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Abstract. Recently acquired swath-bathymetry data and
high-resolution seismic reflection profiles offshore Adra
(Almeŕıa, Spain) reveal the surficial expression of a NW–
SE trending 20 km-long fault, which we termed the Adra
Fault. Seismic imaging across the structure depicts a sub-
vertical fault reaching the seafloor surface and slightly dip-
ping to the NE showing an along-axis structural variability.
Our new data suggest normal displacement of the uppermost
units with probably a lateral component. Radiocarbon dating
of a gravity core located in the area indicates that seafloor
sediments are of Holocene age, suggesting present-day tec-
tonic activity. The NE Alboran Sea area is characterized
by significant low-magnitude earthquakes and by historical
records of moderate magnitude, such as theMw = 6.1 1910
Adra Earthquake. The location, dimension and kinematics of
the Adra Fault agree with the fault solution and magnitude
of the 1910 Adra Earthquake, whose moment tensor analysis
indicates normal-dextral motion. The fault seismic parame-
ters indicate that the Adra Fault is a potential source of large
magnitude (Mw ≤ 6.5) earthquakes, which represents an un-
reported seismic hazard for the neighbouring coastal areas.

1 Introduction

Seismogenic faults may be silent in the instrumental and his-
torical periods and, therefore, their seismic potential may
remain inadvertently hidden. In very active areas it has
been demonstrated that a paleoseismological analysis can
detect and characterize the seismic potential of these faults
(e.g. Wallace, 1981; Pantosti and Yeats, 1993; McCalpin,
1996). Nevertheless, slow-moving faults capable of gener-
ating large-magnitude earthquakes with long recurrence in-
tervals (> 1000 yr) also deserve special attention. In recent
years, a continuous effort has been made to adapt the paleo-
seismological approach to the slow active faults of the south-
eastern Iberian margin that accommodate the convergence
between the Iberian and African plates (e.g. Martı́nez-Diaz
et al., 2001; Mart́ınez-D́ıaz and Herńandez-Enrile, 2004;
Masana et al., 2004, 2005; Gràcia et al., 2006, 2010; Moreno
et al., 2008). This approach, which also considers the off-
shore faults, is crucial for estimating realistic values of
the seismic hazard in this area largely based on the rela-
tively short period of instrumental (< 100 yr) and historical
(< 2000 yr) earthquake catalogues for the Iberian Peninsula
(e.g. Peĺaez and Ĺopez Casado, 2002).
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Fig. 1. Regional topographic and bathymetric map of the southeast Iberian margin constructed from digital grids released by SRTM-3, IEO
bathymetry (Ballesteros et al., 2008; Muñoz et al., 2008) and MEDIMAP multibeam compilation (MediMap et al., 2008) at∼ 90 m grid-size.
Epicenters of the largest historical earthquakes (MSK Intensity> VIII) in the region are depicted by a white star (I.G.N., 2010). Grey arrows
pointing opposite each other show the direction of convergence between the Eurasian and African plates from NUVEL1 model (DeMets et
al., 2010). The black outlined rectangle depicts the study area presented in Fig. 2. BSF: Bajo Segura Fault; AMF: Alhama de Murcia Fault,
PF: Palomares Fault, CF: Carboneras Fault, YF: Yusuf Fault, AR: Alboran Ridge. Inset: Plate tectonic setting and main geodynamic domains
of the south Iberian margin along the boundary between the Eurasian and African Plates.

The present-day crustal deformation of the southeastern
Iberian margin, which includes the Iberian Peninsula and
adjacent offshore Mediterranean region, is driven mainly
by the NW–SE convergence (4.5–5.6 mm yr−1) between the
African and Eurasian plates (e.g. Argus et al., 1989; DeMets
et al., 2010) (Fig. 1). This convergence is accommodated
over a wide deformation zone with significant seismicity
south of the Iberian Peninsula (e.g. Buforn et al., 2004; Stich
et al., 2003a, 2006, 2010). Quaternary faulting activity is
dominated by a large left-lateral strike-slip system referred
to as the Eastern Betic Shear Zone (EBSZ) (e.g. Bousquet,
1979; Sanz de Galdeano, 1990; Silva et al., 1993). This ac-
tive fault system runs along more than 450 km, and its ter-
minal splays (i.e. the Bajo Segura Fault to the northeast

and the Carboneras Fault to the southwest) extend into the
sea (Comas et al., 1999; Alfaro et al., 2002; Gràcia et al.,
2006; Moreno et al., 2008; Moreno, 2011; Perea et al., 2012)
(Fig. 1). In the SE Iberian margin, instrumental seismic-
ity is characterized by continuous, shallow seismic events
of low to moderate magnitude (Mw < 5.5) (Buforn et al.,
1995, 2004; Stich et al., 2003a, 2006, 2010). Nevertheless,
large destructive earthquakes (MSK Intensity IX–X) have oc-
curred in the region, as revealed by historical records (I.G.N.,
2010) (Fig. 1). They may represent a significant earthquake
and tsunami hazard along the Iberian Peninsula and North
African coasts.

