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Abstract. The erosion of a beach depends on various storm
characteristics. Ideally, the risk associated with a storm
would be described by a single multivariate return period that
is also representative of the erosion risk, i.e. a 100 yr multi-
variate storm return period would cause a 100 yr erosion re-
turn period. Unfortunately, a specific probability level may
be associated with numerous combinations of storm charac-
teristics. These combinations, despite having the same mul-
tivariate probability, may cause very different erosion out-
comes. This paper explores this ambiguity problem in the
context of copula based multivariate return periods and us-
ing a case study at Durban on the east coast of South Africa.
Simulations were used to correlate multivariate return peri-
ods of historical events to return periods of estimated storm
induced erosion volumes. In addition, the relationship of the
most-likely design event (Salvadori et al., 2011) to coastal
erosion was investigated. It was found that the multivariate
return periods for wave height and duration had the highest
correlation to erosion return periods. The most-likely design
event was found to be an inadequate design method in its
current form. We explore the inclusion of conditions based
on the physical realizability of wave events and the use of
multivariate linear regression to relate storm parameters to
erosion computed from a process based model. Establishing
a link between storm statistics and erosion consequences can
resolve the ambiguity between multivariate storm return pe-
riods and associated erosion return periods.

1 Introduction

Return periods based on univariate statistical analysis of in-
dependent extreme events are widely used to quantify risk
in order to specify design conditions in engineering. Typi-
cal examples are the estimation of design flood conditions
for dam or stormwater designs. In coastal zone management
the characterization of storm events that result in beach ero-
sion is an important issue. Univariate return periods are not
sufficient for describing a sea storm as it’s rarity and destruc-
tiveness are a function of wave height (H ), wave period (T ),
storm duration (D), wave direction (A), water level (W )
and storm inter-arrival time (I ). With respect to coastal ero-
sion the larger the wave height, storm duration and water
level the greater the erosion. The contribution of wave pe-
riod to erosion is less intuitive.van Gent et al.(2008) and
van Thiel de Vries et al.(2008) found that an increase in
wave period leads to an increase in erosion. However, lo-
cal fluid particle accelerations decrease with increasingT ,
all else remaining equal, which in turn should provide less
erosion potential. The wave direction is not only important
from a longshore and cross shore current perspective but also
in terms of sheltering. For example, a beach sheltered in a
given direction from a 100-yr wave height may experience
less erosion than a 50 yr wave height from its exposed di-
rection. The effect of storm inter-arrival time (or it’s inverse
the storm frequency) is complementary to that of storm dura-
tion. If the inter-arrival time between two consecutive storms
is short, the beach will not have sufficient time to recover
and therefore will be eroding from a lower level. Short inter-
arrival times are therefore in effect similar to an increase in
the duration of individual events.
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Fig. 1. A map of (a) South Africa showing Durban and a map of(b) the Durban Bight showing the location of profile C and the Durban
harbour.

The synthetic design storm (Carley and Cox, 2003) only
considers wave height and duration and it assumes that an
x-yr storm producesx-yr erosion. Considering the interde-
pendence ofH , T , D, A, W andI together with their indi-
vidual and collective influence on erosion, it is overly sim-
plistic to assume that the return period ofH andD corre-
sponds to the return period of the corresponding erosion vol-
ume. The return periods of design events should therefore be
derived from multivariate statistics. In this paper we estimate
these multivariate return periods using the approach of cop-
ulas and Kendall’s return periods as described bySalvadori
et al.(2011).

A relationship between sea storm multivariate return pe-
riods and erosion return periods could be established from
empirical data. However, this is difficult to achieve in prac-
tice since beach survey data must be available for both before
and after storm events and be close enough to the events that
only the effects of the storm are measured. This type of data
is often too rare to establish a confident statistical model. In
this study we overcome this data shortage by calculating the
consequential erosion from historical storm events using the
process-based XBEACH model (Roelvink et al., 2009). We
then calculate the average recurrence intervals for the simu-
lated erosion volumes and identify which multivariate return
periods correspond to the erosion return periods. In essence
we attempt to verify the assumptions of the synthetic design
storm. We also investigate the selection of a multivariate de-
sign event using theSalvadori et al.(2011) most-likely de-
sign event method.

