
Nat. Hazards Earth Syst. Sci., 12, 2719–2729, 2012
www.nat-hazards-earth-syst-sci.net/12/2719/2012/
doi:10.5194/nhess-12-2719-2012
© Author(s) 2012. CC Attribution 3.0 License.

Natural Hazards
and Earth

System Sciences

Rainfall and earthquake-induced landslide susceptibility assessment
using GIS and Artificial Neural Network

Y. Li 1, G. Chen1, C. Tang2, G. Zhou3, and L. Zheng1

1Department of Civil and Structural Engineering, Kyushu University, Fukuoka, Japan
2State Key Laboratory of Geo-Hazard Prevention, Chengdu University of Technology, Chengdu, China
3Nishi-Nippon Institute of Technology, Fukuoka, Japan

Correspondence to:Y. Li (liyange1984@gmail.com)

Received: 14 July 2011 – Revised: 10 July 2012 – Accepted: 18 July 2012 – Published: 31 August 2012

Abstract. A GIS-based method for the assessment of land-
slide susceptibility in a selected area of Qingchuan County
in China is proposed by using the back-propagation Arti-
ficial Neural Network model (ANN). Landslide inventory
was derived from field investigation and aerial photo in-
terpretation. 473 landslides occurred before the Wenchuan
earthquake (which were thought as rainfall-induced land-
slides (RIL) in this study), and 885 earthquake-induced land-
slides (EIL) were recorded into the landslide inventory map.
To understand the different impacts of rainfall and earth-
quake on landslide occurrence, we first compared the varia-
tions between landslide spatial distribution and conditioning
factors. Then, we compared the weight variation of each con-
ditioning factor derived by adjusting ANN structure and fac-
tors combination respectively. Last, the weight of each factor
derived from the best prediction model was applied to the
entire study area to produce landslide susceptibility maps.

Results show that slope gradient has the highest weight for
landslide susceptibility mapping for both RIL and EIL. The
RIL model built with four different factors (slope gradient,
elevation, slope height and distance to the stream) shows the
best success rate of 93 %; the EIL model built with five differ-
ent factors (slope gradient, elevation, slope height, distance
to the stream and distance to the fault) has the best success
rate of 98 %. Furthermore, the EIL data was used to verify
the RIL model and the success rate is 92 %; the RIL data was
used to verify the EIL model and the success rate is 53 %.

1 Introduction

The 12 May 2008 Wenchuan earthquake, with the character-
istics of high magnitude (Ms = 8.0), shallow hypocenter (the
depth of the hypocenter was less than 20 km), long fracture
zone (approximately 300 km), great rupture (the largest rup-
ture was about 7 m), large energy release (three times that
of the 1976 Tangshan earthquake) and long duration (the
main shock duration was about 120 s) (Xu et al., 2011), trig-
gered as many as 56 000 landslides of various types in the
mountainous terrain in Sichuan Province, China, through-
out an area of about 50 000 km2. According to statistical
data, the earthquake destroyed 5 362 500 buildings, left about
4.8 million people homeless and about 20 000 people imme-
diately dead (Tang et al., 2011). It was the deadliest earth-
quake to hit China since the 1976 Tangshan earthquake,
when 240 000 people died. The most affected area of the
huge earthquake extended from Wenchuan County to the
north and east, along the main faults in Longmenshan. The
hardest hit regions were Wenchuan, Beichuan, Qingchuan,
Mao xian, An xian, Dujiangyan, Pingwu and Pengzhou.