In this paper, we focus on the area located to the west
of the Carboneras Fault, in the Adra–Almerı́a margin in
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the northern Alboran Sea (Fig. 1). This area demonstrated
recent seismic activity with most of the epicentres located
offshore, especially during the 1993–1994 earthquake series
(up to Mw = 4.9) (Stich et al., 2001). In addition, this area
includes the submarine epicentral zone of the Adra histori-
cal earthquake in 1910 with an estimatedMw = 6.1 (Stich
et al., 2003b) (Fig. 1). The neotectonics of the structures lo-
cated onshore (e.g. Campo de Dalı́as in the Almeŕıa province,
SE Spain) has been studied in detail (e.g. Martı́nez-D́ıaz
and Herńandez-Enrile, 2004; Marı́n-Lechado et al., 2005,
2007; Pedrera et al., 2012) (Fig. 2). However, little is known
about the structures located offshore. To investigate the ac-
tive tectonic sources in the Almerı́a margin offshore Adra
(Spain) we carried out the EVENT-SHELF high-resolution
seismic survey (Figs. 1, 2, 3). The main objectives of this
study are (a) to describe the seafloor morphology of the area,
(b) to characterize the shallow structure and kinematics of
the largest fault newly recognized, the Adra Fault, and (c) to
find out whether the Adra Fault is the tectonic source of the
historically recorded 1910 Earthquake.

2 Tectonics and seismicity of the Adra–Almeŕıa margin

The study area is located in the Adra–Almerı́a margin, cor-
responding to the Betic internal zones or Alboran Domain
(Figs. 1 and 2). Onshore, this area includes the Contraviesa
and Ǵador Ranges constituted by the Alpujarride metamor-
phic complex, basement of the Neogene to Quaternary sedi-
ments of the Campo de Dalı́as, where recent deformation has
been recognized (e.g. Martı́nez-D́ıaz and Herńandez-Enrile,
2004; Maŕın-Lechado et al., 2005; Pedrera et al., 2012)
(Fig. 2). The largest faults in the Campo de Dalı́as are the
Loma del Viento, Balanegra and Punta Entinas faults, the last
two controlling several km-long linear segments of the coast-
line. They are NW–SE striking normal faults forming half-
graben structures, such as the Puente del Rio Fault (Martı́nez-
Dı́az and Herńandez-Enrile, 2004) (Fig. 2a), although the
Loma del Viento fault has a certain dextral component af-
fecting the Quaternary deposits (Pedrera et al., 2012). In the
Campo de Dalı́as, near the Loma del Viento Fault, Pleis-
tocene raised marine terraces are present, forming a stair-
case of 16 terraces that reaches 82 m a.s.l. (Zazo et al., 2003).
These terraces provide information about recent uplift of the
region with maximum values of 0.046 m ka−1 over the last
130 ka for the up-thrown block of the Loma del Viento (Zazo
et al., 2003; Maŕın-Lechado et al., 2005) (Fig. 2). On the ba-
sis of pre-existing offshore commercial multichannel seismic
reflection profiles from the Almerı́a shelf, several authors
suggest the presence of NW–SE trending faults and open,
gentle folds extending up to 100 km in length in the off-
shore area (Rodrı́guez-Ferńandez and Martı́n-Penela, 1993;
Mart́ınez-D́ıaz and Herńandez-Enrile, 2004; Marı́n-Lechado
et al., 2005, 2007; Pedrera et al., 2012).