2 Case study

The east coast of South Africa has 18 yr of reliable wave data
from wave recording buoys near the city of Durban (Fig.1a).
Corbella and Stretch(2012a) provide details of the data.Cor-
bella and Stretch(2012b) defined a storm event in terms of
a significant wave height threshold as follows: a storm event
begins when a significant wave heightH exceeds a thresh-
old of 3.5 m and ends when the significant wave height falls
below 3.5 m for a period of at least 2 weeks. The period be-
tween the start and end time, not including the 2 weeks, is the
storm durationD and the time between the events is the calm
periodI . The storm definition is illustrated schematically in
Fig. 2. The valuesH , D, T andW are all defined in deep
water and experience no sheltering effects.

Durban has an extensive record of beach profiles over
37 yr. Profile C (Fig.1b) was used exclusively for the present
study as it is representative of the Durban Bight, while avoid-
ing most of the sheltering influence of the harbour breakwa-
ters and from the perpendicular beach structures. The records
of interest in this study are those that bound storm events and
only two events from 1998 and 2007 met these requirements.

3 Theoretical background and methods

3.1 Marginal distributions

The generalized extreme value (GEV) distribution was used
as the marginal distributions ofH , D, T and W . The
GEV has been used extensively for extreme value analy-
sis of hydrological events and specifically for wave heights
by Guedes Soares and Scotto(2004); Chini et al. (2010);
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the time in hours between the defined storm start and end time. The storm inter-arrival time (calm period), I, 
was defined as the period in hours between the end of a storm and the start of a consecutive storm. Figure 1 
illustrates the storm definitions. The maximum peak period, T, that coincided with the storm event was also 
considered along with simulated water levels, L. Wave direction was not considered due to insufficient data.   
 
Based on the Akaikie information critera (Equation 7), H, D, T and L were fitted with the generalised extreme 
value (GEV) distribution (Equation 8) and 1/I was fitted with the weibull distribution (Equation 9). 
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where K is the number of parameters in the probability distribution and L is the maximised value of the 
likelihood function for the estimated parameters. 
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where � is the location parameter, � is the scale parameter and � is the shape parameter. 
 
 De Michele and Salvadori (2007) consider the storm magnitude as an equivalent triangular storm model as 
described by Boccotti (2000) (Figure 1). Let the storm magnitude be M = (H-η)D/2, where η is the wave 
height threshold taken as 3.5 m. The storm magnitude provides a single quantity to measure the magnitude of 
a storm produced by the interdependency of H and D. We extend this concept by also considering the wave 
power  
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�
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     (10) 

where g is gravitational acceleration, ρ is the density of salt water and the wave energy is 

 E = �� 


8"            (11) 

This expression of wave power quantifies the interdependence of H and T in a single value. The storm 
magnitude and the wave power are a clear example of how risk is an association between all three variables 
H, D and T. 
 
 
 

 
 

2.2 Bivariate analysis 
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Fig. 2. Illustration of the storm definition showing the significant
wave heightH , storm durationD and calm periodI .

Mendez(2008); Minguez et al.(2010), andRuggiero et al.
(2010). The GEV encompasses three distributions often re-
ferred to as Type I, II and III. The probability density func-
tion is given by
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for (1+k
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σ
) < 0 and whereµ is the location parameter,σ

is the scale parameter andk is the shape parameter.
The maximum likelihood method was used to estimate the

GEV parameters and the Akaike information criterion (AIC)
was used to evaluate the appropriateness of the GEV model.
The AIC is given by

AIC = 2n − 2ln(L), (2)

wheren is the number of parameters in the probability distri-
bution andL is the maximized value of the likelihood func-
tion for the estimated parameters.

3.2 Archimedean copulas

Copulas provide a method of modeling the dependencies be-
tween the variables responsible for erosion. They are mathe-
matical functions that join or couple multivariate probability
distribution functions to their one-dimensional marginal dis-
tribution functions. A detailed introduction to copulas is pro-
vided byNelsen(2006); Salvadori and De Michele(2010);
De Michele et al.(2007).

An Archimedean copulaC is a solution to the functional
equation

ϕ(C(u,v)) = ϕ(u) + ϕ(v) (3)

where u = F(x) and v = F(y) are marginal distribution
functions andϕ is the generator function.