Landslide susceptibility assessment is an important tool
for land use planning and special development activity within
a given area, which is based on past landslides, geology, to-
pography, hydrology and other pertinent data. It is widely
performed in two steps. The first one is the construction of a
landslide inventory map providing the spatial distribution of
existing landslides that can be derived from field survey, air
photo interpretation and literature search (Wieczorek, 1984).
The second step is the preparation of a landslide suscepti-
bility map showing the “likelihood that a phenomenon will
occur in an area on the basis of the local terrain conditions”
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(Soeters and van Westen, 1996). There have been many stud-
ies of landslide susceptibility assessment (Soeters and van
Westen, 1996; Guzzetti et al., 2005; Lee and Evangelista,
2006; Conoscenti et al., 2008; van Westen et al., 2008; Bai et
al., 2010). These methods can be classified into two broad
categories: qualitative and quantitative. With the develop-
ment of computer and geographic information system (GIS)
technology, quantitative methods have been becoming more
popular than qualitative methods in the last few decades (van
Westen et al., 2006). Statistical analysis and Artificial Neural
Network (ANN) have been widely used in various quanti-
tative hazard assessments (Leonardo et al., 2005; Ermini et
al., 2005; Lee and Evangelista, 2006; Pradhan et al., 2010).
With the neural network method, Nefesilioglu et al. (2008)
showed that ANN gives a more optimistic evaluation of land-
slide susceptibility than logistic regression analysis. Ermini
et al. (2005) compared two neural architectures (probabilis-
tic neural network and multi-layered perceptor) and obtained
a better prediction result. Kanungo et al. (2006) showed that
a landslide susceptibility map derived from combined neu-
ral and fuzzy weighting procedure is the best amongst the
other weighting techniques. In more practical terms, neural
network is a non-linear statistical data model or decision-
making tool, and can receive high prediction accuracy for
classification problem, especially for large amount samples.

It is known that factors for initiating landslides can be
broadly classified into conditioning and triggering factors.
Common triggering factors include earthquakes and rain-
fall. For rainfall-induced landslide (RIL), many researchers
have focused on the rainfall conditions that lead to slope
failure (Glade et al., 2000; Lin et al., 2006; Dahal and
Hasegawa, 2008). For earthquake-induced landslide (EIL),
previous studies are mainly focused on (1) identification and
description of coseismic landslides; (2) relationship between
earthquakes, especially catastrophic ones, and landslides (for
example, Keefer, 2000; Qi et al., 2010; Ayalew et al., 2011).
Meanwhile, there has also been some research about rain-
fall or earthquake-induced landslide susceptibility assess-
ment (Guzzetti et al., 2005; Crozier, 2005; Lee et al., 2008;
Kamp et al., 2008). Since these two kinds of landslides are
likely to differ in terms of mechanics and dynamics (Crozier,
2005; Chang et al., 2007), for a given area where landslides
can be triggered by both rainfall and earthquake such as
Sichuan Province, it is important to model both of these two
kinds of landslides.

In this study, we choose Qingchuan County, Sichuan
Province, as the study area. Our objective is to compare the
difference between the landslides triggered by rainfall and
the ones by the 12 May 2008 Wenchuan earthquake. We at-
tempt to resolve this problem not just by comparing the vari-
ation between landslide spatial distribution and conditioning
factors, but also comparing the variation of the weight of
each conditioning factor in the ANN prediction models.

2 Study area and data source

2.1 Study area

Qingchuan County (Fig. 1) is located at 32◦12′ to 32◦56′N,
104◦36′ to 105◦38′E , covering an area of 3271 km2. It is to
the north-east of the earthquake’s epicenter and 250 km away
from the northern part of Chengdu. The area was selected
because of its moderate–high seismic activity (as shown in
Fig. 1; VI–XI represent the earthquake magnitude contours).
78 aftershocks occurred in the area, three exceeding magni-
tude 6, with a maximum of 6.4.

The tectonics and geological settings in the area are very
complex. There is a wide variety of sedimentary (lime-
stones, sandstones and conglomerates), magmatic (granite)
and metamorphic rocks (shales, schists, gneiss) from Cam-
brian to Jurassic age; Quaternary loess unconsolidated sed-
imentary deposits widely outcrop. Two main active faults
cross the area: the Pingwu-Qingchuan fault (F1); and the
Yingxiu-Beichuan fault (F2), which belongs to Longmen-
shan fault belt, is a thrust fault 60◦–70◦ NW dipping.
Qingchuan County is situated in the transitional belt between
the Sichuan Basin and the western Sichuan Plateau, a mainly
mountainous area with northwestern part characterized by
higher elevation than the southeastern one. The elevations
in the northwestern part are generally 1800–3800 m above
mean sea level; the central part is characterized by a medium
relief landscape with a generally elevation of 1200–1800 m;
and the elevations in the southeastern part are generally be-
tween 490 and 1200 m high. Slope gradient reaches a maxi-
mum of about 80◦, with a mean value of 38◦.