In regards to instrumental seismicity, the most intense
seismic period recently recorded in this area occurred dur-
ing 1993–1995, where several multiplets of up to magnitude
Mw = 4.9 occurred near Adra (Stich et al., 2001) and pro-
duced significant damage in the Berja and Adra areas. Since
then, the seismic crisis of July/August 1997 (Mw ≤ 4.5, Stich
et al., 2003a), October/November 2008 (Mw ≤ 4.4, Stich et
al., 2010) and more recently November 2010 (Mw ≤ 4.2)
demonstrates the continuous seismicity nucleated around
Campo de Dalı́as, which is of shallow depth (Pedrera et
al., 2012). However, historical and archaeological records
suggest that the Adra–Almerı́a region has been affected by
at least 50 destructive earthquakes (MSK Intensity> VIII)
over the past 2000 yr (e.g. Marı́n-Lechado et al., 2005), pro-
viding evidence of a significant seismic hazard. The town
of Almeŕıa was devastated by earthquakes in 1487, 1522
(I0 = IX MSK) and 1658 (I0 = VIII MSK). In 1804, a long
period of seismic activity (up to I0 = IX MSK) affected Adra
and nearby areas (e.g. Marı́n-Lechado et al., 2005). These
events have been mainly attributed to the motion along the
Carboneras fault system (Keller et al., 1995). On the other
hand, it has been suggested that the 1910 Adra Earthquake
(Mw = 6.1, I0 = VIII MSK in Adra) was probably generated
by N120–N130 trending faults offshore (Stich et al., 2003b),
although, the tectonic source of this earthquake is still un-
known. Searching for the source of this earthquake is the aim
of the present study.

3 Data and methods

Fault exploration of active regions offshore integrates the
most advanced technologies covering different scales of res-
olution (e.g. Bartolome et al., 2009). Acoustic mapping tech-
niques, such as swath-bathymetry, allow us to identify the
geomorphological evidence of active faults, such as seafloor
ruptures, fault scarps and fault traces. Seismic imaging meth-
ods, especially high-resolution, enable us to detect the strati-
graphic evidence of past seismic activity, such as upward
decreasingly displaced seismic horizons, folded and faulted
reflectors, zones of shearing and discontinuities. Sediment
sampling methods and subsequent analyses allow us to char-
acterize and date mass transport deposits triggered during
seismic events, and to shed light on the nature and age of
the most recent sediments.

The present study results from an integration of dif-
ferent types of data acquired: swath-bathymetry, single-
channel Sparker seismics and sediment cores. The data
were acquired during the IMPULS (May–June 2006) and
EVENT-SHELF (September 2008) cruises on board the
Spanish R/VHesṕeridesand R/V Garćıa del Cid, respec-
tively. The bathymetric data used for this work correspond
to a multibeam compilation including data from different
echosounders: Simrad EM300 data from the Spanish Insti-
tute of Oceanography (Muñoz et al., 2008) completed with
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Fig. 2. Shaded relief bathymetric map of the Adra–Almerı́a margin. The Adra Fault and segments are marked in yellow. Onshore, main
structures and geological units are also depicted. They correspond to 1: Alboran Domain basement; 2: Upper Miocene deposits; 3: Pliocene
deposits; and 4: Quaternary deposits (modified from Martı́nez-D́ıaz, 1998; Sanz et al., 2004; Marı́n Lechado et al., 2005; Fernández-Salas et
al., 2009; Pedrera et al., 2012). PRF: Puente del Rı́o Fault; CF: Carboneras Fault. Blue stars depict location of pictures from insets. Insets:
Field examples of normal faults from the Adra-Campo de Dalı́as region.(a) The N155 Puente del Rı́o normal fault separating the deltaic
Pliocene deposits from the grey Paleozoic phyllites on the footwall.(b) A N170 trending normal fault cutting a Pleistocene alluvial fan on
the southern slope of Sierra Alhamedilla. The striae show pitch of 110◦ and dextral component (modified from Martı́nez-D́ıaz, 1998).

the Simrad EM12S data acquired during the IMPULS cruise,
and 180 kHz Elac Nautik SeaBeam 1050D data acquired
during the EVENT-SHELF cruise (Fig. 2). Digital terrain
models at 70 m and 20 m grid size were obtained using HIPS-
CARIS and Caraibes-TD softwares (IFREMER, France) and
slope maps were generated with ArcGIS (Figs. 2 and 3).

A high-resolution single-channel system was used dur-
ing the EVENT-SHELF cruise to investigate the offshore
continuation of the structures of Campo de Dalı́as in the
continental shelf and upper slope. The source, triggered
every 2 s, was a Sparker 6 kJ GEO-SPARK specially de-
signed to favour high frequencies. The power of the source
ranged from 4 to 6 kJ according to the seafloor depth. The
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Fig. 3. Slope map of the Adra–Almerı́a shelf and upper slope with the location of the main features (illumination from the NE, scale in
degrees). Sparker profiles acquired during the EVENT-SHELF cruise across the Adra Fault are depicted by yellow lines. Thicker yellow
lines correspond to profiles presented in Figs. 4 and 6. White dot locates core CIM-4 presented in Fig. 5. PRF: Puente del Rı́o Fault;
CF: Carboneras Fault.