Corbella and Stretch(2012c) concluded that onlyH , T

andD of the Durban wave data are inter-dependent and they
created a fully nested trivariate hierarchical Clayton cop-
ula to represent this wave climate. TheCorbella and Stretch

(2012c) model will be used in this paper. It should be noted
that this is typical of a deep ocean coast and shallow seas
will have a strong correlation between wave height and water
level. The Clayton copula has a generator function expressed
as

ϕ(q) =
1

θ
(qθ

− 1) (4)

whereθ is the dependence parameter andq is a number be-
tween 0 and 1. The 3-dimensional hierarchical copula has 2
generators,ϕ1 andϕ2 and is expressed as

C(u1,u2,u3)

= ϕ−1
2

(
ϕ2

(
ϕ−1

1 [ϕ1(u1) + ϕ1(u2)]
)

+ ϕ2(u3)
)
. (5)

The simulations presented in this paper have been per-
formed by the conditional inversion method (Savu and Trede,
2006, 2010; De Michele et al., 2007; Nelsen, 2006). Given
the non-exceedance probability of a wave heighth the non-
exceedance probability of durationd can be estimated from
the conditional lawG of the bivariate copula as

G2(d|h) = ∂hC(h,d). (6)

The non-exceedance probability of the wave periodt can
then be estimated conditionally based on the given values of
h andd from the bivariate and trivariate copula as

G3(t |h,d) =
∂h,dC(h,d, t)

∂h,dC(h,d)
. (7)

The non-exceedance probability of water levelw is as-
sumed independent ofh, d andt and is therefore simulated
independently.

It should be noted thatH , T andD are also dependent on
wave direction. Wave direction was precluded from the cop-
ula model as all the sampled storm events fall between 110◦

and 180◦ with an average direction of 147◦. Since there is no
significant rank correlation betweenH and wave direction,
we assume that all storm events are equally likely to arrive
from any direction between 110◦ and 180◦.

3.3 Return periods

A return period or average recurrence intervalτ is the av-
erage time (usually expressed in years) between the realiza-
tions of two independent successive events. For a given prob-
ability level 0< p < 1, the return period can be expressed as
(Goda, 2008)

τ(p) =
µT

(1− p)
(8)

whereµT is the average inter-arrival time of the storms.
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3.3.1 Multivariate return periods

An engineer may be concerned with the risks associated with
storm events that have various combinations of wave height,
storm duration, wave period, etc. With regards to erosion we
are interested in the most-likely combination ofH , D, T and
W for a given probability of exceedance. Unlike dam design
where droughts make non-exceedances important, in coastal
engineering we are usually only interested in the probability
of exceedance. Storm inter-arrival time is an exception, but
if parameterized in terms of its inverse, namely as a storm
frequency, then the same consideration applies.

The usefulness of multivariate return periods in design
work is often debated and the difficulty in their application
is associated with linking the statistics to physical conse-
quences. Examples of previous work on multivariate return
periods from copulas areSalvadori(2004); Salvadori et al.
(2007); Salvadori and De Michele(2010); Salvadori et al.
(2011).

A multivariate return period is inherently ambiguous be-
cause different combinations of probabilities may produce
the same return period. Events that have an equal probability
of exceedance define iso-hyper-surfaces or critical layersLF

q

for a critical levelq. We adopt the notation fromSalvadori
et al.(2011) and define a critical layer as

LF
q =

{
x ∈ Rd

: F(x) = q
}

(9)

whereF is a d-dimensional distributionF = C(F1, ...,Fd)

and F ∈ (0,1). This definition provides 3 probability re-
gions:

1. a sub-critical regionR<
q that includes events with

F < q;

2. a critical, set onLF
q where all events have a constant

F = q;

3. a super-criticalR>
q that includes events withF > q.

From a coastal engineering perspective we are interested
in potentially destructive events, or in other words events
in the super-critical region.Salvadori et al.(2011) defines a
super-critical return periodτx for a multivariate random vari-
ableX as,

τx =
µ

P(X ∈ R>
q )

. (10)

Alternatively, τx can be defined in terms of the sub-critical
regionR<

q as

τx =
µ

1− KC(q)
(11)

where KC is the Kendall’s distribution function (Genest
et al., 1993) associated with thed-copulaC and is given by

KC(q) = P(C(U1, ...,Ud) ≤ q). (12)
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Fig. 3. Simulated relationship between the Kendall’s distribution
function KC and the critical levelq (solid line). The dashed line
represents a KRP of 100 yr given byKC = 0.997142 for a critical
level ofq = 0.705626.