The region is drained by the Bailong, Qingzhu and
Qiaozhuang Rivers. These three rivers flow very rapidly
with discharges of approximately 525, 30, and 40 m3 s−1

respectively. Besides, Qingchuan County has a sub-tropical
and monsoon climate and the annual average tempera-
ture is about 13.7◦C. The annual average precipitation is
1021.7 mm, and the highest annual precipitation of 1780 mm
occurred in 1961. 80 % of annual precipitation is mostly con-
centrated in the period from June to September, and the high-
est amount of 90 % occurred in 1981.

2.2 Data source

The basic data utilized in the study include (1) a grid digi-
tal elevation model (DEM), which was made through the in-
terpolation of contour lines from available topographic map;
(2) a geological map collected from the China Geological
Surveying; (3) selected aerial photographs taken by Ministry
of Land and Resources after the Wenchuan earthquake.

Landslide inventory mapping is the systematic mapping
of existing landslides in a region using different techniques
such as field survey, air photo interpretation, and literature
search for historical landslide records (Wieczorek, 1984).
According to the landslide inventory mapping of this study
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Fig. 1. Location of the study area, with China Seismic Intensity Scale of Wenchuan earthquake. Roman numerals VI–XI represent the
earthquake magnitude contours.

area, almost all of the landslides that occurred before the
Wenchuan earthquake were shallow landslides. Besides, ac-
cording to the Qingchuan County Annals, about 20 earth-
quakes happened from 1956 to 2006, but no large earthquake
occurred in this area. The earthquake with the highest mag-
nitude was the one with magnitude 5 that occurred in 2005,
and the others were with magnitude less than 3. Therefore,
the landslides that occurred before 12 May 2008 earthquake
can be considered as rainfall-induced landslides. A total of
473 RILs have been recorded on the basis of field surveys.
The EIL locations were identified from both field surveys
and colour aerial photo interpretation (spatial resolution of
0.5 m) over an area of 3271 km2, and a total of 885 EILs have
been detected. The majority of them have a volume greater
than 1000 m3, and 40 large landslides exceed a volume of
1 000 000 m3. Figure 2 is the regional lithological map of
Qingchuan area and landslides location before and after the
Wenchuan earthquake.

3 Methodology

This study aims to analyse the different impacts of rain-
fall and earthquake on landslides occurrence. Therefore, the
following were especially concerned: (1) the variations be-
tween landslide spatial distribution and conditioning factors
and (2) the variation of weight of each conditioning factor

in the ANN prediction models. The first is implemented by
comparing landslide frequency distribution for each factor by
statistical analysis, and the second is implemented by train-
ing the neural network to calculate the contribution or impor-
tance of each factor for landslide occurrence. All the analyses
are on the basis of slope-based mapping unit, which is rel-
atively suited to landslide-related analysis, since landslides
occur on slopes. This operation is performed automatically
using Arc Hydro tool; the detail procedure was described in
Xie et al. (2004). The controlling size was decided through
adjusting the drainage area in this study. 55 899 slope units
were obtained in total at last.

3.1 Conditioning factors selection

The selection of conditioning factors greatly contributes to
the landslide-related analysis. These factors include lithol-
ogy, tectonics, geomorphology, topography, hydrology and
so on (Kamp et al., 2008). The parameters utilized in this
analysis (slope gradient, elevation, slope height, slope as-
pect, specific catchment area, lithology, distance to the fault
and distance to the stream) are classic variables for landslide
occurrence (for a review, see Carrara and Guzzetti, 1995;
Soeters and van Westen, 1996; Dai and Lee, 2002).

All these factors were processed within ArcGIS. Slope
gradient, elevation, slope height, and slope aspect were
calculated using DEM. Specific catchment area, defined as
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Fig.1. Location of the study area, with China Seismic Intensity Scale of Wenchuan 3 
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Fig.2. Lithological map of Qingchuan area and locations of rainfall-induced landslides and 8 
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Fig. 2.Lithological map of Qingchuan area and locations of rainfall-induced landslides and earthquake-induced landslides.

the area of land upslope of a width of contour, divided by
the contour width, is a commonly used quantity in hydrol-
ogy to describe complex terrain for analyzing water flow
on hill slopes (Tretkoff, 2011). Lithology map was digitized
from the existing geological map. Distance to the fault was
obtained by calculating the distance from landslides to the
nearer fault of F1 or F2, which means, if the distances from
one landslide to F1 and F2 are 5 km and 10 km, then the dis-
tance from landslide to the nearer fault is 5 km. Distance to
the stream was made by applying a buffer to the stream net-
work.