4 kJ source was used for depths below 150 m, whereas the
6 kJ was adopted for the deeper areas. The receiver consisted
of a 9 m long, 24-hydrophone single-channel streamer. The
sampling rate was 100 µs with a record length of 1.5–2.0 s
TWTT (two-way travel time). Processing was carried out
using the software Geotrace. The processing flow included
change in data polarity, debiasing, a minimum bandpass fil-
ter (350–1500 Hz), AGC (10 ms window), gain (1–3 dB) and
spherical divergence, and swell filter. Data were exported to
SEG-Y format and integrated in the SMT Kingdom Suite
software. A total of 11 Sparker profiles (referred to as EVS-
7, EVS-8 and EVS-10 to EVS-18) were acquired in the study
area (Fig. 3). Most of the profiles, which ran from the shelf
to the mid-slope, were oriented NE–SW, perpendicular to the
main fault orientation on land. Best results were achieved
in flat areas with highly penetrative sediments, while abrupt
slope areas and volcanic outcrops displayed very low pene-
tration (Fig. 4). Seismic visualisation and interpretation were
carried out using the SMT Kingdom Suite software.

A total of seven sediment cores were collected in the
Almeŕıa margin. Particular reference is made here to CIM-4,
a 2 m long gravity core collected during the IMPULS cruise
on the Adra slope at about 850 m depth (Figs. 3 and 5). Im-
mediately after core splitting and cleaning, the whole core
was imaged with digital colour photo and logged for phys-
ical properties at 2 cm intervals using the GEOTEK mul-
tisensor core-logger. Sediment physical property measure-
ments included magnetic susceptibility, P-wave velocity and
gamma-ray attenuation from which density is calculated.
Lightness (L∗) was measured every 2 cm using a Minolta
spectrophotometer. Detailed core description was based on
changes observed in the colour, lithology, texture and struc-
ture of the sediments. Textural analyses, calcium carbonate
and radiocarbon dating were performed on selected sam-
ples. Grain-size analyses were carried out at theInstitut de
Ciències del Mar (CSIC)using a settling tube for the coarse-
grained (> 50 µm) fraction and SediGraph 5100 for the silt
and clay (< 50 µm) fractions. For radiometric analysis (i.e.
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Fig. 4. Regional Sparker profile EVS-13 from the shelf to the middle slope. The Adra Fault and its parallel N135 faults together with the
neighbouring N160 faults are imaged. Sediment core CIM-4 is located. Age of horizons are H1: Late Quaternary, H2: Early Quaternary
(1.8 Ma), and H3: Late Pliocene (3.6 Ma). Vertical exaggeration at the seafloor∼ 1.5.

14C AMS dating), we hand-picked 6 samples containing 7
and 10 mg of mixed or monospecific planktonic foraminifera
with a diameter larger than 250 µm. Samples were processed
and measured at the NOSAMS-WHOI laboratory. The14C
ages of hemipelagic samples were calibrated using the Ma-
rine09 curve (Reimer et al., 2009) included in Calib 6.1 soft-
ware and considering a present-day reservoir age (1R) of
−22± 3514C yr for the Málaga site (Table 1).

4 Results

4.1 Morphology of the Adra shelf and upper slope

The study area is located to the northeast of the Albo-
ran Basin, extending from 2◦48′ W to 3◦08′ W, and from
36◦44′ N to 36◦32′ N (Figs. 2 and 3). The shelf drastically
narrows from east to west (from 12 to 4 km) and has a gener-
ally smooth morphology with a gradient less than 1◦ (Figs. 3
and 4). On the widest part of the shelf, two NW–SE trend-
ing slightly sigmoidal ridges are visible (Sanz et al., 2004)
(Fig. 2), corresponding to sedimentary ridges (Fig. 4). Fol-
lowing a NW–SE trend, the offshore continuation of the
Balanegra Fault escarpment is clearly recognized (Figs. 2 and
3).

Holocene infralittoral prograding wedges are also identi-
fied on the shelf (Figs. 2 and 3). They correspond to narrow
(up to 2.5 km wide) morphosedimentary units which develop
seaward from the shoreface and extend to a well-defined
break of slope at water depths of 35–40 m (Fernández-Salas
et al., 2007). The shelf edge locally depicts a maximum slope
of 15◦. Incised on the shelf edge (100 m depth), the NE–
SW trending 11.3 km long Adra Channel obliquely cuts the
upper slope and stops around 650 m depth. At the base of
the shelf edge, between 2◦56′ W and 2◦52′ W, a cluster of

small rounded monticules correspond to coral mounds, first
described by Ballesteros et al. (2008) (Fig. 2).

