set of case studies, show that PET algorithm is quite
able to distinguish rainy from no-rainy areas.

For continuous assessment, Fig. 7 shows binned scatter
plots of PET rain rates versus AMSU rain rates, for both PM
precipitation algorithms, with relative rain-rate distributions.
For this analysis the AMSU/MHS rain-rate data are binned in
1 mm h−1 rain-rate intervals and the PET rain rates in these
bins are averaged for all the case studies. The analysis is per-
formed in order to place equal emphasis on the whole rain-
rate range as well as to minimise match-up errors between
PET rain rates and AMSU/MHS rain rates. This scatter plot
is quite regular, it is closer to the bisector and shows a rea-
sonably good correlation between AMSU rain rates and PET
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Table 5.Continuous statistics results.

Case MW R2 RMSE MAE
study # Algorithm

(1)
MIT 0.90 0.73 0.56
IMAA-CNR 0.94 0.68 0.59

(2)
MIT 0.96 0.65 0.49
IMAA-CNR 0.95 0.76 0.58

(3)
MIT 0.99 0.13 0.11
IMAA-CNR 0.98 0.54 0.42

(4)
MIT 0.88 0.50 0.47
IMAA-CNR 0.95 0.28 0.24

(5)
MIT 0.94 0.41 0.34
IMAA-CNR 0.87 0.38 0.33

(6)
MIT 0.94 0.36 0.26
IMAA-CNR 0.96 0.55 0.46

(7)
MIT 0.98 0.21 0.19
IMAA-CNR 0.97 0.48 0.37

All cases
MIT 0.97 0.54 0.35
IMAA-CNR 0.99 0.25 0.21

rain rates, even if there is a small overestimate of low precip-
itation bins and a small underestimate of high precipitation
bins. This result is a consequence of this method that uses
an average of PET rain rates for each AMSU rain-rate bin,
rather than a true overestimate/underestimate, as shown by
the rain-rate distribution in the right panel. Indeed, rain-rate
distribution shows that PET rain rates has approximately the
same AMSU/MHS rain-rate distribution, for both MIT and
IMAA-CNR algorithms, even if these have a slightly differ-
ent distribution between them. Final PET rain-rate distribu-
tion depends heavily on the PM rain-rate retrieval algorithm
used, thus demonstrating that PET is a rain-rate propagation
method rather than an algorithm for rain-rate estimates.

Table 5 shows continuous statistics results for binned scat-
ter plot obtained by neglecting bins with less than 10 pixels.
The square of the correlation coefficient (R2), the root-mean
squared error (RMSE), and the mean absolute error (MAE),
computed for a linear fit for the individual case studies and
for all the case studies together, show that the PET algorithm
produces quite good results in rain-rate propagation. In par-
ticular when all the case studies are considered, results are
good withR2 very close to 1 and RMSE and MAE less than
1. Obviously, PET performs better in some cases studies than
in others, depending on PET propagation time and in a way
that might depend on the type of event.

To sum up, PET algorithm shows a good ability to propa-
gate rain rates depending on the propagation time primarily,
as well as on the nature of the storm under consideration.
While its performance is acceptable for 2–3 h propagation
time, it may become unsatisfactory after 4–5 h.

7 Summary and conclusions

PET is a combined MW-IR method that exploits the ability
of PM from LEO satellites to estimate convective precipita-
tion with high temporal sampling of IR observations from
GEO satellites. By using a starting rain field obtained from
AMSU/MHS, PET produces a rain-rate map for each SE-
VIRI observation, so that this method fills the temporal gap
existing between two consecutive AMSU/MHS overpasses
with several rain-rate maps. Due to the possibility of being
used every 15 min during daytime and nighttime, PET algo-
rithm can become useful for nowcasting experts and flood
alarm managers.

PET algorithm, initialized by two different AMSU/MHS-
based precipitation retrieval algorithms produces different re-
sults, thus demonstrating its ability to propagate starting rain
field rather than estimate it. In addition, the structure in two
separate modules of Morphing and Calibration allows PET
to propagate the rain field also out of AMSU/MHS over-
pass. These features could be used in future works to propa-
gate different kinds of rain field, such as those obtained from
ground-based network of radar or rain gauges, for real-time
rain rates monitoring also for the area which is not covered
by them.