3.2 Comparison of conditioning factors by landslide
frequency analysis

The relationship between landslides and each conditioning
factor category has been examined as shown in Fig. 3. The
number of the slope units in each category and the percentage
of the category among the whole slopes are calculated. For
each category, the percentage of the RILs and EILs among
the total slopes in the same category is given as the landslide
frequency.

3.3 Landslide susceptibility analysis using
Artificial Neural Network

3.3.1 Artificial Neural Network

The Artificial Neural Network (ANN) program is a “compu-
tational mechanism able to acquire, represent, and compute
a mapping from one multivariate space of information to an-
other, given a set of data representing that mapping” (Garrett,
1994). The back-propagation (BP) algorithm is the most fre-
quently used neural network training method. This algorithm
is a multi-layered neural network, which consists of an input
layer, hidden layers, and an output layer and trains the net-
work until the target minimum error is achieved between the
desired and actual output value of the network.

There are two stages involved in using neural network for
multi-source classification: the training phase, in which the
internal weights are adjusted, and the prediction phase. It is
expected that the training data include all the data belonging
to the problem domain. Certainly, this subset is used in
the training stage of the model development to update the
weights of the network. On the other hand, the test data
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Fig. 3. Frequency distribution of the rainfall-induced landslides, earthquake-induced landslides and slope units of conditioning factors. The
numbers (1–8) in the upper part of the diagrams indicate the eight conditioning factors; “a” stands for landslide frequency of RILs and EILs
among the total slopes in the same category; “b” stands for the number of slope units in each category by percentage among the whole slopes.

should be different from those used in the training stage. The
main purpose of this subset is to check the network perfor-
mance using un-trained data and to confirm its accuracy. All
the samples must be normalized since the variables are dif-
ferent in dimensions and not suitable for direct input for an
ANN model.

3.3.2 Training and prediction phase

During the training phase, areas not affected by landslides
were classified as “stable slope units”, while areas affected
by landslides were classified as “unstable slope units”. The
stable and unstable slope units were selected as training
sites. Among the total 55 899 slope units, about 70 % of
cases (39 175 slope units, include 346 RILs and 597 EILs)
were randomly selected as the training samples.

The neural network tool established within MATLAB soft-
ware package by Hines (1997) was partially modified for

landslide analysis. The typical back-propagation (BP) algo-
rithm was applied to calculate the weights between the input
and hidden layer, and between hidden layer and output layer,
by modifying the number of hidden layers and the learning
rate. All the input data in the ANN model were normalized
in the range of 0.1 and 0.9. The learning rate was set to 0.01;
the initial weights were randomly selected between 0.1 and
0.3. The number of epochs was set to 10 000, and the root-
mean-square error (RMSE) value used for the stopping crite-
rion was set to 0.01.

The weight between the layers was acquired by train-
ing the neural network in order to calculate the contribution
or importance of each conditioning factor. Different experi-
ments were conducted. The best prediction model was estab-
lished by adjusting its structure and the input layer factors.
The performance of each model was evaluated by the training
accuracy. Furthermore, in order to evaluate whether a general
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Fig. 4. Rainfall-induced landslide susceptibility map using Artificial Neutral Network. The right side figure is an expanded image of the red
box range.
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Fig.5. Earthquake-induced landslide susceptibility map using Artificial Neutral Network, the 8 
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Fig. 5. Earthquake-induced landslide susceptibility map using Artificial Neutral Network. The right side figure is an expanded image of the
red box range.

model can be established to suit both RIL and EIL, the EIL
data were used to verify the RIL prediction model, while the
RIL data were used to verify the EIL prediction model.