The upper slope is dominated by a large, isolated flat-
topped circular seamount with very steep slopes (> 15◦) re-
ferred to as the Chella Bank, bounded by irregular volcanic
ridges (e.g. Lo Iacono et al., 2008) (Figs. 2 and 3). To the
east of the bank, the deeply incised Dalı́as Tributary Valley
System drains from the shelf edge until it intersects the left-
lateral Carboneras Fault, which produces a sharp deflection
of its channels and gullies (Gràcia et al., 2006; Moreno et
al., 2008). To the west of the Chella Bank, numerous lin-
ear structures correspond to the morphological expression of
fault systems. Most of the faults exhibit steep scarps that
affect the seafloor, indicating present-day activity (Figs. 2
and 3). On the swath-bathymetric and slope maps, we iden-
tify a N132 trending 18.5 km long and∼ 500 m wide lin-
eation, which corresponds to the surface expression of a fault,
which is termed the Adra Fault (Figs. 2, 3 and 4). Parallel to
this fault, NW–SE trending narrowly-spaced, short (3–4 km
long), rectilinear escarpments are termed the N135 faults.
To the south of these structures, we observe a succession of
NNW–SSE trending, closely spaced, en echelon short faults
(1–3 km long) termed the N160 faults (Figs. 2 and 3).

4.2 Seismostratigraphy and age of the recentmost
sediments

Seismostratigraphic units have been established on the ba-
sis of seismic facies and discontinuities defined in high-
resolution multichannel seismic profiles from the Carboneras
Fault area (Moreno, 2011), which we extrapolated to the
Sparker profiles from the Adra margin. The high resolu-
tion of our dataset in imaging the Plio-Quaternary succession
enabled us to review previously defined units from the Alb-
oran Sea (e.g. Jurado and Comas, 1992) and to identify new
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Fig. 5. Image, lithological description, grain-size distribution, mean diameter, magnetic susceptibility, density, P-wave velocity, lightness,
total calcium carbonate and calibrated ages of CIM-4 sediment core. T1 refers to a mud-rich turbidite interval.

Table 1.Location of the studied core, radiocarbon AMS data and sample age calibrations based on the Marine09 curve (Reimer et al., 2009)
included in Calib 6.1 calibration software.

Core # Lat Lon Water AMS Core Foraminifera Radiocarbon 1R* 1σ

depth lab depth sampled age calibrated age
(◦N) (◦W) (m) reference (cm) (yr BP± 1σ) (Cal yr BP)

CIM-4 36◦31.55′ 3◦04.37′ 850 60 691 8.5–10 Globorotalia inflata 1000± 30 −22± 35 530–655
Adra–Almeŕıa Margin 60 692 28.5–30 Globorotalia inflata 2560± 45 −22± 35 2150–2335

60 693 58.5–60 Globorotalia inflata 4070± 40 −22± 35 3995–4260
60 694 88.5–90 Globorotalia inflata 5800± 40 −22± 35 6165–6315
60 695 117–118.5 Neogloboquadrina pachyderma 8730± 45 −22± 35 9340–9510
60 696 186–187.5 Globigerina bulloides 14 550± 95 −22± 35 16 955–17 535

* Local reservoir correction (1R) for the Málaga site based on Stuiver and Reimer (1993).

sub-units and seismic horizons in the study area (Fig. 4).
The Sparker profiles, with a maximum penetration of up to
400 ms TWTT display an alternation of sequences of (a) con-
tinuous, high-amplitude parallel-bedded well-stratified seis-
mic facies and (b) semi-transparent seismic facies with
moderate-low amplitudes. We distinguished 4 seismostrati-
graphic units, from top to bottom, units Ia1, Ia2, Ia3 and Ib1,
separated by horizons H1 to H3, respectively (Fig. 4). Based

on the correlation with the horizons previously defined in the
Almeŕıa margin (Moreno, 2011), the ages of the Adra seis-
mic horizons are Late Quaternary for H1, Early Quaternary
(base of Calabrian stage, 1.8 Ma) for H2, and Late Pliocene
(3.6 Ma) for H3.