Kendall’s KC expresses a multivariate quantile relationship
(Genest et al., 2001) and measures the probability of events
occurring in the regionR<

q , i.e. in the sub-critical region de-
lineated byLF

q . Since a general analytical expression forKC

does not exist for all copula families (Salvadori et al., 2011),
we estimateKC from simulations such that for a simulated
sample ofm variablesu1, . . . ,um, from a d-copulaC, the
estimate of the Kendall’s distribution function is

K̂C(q) =
1

m

m∑
i=1

1(C(ui) ≤ q). (13)

3.4 Kendall’s return period

The return periodτx in Eq. (11) is referred to as the Kendall’s
return period (KRP). In order to use the KRP in practice, a
relationship between the critical levelq andKC is required.
Using Eqs. (6) and (7), we simulate 5 000 000 samples of
h, d, t and w in an attempt to produce an almost contin-
uous distribution. The samples were then used to estimate
KC for various critical levelsq. The resulting relationship is
shown in Fig.3 and the dotted line shows the value ofKC

andq corresponding to a KRP of 100 yr. The critical levels
corresponding to KRP’s of 25, 50 and 100 yr were all calcu-
lated and corresponding critical layers inferred for the copula
C(h,d, t,w).

3.5 The most-likely design realization

Salvadori et al.(2011) presented a solution to the ambigu-
ity problem discussed in Sect.3.3.1by proposing the most-
likely design event method. The method essentially uses the
density of the multivariate distribution to identify which val-
ues lying onLF

q are relatively more likely to occur than oth-
ers. The most-likely design realizationδML for a critical level
q was defined as

δML = arg max
x∈LF

q

f (x) (14)
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wheref (x) is the multivariate density and for our model is
given by

f (x) = f (H,T ,D,W) (15)

= c
(
F(H),F (T ),F (D)

)
f (H).f (T ).f (D).f (W) (16)

and wherec(·) is the trivariate copula density given by

c(h,d, t) =
∂3

∂h∂t∂d

C(h, t,d). (17)

The most-likely design realization unfortunately does not
have any direct link to physical processes and so cannot
in general provide a design storm event that is meaning-
ful in terms of its physical consequences. This can only be
achieved by linking storm characteristics to erosion, which
is considered in Sect.4.3.

3.6 Erosion estimation by process-based models

There are numerous process-based numerical models avail-
able for estimating cross-shore erosion (Schoonees and
Theron, 1995). Corbella and Stretch(2012d) compared
XBEACH to SBEACH (Larson et al., 1990) and the Time
Convolution model (Kriebel and Dean, 1993). They con-
cluded that XBEACH provided the best results for the Dur-
ban beaches and it was therefore adopted for the present
study. XBEACH is a public-domain model and although it is
not yet fully developed, it has been used in numerous recent
studies that have shown it’s results to be satisfactory (e.g.
Roelvink et al., 2009; Hartanto et al., 2011).

The copula model was constructed from wave data
recorded in a water depth of approximately 40 m. Simulated
waves therefore need to be transformed into nearshore con-
ditions. The SWAN model was used to transform the wave
conditions to a 20 m depth at the seaward boundary of the
XBEACH model domain.

4 Results

4.1 Empirical erosion

The empirical erosion data was limited to storms that oc-
curred in the years 1998 and 2007. The 1998 storm event
caused profile C (refer Fig.1) to erode 133 m3 m−1 and the
2007 storm event caused the profile to erode 137 m3 m−1.
Using the relationship developed between KRP and the crit-
ical levelq in Sect.3.3.1, the return periods for the 2007 and
1998 storms were estimated as 120 yr and 15 yr, respectively.

Although there is a large difference in the storm return pe-
riods, the resulting erosion was almost identical. This demon-
strates the difficulties associated with multivariate return pe-
riods. The relationship between storm return periods and ero-
sion return periods is non-linear and different profiles can be-
have differently.
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Fig. 4. The return periods of XBEACH simulated erosion volumes
for profile C with the fitted exponential distribution (solid line).