3.3.3 Generation of landslide susceptibility maps

Once the ANN prediction models were successfully trained
and tested, they were used to categorize each slope unit of
the whole dataset to produce landslide susceptibility maps.
In other words, landslide susceptibility indexes were deter-
mined by the output layer values of ANN model directly.
The values were between 0 and 1, and they were converted to
GIS raster data for each slope unit. Since the values were rel-
atively concentrated, which meant almost all of the unstable

area occurred with the indexes greater than 0.5 and almost all
of the stable area occurred with the indexes smaller than 0.1
for RIL, the susceptibility values were classified into three
categories (low, medium and high) for easy and visual in-
terpretation. Using such values, the landslide susceptibility
maps for RIL and EIL can be obtained.

3.3.4 Validation of the trained ANN models and
landslide susceptibility maps

To validate whether the trained models are better or not, we
used the method by comparing the prediction result and ac-
tual slope units free of or containing landslide (see Guzzetti
et al., 2006). The remaining 30 % of data (16 724 slope units,
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Table 1.Weight of each factor in different cases.

Factor
RIL EIL

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

Slope gradient 0.54 0.49 0.35 0.69 0.36 0.45 0.48 0.67

Slope elevation 0.24 0.24 0.26 0.17 0.22 0.23 0.31 0.26
Slope height 0.14 0.19 0.31 0.14 0.15 0.15 0.11 0.07
Slope aspect 0.01 × × × 0.04 × × ×

Distance to the stream 0.03 0.05 0.08 × 0.06 0.02 × ×

Distance to the fault 0.02 0.03 × × 0.12 0.15 0.1 ×

Specific catchment area 0.01 × × × 0.03 × × ×

Lithology 0.01 × × × 0.02 × × ×

Training accuracy 91.82 % 92.30 % 93.90 % 88.87 % 95.05 % 96.39 % 96.14 % 91.96 %

Multi-layered network 8*15*1 5*3*1 4*12*10*1 3*3*1 8*18*1 5*3*5*1 4*3*1 3*3*1

including 127 RILs and 288 EILs) were used to validate the
models.

However, this method only provides an estimation of ANN
prediction model fit, because it does not provide a detailed
description of the model performance of the different sus-
ceptibility classes (Chung and Fabbri, 1999). Success rate
curve, which compares the total area of known landslides
in each susceptibility class with the percentage area of the
susceptibility class, was used to validate the produced maps.
To compare the results quantitatively, the areas under the
curve (AUC) were recalculated with the total area as 1, which
means perfect success rate. To obtain the relative ranks for
the prediction results, the calculated landslide susceptibility
indexes were subdivided into 10 classes in descending order,
with accumulated 10 % intervals.

4 Results

4.1 Comparison between landslide spatial distribution
and conditioning factors

Comparison between landslide spatial distribution and condi-
tioning factors was calculated from landslide frequency anal-
ysis based on slope unit. From the statistical analysis (Fig. 3),
the following results can be found:

1. More than 90 % of the slopes have a slope gradient
larger than 20◦. Both of the RILs and EILs occurred
mainly in the slopes with gradients between 30◦ to 45◦;

2. RILs showed a slightly higher value in the slopes with
the elevation more than 1500 m; however, most of
EILs occurred in the area with the elevations less than
1200 m;

3. RILs showed a higher frequency in the area with slope
height more than 800 m, while EILs occurred mainly in
the slopes with slope height from 200 to 400 m;

4. RILs are evenly distributed in eight slope aspects. The
number of EILs in the slopes in N direction is twice as
much as the slopes in other directions;

5. The number of RILs is similar in each category of
distance to the nearer fault of F1 or F2, while the
number of EILs in the slopes with the distance to the
nearer fault less than 0.5 km is twice as much as the
slopes in other categories;

6. The number of EILs in the slopes with the distances to
the stream less than 5 km is three times as much as the
slopes in other categories, while the RILs numbers do
not have so much difference;

7. There is no clear relationship between landslides and
specific catchment area;

8. There is no clear relationship between landslides and
lithology.

4.2 Weight of each conditioning factor variation in the
ANN prediction models

As mentioned above, to calculate the contribution of each
conditioning factor, 4 different cases were carried out. Case 1
used all of the 8 factors for building the ANN model; Case 2,
3 and 4 removed the lowest 3, 4 and 5 factors by weight re-
spectively. Table 1 summarizes the different ANN models for
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Table 2.Comparison between slope units classified as stable or un-
stable by the ANN model and slope units free of and containing
RILs in the inventory map shown in Fig. 2.