Sediment core CIM-4, for which age control was estab-
lished, was collected within the N160 fault array system,
which is crossed by profile EVS-13 (Figs. 3 and 4). Along
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this profile, the uppermost sedimentary units Ia1–Ia3 can be
followed upslope north of the Adra Fault, where it onlaps
the lower unit Ib1 (Fig. 4). Sampled sediments consisted in
olive to olive-grey silty clay (Holocene section) to clayey
silt (early Holocene–Late Pleistocene section), with an aver-
age mean diameter of 7.8 phi. Their composition is mainly
terrigenous with an average calcium carbonate content of
30 % (Fig. 5). Physical properties (magnetic susceptibility,
density, Pwave-velocity and lightness) show fairly constant
values in the upper half of the core. By contrast, from
115 cm depth to the base of the core, density and Pwave-
velocity values slightly increase, whereas magnetic suscepti-
bility and lightness decrease. Texture, sedimentary structures
and physical properties allow us to distinguish two main fa-
cies: hemipelagite and turbidite (Fig. 5). From top to bottom,
there is a 115 cm thick hemipelagic interval interrupted by
a thin 10 cm silty layer at 40 cm depth below the seafloor.
From 115 cm to the base of the core, an 85 cm thick dark
interval (T1) characterized by thin irregular muddy layers
and coarse silty lenses, corresponds to a mud-rich turbidite
(Fig. 5). The age model of core CIM-4 is based on 5 ra-
diometric dates, assuming that the sedimentation rate is con-
stant between contiguous dated samples above the turbidite
T1, the age of which is older than 9510 Cal yr BP. The sixth
available date (16 955–17 535 Cal yr BP) corresponds to an
older value, probably related to reworked material within tur-
bidite T1. Earthquakes may constitute a likely trigger mech-
anism of these gravity flow deposits in the NE Alboran Sea.
However, without a synchronicity test based on widespread
and coeval mass-transport deposits to demonstrate that these
are simultaneously triggered by an earthquake, other pro-
cesses cannot be ruled out (e.g. Gràcia et al., 2010). Cali-
brated dates reveal Holocene age with an average sedimen-
tation rate of∼12.3 cm kyr−1 (Fig. 5). The youngest age is
530–655 Cal yr BP at 5 cm depth with the result that we can
assume that the age of the seafloor is present-day (Table 1).
This is important for the correlation with the Sparker profiles
where it is possible to ascertain whether faults rupture the
seafloor (Figs. 4 and 6).

4.3 High-resolution seismic imaging of the Adra Fault

Analysis of the acoustic and seismic data distinguishes two
main parallel segments along the Adra Fault: the western and
eastern segments (Fig. 2). Between the segments, there is a
250 m wide left-stepping offset. The succession of six high-
resolution Sparker profiles across the Adra Fault illustrates
how its shallow structure varies along-strike (Figs. 4 and 6).

The western segment is 9.2 km long and trends N130. At
its NW end, stratified unit Ib1 (Pliocene) is folded by a wide,
open anticline (Fig. 6a, profile EVS-11). The Adra Fault is
sub-vertical and cuts the high-amplitude anticline deforming
units Ia3 and Ia2, although the fault does not seem to reach
the seafloor. In the middle of the segment (Fig. 6b, profile
EVS-12), an uplifted narrowly folded block of transparent

facies marks the location of the Adra Fault. This fault sep-
arates zones of different stratigraphy belonging to unit Ib1,
forming what we interpret as a pressure ridge. Onlapping
this ridge is a wedge of stratified facies from the top of unit
Ib1 and units Ia1 to Ia3. They are slightly folded and cut
by tightly spaced sub-vertical faults reaching the surface.
The geometry of the central part of this segment also co-
incides with a 20–25 m high upwarp of the seafloor, as ob-
served between offsets 0.4 and 0.55 km. The southern part
of this segment (Figs. 4 and 6c profile EVS-13) depicts a
25 m wide fault zone with a horizontal seabed. At depth, two
sub-vertical discontinuities (faults) are identified and inter-
preted as a negative flower structure, affecting unit Ib up to
the seafloor.

The eastern segment of the Adra Fault is 9.4 km long and
trends N134. The first profile across this segment (Fig. 6d,
profile EVS-14) shows a neat displacement of the whole sed-
imentary sequence with the fault dipping 70◦–80◦ to the NE,
suggesting a normal fault geometry. On the hanging wall,
narrowly spaced sub-vertical faults dipping to the SW are
also identified. A subdued upwarp (2 m) is detected at the
seafloor. At the segment centre (Fig. 6e, profile EVS-15), the
Adra Fault dips slightly to the NE and vertically offsets a se-
quence, which is narrowly folded on the hanging wall and
high-amplitude folded on the footwall. Towards the south
(Fig. 6f, profile EVS-16), the Adra Fault is sub-vertical, dip-
ping slightly to the SW. On its hanging wall, unit Ia develops
a small sedimentary wedge above horizon H3 (Late Pleis-
tocene age). The segment ends bounding one of the ridges
located west of the Chella Bank, as observed on the bathy-
metric map (Fig. 2). In this area, the Adra Fault is not visible
on the Sparker profiles (Fig. 3, EVS-17 and EVS-18) since
the volcanic nature of the Chella Bank ridges masks the fault
structure at depth.