4.2 Erosion return periods

In order to calculate erosion volumes a beach profile mea-
surement is required before and after a storm. Since such data
was only available on two occasions we estimate the erosion
of past events using XBEACH. The historical storm events
were first idealized using the definition in Fig.2 and then
used to quantify the erosion at profile C. The limitations of
these simulations are the idealization of the wave height, the
constant wave direction of 147◦ (refer to Sect.3.2) and the
identical pre-storm beach profile shape. Figure4 shows the
calculated erosion volumes (m3 m−1) for recurrence intervals
up to 100 yr with a fitted exponential distribution. These ero-
sion return periods represent a volume lost from the average
volume of profile C and do not consider storm inter-arrival
time1. If a designer is concerned with the effects of inter-
arrival times we suggest that it can be included by increasing
the storm duration or alternatively modeling the calm period
using a non-stationary Poisson process.

In an attempt to identify which return periods best repre-
sent erosion return periods we calculate Kendall’s tau rank
correlation coefficients between the erosion return periods
and univariate storm return periodsτ(H), τ(D), τ(T ), τ(W),
and multivariate storm return periods,τ(HD), τ(HDT) and
τ(HDTW). The results are shown in Table1. Storm dura-
tion D had the strongest correlation with erosion, followed
by wave heightH . Wave periodT has a moderate correla-
tion and water levelW has no significant correlation. The
Kendall’s return periodτ(HDTW) has a weaker correlation
thanτ(H) mainly because it includes the water level that has
no correlation. The multivariate return period correlations

1Note that the volumes are calculated above 1 m Chart Datum
while mean sea level is about 1.1 m Chart Datum at this location.

www.nat-hazards-earth-syst-sci.net/12/2699/2012/ Nat. Hazards Earth Syst. Sci., 12, 2699–2708, 2012
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Table 1. Kendall’s tau correlation coefficients between the simu-
lated erosion return periods and the various multivariate storm re-
turn periods. The statistical significance of the correlations are indi-
cated by their corresponding p-values.

Erosion vs Correlation coefficient p-value

τ (D) 0.78 6.77 × 10−17

τ (H) 0.56 2.88 × 10−09

τ (T ) 0.30 1.49 × 10−03

τ (W) 0.03 7.50 × 10−01

τ (HD) 0.76 4.47 × 10−16

τ (HDT) 0.63 1.94 × 10−11

τ (HDTW) 0.50 9.21 × 10−08

improve with fewer variables – the correlation withτ(HDT)

improves onτ(HDTW), andτ(HD) gives a further improve-
ment. Note that all these correlation results may be expected
to depend on the definition used for the storm events (Fig.2).

The correlations provide insight into an appropriate mul-
tivariate description of an erosion event but do not undisput-
edly determine the combination ofH andD as the best mul-
tivariate descriptor. To illustrate this we consider the 2007
event. The 2007 event was the largest event ever recorded in
Durban. The Kendall’s return periodsτ(HDTW) andτ(HD)

of the 2007 event were 120 yr and 57 yr, respectively. Return
periodsτ(HDT) andτ(H) were 34 yr and 31 yr, respectively.
The return period of the erosion predicted by XBEACH for
the idealized storm event was 34 yr. This demonstrates that
in this caseτ(HDT) or τ(H) provide the best descriptions of
the probability of the erosion event. In fact, considering the
5 largest erosion volumes, the erosion return periods may be
described best by either the return periodsτ(H), τ(D), τ(T ),
τ(W) or τ(HDT) depending on which parameter dominates
the erosion process. Generallyτ(HD) provides a reasonable
estimate of the erosion return period.

Ideally, the erosion return period would be identical to the
storm return period. The following section is an attempt to
provide a method to estimate events with improved corre-
spondence.

4.3 Selecting design storms

The most-likely design realization is a purely statistical defi-
nition. It could be a rare event that does not cause significant
erosion of the coastline. For example it may select the storm
with the smallest significant wave height and water level, but
with an extremely improbable duration. That combination of
parameters may result in a long return period but in reality
the duration of such an event may be infinitely long without
causing any erosion, i.e. erosion may be insensitive to dura-
tion for that parameter range.

Table2 shows the results of the most-likely design esti-
mate. Significant wave heights between 4 m and 5 m were

Table 2.The most-likely design realizations for multivariate return
periods 25, 50 and 100 yr and the associated erosion return periods.