Predicted groups (model)
Stable Unstable

Actual groups
Stable 16 378 (98.68 %) 219 (1.32 %)

(inventory) Unstable 47 (37.01 %) 80 (62.99 %)

Table 3.Comparison between slope units classified as stable or un-
stable by the ANN model and slope units free of and containing
EILs in the inventory map shown in Fig. 2.

Predicted groups (model)
Stable Unstable

Actual groups
Stable 16 433 (99.98 %) 3 (0.02 %)

(inventory) Unstable 0 (0 %) 288 (100 %)

RIL and EIL, as well as the weight of the 8 factors obtained
by applying BP neural network. It can be seen that slope gra-
dient had the maximum weight value for both RIL and EIL,
followed by slope elevation and height. Meanwhile, Case 3
for RIL model (which was built with four factors: slope gra-
dient, elevation, slope height and distance to the stream) and
Case 2 for EIL model (which was built with five factors:
slope gradient, elevation, slope height, distance to the stream
and distance to the nearer fault) presented the best training
accuracy.

4.3 Validation of the established ANN prediction
models

Tables 2 and 3 show the prediction results for RIL and EIL
models. From the tables, it can be seen for RIL prediction
model that 16 458 of the 16 724 mapping units were correctly
classified. Regarding the 266 misclassified cases, 219 stable
slopes were classified as unstable and 47 unstable slopes
were attributed to the stable group by the ANN model. Fur-
ther inspection of Table 2 reveals that the prediction model is
more efficient in classifying stable slopes (98.68 %), and less
efficient in classifying unstable slopes (62.99 %). For EIL
prediction model, 16 721 of the 16 724 mapping units were
correctly classified. There are only 3 misclassified cases, in
which stable slopes were classified as unstable by the ANN
model. Furthermore, the prediction model is very efficient
in correctly classifying both stable (99.98 %) and unstable
slopes (100 %).

4.4 Validation of the landslide susceptibility maps

Using the landslide susceptibility indexes determined from
the output layer values of ANN models, the RIL and EIL
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Fig. 7. Illustration of cumulative frequency diagram showing land-
slide susceptibility index rank (x-axis) occurring in cumulative per-
cent of landslide occurrence (y-axis).

susceptibility maps were obtained (Figs. 4 and 5). Figure 6
shows the predicted indexes ranked from most to least sus-
ceptible (x-axis) against the percentage of all the slope units
in the study area. Figure 7 shows the percentage of the study
area ranked from most to least susceptible (x-axis) against
the cumulative percentage of landslide area in each suscepti-
bility class (y-axis).

Can et al. (2005) mentioned two rules for a spatially ef-
fective landslide susceptibility map: (i) observed landslide
areas should coincide with the areas having high suscepti-
bility values, and (ii) high susceptibility value should cover
only small areas. From the lines, 90 to 100 % (10 %) of
EIL classification of the study area, where the landslide sus-
ceptibility index had a higher rank, accounts for 77.85 %
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Fig. 8. The frequency histogram of landslides that occurred within
every 5 km distance to the Yingxiu-Beichuan fault.

of all the landslides (Fig. 7), while covered only 2.31 % of
the total area (Fig. 6). Furthermore, 90 to 100 % (10 %) of
RIL classification of the study area predicted 36.64 % of
the landslides and the 50 to 60 % (50 %) classification of
the study area predicted 79.35 % of the landslides (Fig. 7),
while covered only 1.76 % of the entire area (Fig. 6). The
calculated AUCs are showed in Fig. 7. The results for
EIL were the best (AUC= 0.98), followed by the results
for RIL and the prediction rate of EIL data using RIL
model (AUC= 0.93, 0.92 respectively), while the results for
the prediction rate of RIL data using EIL model were not so
satisfactory (AUC= 0.53).

5 Discussions

The paper aims to analyse the different impacts of rainfall
and Wenchuan earthquake on landslide occurrence. The re-
lationships between landslide spatial distribution and condi-
tioning factors were analysed from landslide frequency anal-
ysis. The weight of each conditioning factor variation was
calculated in the ANN prediction models. In this part, we
will discuss the analysis results carried out above in depth.