5 Discussion

5.1 Kinematics of the Adra Fault: relationship with
structures onshore

The new data shows that the Adra Fault is active given that
it affects all the sedimentary sequences, cutting the upper-
most units, which based on dates from sediment core CIM-4
are of late Holocene age (Fig. 5). According to the bathy-
metric and high-resolution Sparker seismic profiles, the su-
perficial expression of the Adra Fault zone mainly consists
of an upwarped, elongated narrow area bounded by steeply
dipping faults at depth. The shallow structure of the western
segment consists of a series of upward-splaying sub-vertical
faults defining positive and negative flower structures in cross
section (Fig. 6). These high-angle faults probably coalesce at
greater depths and constitute part of a single Adra Fault. Our
data shows a variation in the three-dimensional structural ge-
ometry along the strike of the fault, analogous to those that
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Fig. 6. Succession of Sparker profiles EVS-11 to EVS-16 across the Adra Fault. Age of horizons are H1: Late Quaternary, H2: Early
Quaternary (1.8 Ma), and H3: Late Pliocene (3.6 Ma). Vertical exaggeration at the seafloor∼ 1.5.

have been documented in strike-slip faults exposed on land
(Sylvester et al., 1988). In addition, along its eastern seg-
ment, the Adra Fault also provides evidence of a vertical
component, which is of normal movement and dips strongly
(70◦–80◦) towards the NE (Fig. 6).

The regional stress field derived from earthquake focal-
mechanism inversions in the Alboran Sea and southeast
Spain suggests a local shortening along an approximate
NNW–SSE axis (Stich et al., 2006). This direction also co-
incides with the most compressive horizontal stress orien-
tation (ShMAX ) and regime predicted by neotectonic mod-
elling based on thin-sheet finite elements and geodetic mea-
surements (e.g. Jiḿenez-Munt and Negredo, 2003; Stich et
al., 2006). Considering the shortening axis, we assume the
strain regime of the Adra Fault, which would move as nor-
mal with a right-lateral component. This may be compati-
ble with the model of block tectonics presented by Martı́nez-
Dı́az and Herńandez-Henrile (2006) to account for the ac-
tive structures of the SE Iberian margin. In this model, pre-
dominantly extensional structures such as Loma del Viento,
Punta Entinas and Balanegra faults (Fig. 2) accommodate

the deformation produced by squeezing the wedge located
between the right-lateral Corredor de las Alpujarras Fault
Zone and the left-lateral Carboneras Fault (Fig. 7). The dif-
ferent mechanical behaviour between these fault zones would
induce a westward tectonic escape and the generation of
NW–SE trending normal-dextral faults, such as the Loma del
Viento Fault on land (Martı́nez-D́ıaz and Herńandez-Henrile,
2006) and the Adra Fault offshore. Preliminary geodetic data
from a local GPS network are also in line with this kinemat-
ics (Khazaradze et al., 2010).

5.2 Seismic parameters of the Adra Fault: link with the
1910 Earthquake

Present-day seismicity in the southeastern Iberian margin
shows swarms of small to moderate magnitude (Mw < 5),
shallow (< 10 km) earthquakes (Stich et al., 2001, 2003a,
2006, 2010) which are mainly concentrated to the north
and east/southeast of the Chella Bank (Fig. 7). As regards
the Adra Fault, only few epicentres are located along its
trace. However, this does not mean that we should at-
tribute little seismological hazard to this fault. To evaluate
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Fig. 7. Topographic and colour-shaded bathymetric map (isobaths every 50 m) of the Almerı́a–Adra margin. Seismicity from the Instituto
Geogŕafico Nacional catalogue for the period between 1965 and 2010 is depicted (I.G.N., 2010). Grey dots correspond to epicentres of
earthquakes for different magnitudes. Main active faults onshore and offshore are located in black. The normal-dextral Adra Fault is depicted
in yellow. Moment tensor solution obtained for the 1910 Adra Earthquake is also located (Stich et al., 2003b). CAFZ: Corredor de las
Alpujarras Fault Zone; CF: Carboneras Fault; PF: Palomares Fault; ARF: Adra Ridge Fault.

the seismic potential of the Adra Fault, we measured the
fault dimensions (length, strike, and dip) of the segments
and of the overall fault, we estimated their minimum and
maximum seismogenic depths, and we calculated their width
and surface area. Considering maximum segment lengths of
18.5± 0.2 km for the whole Adra Fault and 9.4± 0.2 km
for the longest eastern segment, a sub-vertical fault dip at
80◦

± 10◦, a rake of−135◦, and a maximum seismogenic
depth of 15 km, we obtained maximum rupture surfaces of
281.78 km2 and 143.18 km2, respectively. To obtain seismic
parameters, we used the empirical relationship of Wells and
Coppersmith (1994) for strike-slip faults relating the surface
area with the maximum magnitude, asMw = 4.07+ 0.98×

logA, whereA is the rupture area. The maximum values
obtained areMw = 6.47± 0.24 for the total length of the
Adra Fault andMw = 6.18± 0.24 for the eastern segment.
These fault parametres are of considerable interest to the

seismic hazard assessment models of the Iberian Peninsula
(e.g. Nemser et al., 2010).