No radar or rain gauges measurements have been used for
PET validation, but the AMSU/MHS-based rain rates were
used as the “truth”, in order to separate the effects strictly re-
lated to PET algorithm from those due to the limited accuracy
of the MW retrievals. Seven case studies have been shown
to highlight the PET performances, demonstrating an overall
agreement between PET rain field and the “truth” rain field,
at least for a propagation time of 2–3 h, while for longer times
PET results are unsatisfactory although a more in-depth anal-
ysis would be necessary. A qualitative assessment has shown
a good capability of PET to monitor the pattern and the in-
tensity evolution of rain-rate maps, even if in some cases the
first seemed a bit too large. Dichotomous assessment per-
formed for six rain/no-rain thresholds has shown a CSI score
of about 50 %, with a good POD score of about 70 % but with
a bit too high a FAR score of about 35 %, whilst Bias and Ac-
curacy are close to 1. Continuous assessment performed for
binned rain-rate intervals has shown the scatter plots of PET
rain rates versus AMSU-based rain rates quite close to the bi-
sector, withR2 of about 0.98, RMSE of about 0.40 and MAE
0.28.

Even if we plan to perform an extensive validation of PET
results by means of ground-based and space-borne radars,
such as the TRMM PR and rain gauge networks, the PET ca-
pability of hooking the precipitation cells evolution has been
shown in this work, and it is an evident characteristic which
is worth exploiting in satellite-based monitoring.

Nat. Hazards Earth Syst. Sci., 12, 3557–3570, 2012 www.nat-hazards-earth-syst-sci.net/12/3557/2012/



F. Di Paola et al.: Combined MW-IR Precipitation Evolving Technique (PET) of convective rain fields 3569

Acknowledgements.This research activity has been supported by
the Italian Civil Protection Agency.

Edited by: G. Boni
Reviewed by: two anonymous referees

References

Adler, R. F., Keehn, P. R., and Hakkarinen, I. M.: Estimation of
monthly rainfall over Japan and surrounding waters from a com-
bination of low-orbit microwave and geosynchronous IR data, J.
Appl. Meteor., 32, 335–356, 1993.

Adler, R. F., Huffman, G. J., and Keehn, P. R.: Global tropical rain
estimates from microwave-adjusted geosynchronous IR data, Re-
mote Sens. Rev., 11, 125–152, 1994.

Aminou, D. M. A., Jacquet, B., and Pasternak, F.: Characteristics
of the Meteosat Second Generation (MSG) Radiometer/Imager:
SEVIRI, Proceeding of SPIE, Europto series, 3221, 19–31, 1997.

Bellerby, T. M., Todd, T., Kniveton, D., and Kidd, C.: Rainfall es-
timation from a combination of TRMM precipitation radar and
GOES multispecral satellite imagery through the use of an artifi-
cial neural network, J. Appl. Meteor., 39, 2115–2128, 2000.

Bennartz, R., Thoss, A., Dybbroe, A., and Michelson, D. B.: Precip-
itation analysis using the Advanced Microwave Sounding Unit
in support of Nowcasting applications, Meteorol. Appl., 9, 177–
189, 2006.

Bizzarri, B., Gasiewski, A. J., and Staelin, D. H.: Observing rain
by millimetre-submillimetre wave sounding from geostationary
orbit, in: Measuring Precipitation from Space – EURAINSAT
and the Future, edited by: Levizzani, V., Bauer, P., and Turk, F.
J., Springer, 675–692, 2007.

Calheiros, R. V. and Zawadzki, I.: Reflectivity rain-rate relationship
for radar hydrology and Brazil, J. Clim. Appl. Meteor., 26, 118–
132, 1987.

Casella, D., Dietrich, S., Di Paola, F., Formenton, M., Mugnai, A.,
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