As to topographical factors, landslides are closely related
to them and demonstrate certain general rules. The most im-
portant one is that both of RILs and EILs occurred mainly in
the slopes with gradients less than 45◦ and elevation lower
than of 1200 m. Based on field survey, the number of land-
slides in the area with high elevation (west and northeast
area) is relatively less than the area with low elevation. Prob-
ably this can be explained with the following reason. The
area with high elevation in Qingchuan County is the source
of several great rivers, and the river valley is mainly V-shaped
and with shallow curve. In the middle and lower reaches,
with the increase of catchment area and reduction of erosion
basis, the shearing force of water flow is enhanced, which
gives rise to the steep gorges in the downstream and provides
premise conditions for the growth of geological disasters.

As to spatial distribution relationship between landslides
and faults, distance to the nearer fault shown in Fig. 3 was
obtained by calculating the distance from landslides to the
nearer fault of F1 or F2. This method includes both of the two
faults. As F2 is the seismogenic fault in 12 May 2008 earth-
quake, we also calculate the frequency histogram of land-
slides that occurred within every 5 km distance to the sur-
face rupture along F2. In Fig. 8 the values of the coordi-
nate on the horizontal axis stand for landslides distance to
F2. The positive and negative values represent the distance
from the landslide along footwall and hanging wall to F2 re-
spectively. Meanwhile, the location of F1 is also annotated.
It can be seen that the number of RILs is decreasing with the
increase of distance to the causative fault F2, while the num-
ber of EILs has a slight higher value in the 10–15 km cate-
gory on the hanging wall side. It shows that the 12 May 2008
earthquake influenced the landslide occurrence. An explana-
tion for such a relationship (i.e. between landslide frequency
and the distance to Yingxiu-Beichuan fault) is that Pingwu-
Qingchuan fault is affected by the Yingxiu-Beichuan fault,
which leads to more EILs occur near F1.

As to lithology, landslides are more likely to happen in
metasandstones and phyllites; however, no apparent relation-
ship seems to exist between landslides and lithology due to
the consideration that landslides in rock masses depend on
their structural characteristics, mainly discontinuities in bed-
ding and dip.

According to the weight of each conditioning factor calcu-
lated from ANN, either for RIL models or EIL ones, it can
be pointed out that (1) the topography factors (slope gradi-
ent, slope elevation and slope height) have a dominate effect;
(2) the lithology factor has no significant effect; and (3) the
hydrological factor (distance to stream) has greater impact
on RIL, while the earthquake factor (distance to fault) has
greater impact on EIL. It is consistent with the landslide fre-
quency histogram for each conditioning factor. This indicates
that special topography, geological environment and the deep
weathering rocks in this area make landslides occur easily
under a trigger factor such as an earthquake or rainfall.

6 Conclusions

Landslides are one of the most serious natural hazards world-
wide. Government and research institutions have worked for
years to assess landslide hazard and to show its spatial dis-
tribution. In this study, RIL and EIL susceptibilities were as-
sessed by means of GIS and ANN.

The relationships between landslide spatial distribution
and conditioning factors were analysed from landslide fre-
quency analysis, and the difference between RIL and EIL
could be analysed in the aspects of topography, distances to
fault or stream, and lithology. The advantage of ANN pre-
diction models is that they objectively assign weights to dif-
ferent conditioning factors, as they involve a minimum of
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human interference. The weights provided us a good under-
standing of the conditioning factor contribution to landslide
occurrence.

Success rate curves were created to validate the suscep-
tibility maps. Verification results revealed that EIL (98 %)
had higher success rate than RIL (93 %). However, the suc-
cess rate of the EIL prediction data from trained RIL model
can reach 92 %, while the success rate of RIL prediction data
from trained EIL model can only reach 53 %.

The ANN models trained in this study, although not suit-
able for exportation to very different geomorphological set-
tings, could be usefully applied in a large part of Sichuan
Province, China, in which geological and geomorphological
conditions are very similar to those of the study area. The
results can be used as basic data to assist slope management
and land-use planning.
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