The 1910 Earthquake event was recorded by the first op-
erating Spanish stations as well as by observatories out-
side Spain. Although several larger or comparable events
occurred in the Iberian Peninsula during historical times,
the 1910 Adra event is still the largest instrumentally-
recorded crustal earthquake in Spain (Stich et al., 2003b).
The mainshock occurred on 16 June 1910, causing destruc-
tion corresponding to I0 = VIII MSK in the small town of
Adra (Vidal, 1986), and was felt with I0 = VI in Almerı́a,
Granada and Ḿalaga, up to 100 km away from the epicen-
tre. The earthquake was also noticed by boats offshore Adra
indicating an epicentre in the northeastern Alboran Sea. Six
days later, numerous aftershocks followed a major I0 = VII
MSK earthquake (Stich et al., 2003b). These authors re-
examined and modelled the analogue recordings applying
modern techniques to estimate the source parameters of the
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event. The best fitting moment tensor solution corresponds to
a seismic momentM0 = 1.50×1018 Nm and a moment mag-
nitude ofMw = 6.1 oblique strike-slip event at 16 km depth,
although the depth resolution for this event is low due to the
small number of recordings. In agreement with the available
neotectonic and seismotectonic data, the preferred faulting
solution strikes 122◦, dips 80

◦

and rakes−137◦ (Stich et al.,
2003b). The deconvolution of the aftershock yields the rela-
tive source time function, which indicates a total rupture time
of 4.5 s, corresponding to estimates for mainshock rupture
length of 12 km.

Linking historical earthquakes with fault sources is not an
easy task, since detailed information about the epicentre is
sparse or null and the coseismic surface ruptures accompa-
nying an historical earthquake may not be preserved (Am-
braseys, 1975). This is even more complex in marine areas,
where only in few cases has the fault source been success-
fully found (e.g. Elias et al., 2007). Considering the macro-
seismic intensity pattern (Vidal, 1986) and the epicentre re-
location (Stich et al., 2003b), the Adra event (Figs. 1 and 7)
falls relatively close (given location uncertainties) to the sub-
merged trace of the Adra Fault as mapped in the present study
(Fig. 7), discarding the sources located onshore (i.e. Balane-
gra Fault). In addition, this is the only fault identified near
the epicentral location with large enough dimensions capable
of generating an earthquake of this magnitude. Finally, fault
seismic parameters of the Adra Fault are consistent with the
moment tensor calculations (Stich et al., 2003b) with respect
to the preferred NW–SE trending fault plane, fault plane di-
mension and normal-dextral solution. All this suggests that
the Adra Fault is the most plausible source of theMw = 6.1
1910 Adra Earthquake event.

6 Conclusions

1. High-resolution acoustic and seismic data from the
Almeŕıa margin together with14C dating from a sedi-
ment core of the area allowed us to identify and char-
acterize a new fault in the NE Alboran Sea, which we
termed the Adra Fault. The superficial expression of the
Adra Fault consists of an upwarped narrow deformation
zone bounded by sub-vertical faults that trend N130 and
extend for more than 18 km ending in a volcanic ridge
of the Chella Bank. A narrow stepover separates the par-
allel western and eastern segments of the Adra Fault.

2. The Adra Fault cuts and folds the most recent sed-
imentary units of late Holocene age, indicating that
it corresponds to an active structure. Considering the
NNW–SSE regional shortening axis between Eurasia
and Africa, the Adra Fault may have a normal-dextral
component as the faults onshore Campo de Dalı́as (i.e.
Loma del Viento Fault). These structures may be consis-
tent with the model of block tectonic escape suggested
by Mart́ınez-D́ıaz and Herńandez Enrile (2006).

3. Despite the low seismic activity recorded along the
Adra Fault trace, our data suggest that this structure is
a potential source of large magnitude (up toMw ∼ 6.5)
events and it is a very likely source of the 1910 Adra
Earthquake. This is corroborated by the proximity of the
Adra Fault to the earthquake epicentre and by the good
fit between the fault parameters and the fault solution
obtained from the seismic moment tensor. Seismic and
tsunami hazard in the southeast Iberia and African mar-
gins would significantly increase if offshore structures
such as the Adra Fault are considered.
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