Storm return period (yr) 25 50 100

Storm characteristics:
H (m) 4.51 4.67 4.87
T (s) 16.0 16.7 16.7
D (h) 29.9 39.9 51.4
W (m) 1.00 1.01 1.03

Erosion volume(m3 m−1) 50 70 93
Erosion return period(yr) 3 4 8

estimated for the return periods of 25, 50 and 100 yr. The ac-
tual observed values ranged between 3.5 m and 8.5 m which
places the most-likely design events at the lower end of
the observed range. The most-likely design method selects
events that we can expect to see more often. However there
is an immediate problem evident – all the event parameters
share an equal weighting statistically but not in terms of their
physically influence on erosion. Given that wave height is a
principal parameter in erosion it should have greater impor-
tance. The result is that the 25, 50 and 100 yr storm return
periods correspond to erosion return periods of 3, 4 and 8 yr,
respectively (Table2). The risks associated with the recur-
rence of the storm events are not consistent with those asso-
ciated with their consequential erosion levels.

The following sections consider ways of constraining or
refining the selection of the most-likely design realization by
including the physical relationships betweenH , T , D and
W , and the sensitivity of the erosion consequences to each.

4.3.1 Constraints due to wave mechanics

The statistical model has no accommodation for the mechan-
ics of water waves, namely the processes in the generation
and propagation of ocean waves. Purely statistical models
may need to be constrained to avoid unrealistic results. For
example there is a physical limitation on wave steepness be-
fore they break and dissipate. Wave steepness is defined as
the wave height (H ) divided by the wave length (L) and for
deep water waves is given by (e.g.Goda, 2008)

H

L
=

2πH

gT 2
. (18)

The maximum wave steepness is usually assumed to be1
7

(Michell, 1893). It should be noted that the17-th relationship
is for regular waves and has limited value when applied to
random wave conditions.

Physical constraints on wave heights and/or periods may
also be associated with the wave generation processes and
their distance from the area of interest. Storm durations
may have realizability constraints related to atmospheric
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circulation patterns or other factors. All these additional con-
straints are highly location specific.

Applying the wave steepness constraint alone to the selec-
tion of the most probable design event does not change the
results shown in Table2 for the case study site.

4.3.2 Linking erosion to storm characteristics

The next issue is to link the storm characteristics directly to
their erosion consequences. As already noted in Sect.4.1, di-
rect measurements of the erosion due to specific storm events
are rare and difficult to obtain. A method of overcoming this
limitation is to use a process-based model, such as XBEACH,
to quantify the erosion due to each storm event. Since the
model attempts to represent the dominant physical processes
that drive erosion, this approach should reflect the underlying
physics of the problem. However, identical antecedent condi-
tions are assumed for each profile response simulation which
does not reflect the actual situation for all events. Further-
more, it is currently not practical to use this approach to ac-
curately map the erosion caused by a comprehensive range of
all possible storm parameters. Instead we use the simulation
results previously employed for the analysis of the erosion
return periods (Fig.4) and extrapolate from this sample by
relating the erosion magnitudes to the storm parametersH ,
T , D andW using multiple linear regression. The regression
equation was chosen to have the form of a truncated Taylor
series expansion, namely

E = E0 + EH H + EDD + ET T + EWW

+ EHH H 2
+ EHDHD + EHT HT + EHWHW

+ EDDD2
+ EDT DT + EDWDW

+ ET T T 2
+ ET WT W

+ EWWW2

+ ε (19)

where the coefficientsE0, EH , . . . are chosen to minimize
the sum of the squared errorsε. The results are plotted in
Fig. 5 and indicate that the regression model is adequate in
this case. Higher order terms could be included in Eq. (19)
to improve the results if necessary. The important outcome
of this analysis is that Eq. (19) allows iso-surfaces of ero-
sion (and their associated return periods) to be located in the
H , T , D, W parameters space. For example Fig.6 shows a
surface plot of erosion, together with iso-erosion contours,
for a constant wave period,T = 16 s, and water levelW =

1.0 m above mean sea level. In this way individual storms can
be related directly to their erosion consequences. For exam-
ple to estimate a storm event (HTDW) representative of a 100
year erosion level (180 m3 m−1) we use the regression model
to determine theH , T , D, andW combinations that pro-
duce the erosion within a specified tolerance. We then use the
most-likely design event to choose the most probable events
associated with the desired erosion level. The method is il-

Table 3. The storm parameters associated with the multivariate re-
turn periods 25, 50 and 100 yr and the associated erosion return pe-
riods calculated by incorporating a multiple linear regression with
the most-likely design event.

Storm return period (yr) 25 50 100

Storm characteristics:
H (m) 4.63 5.00 10.3
T (s) 16.9 17.5 17.4
D (h) 90.4 95.0 83.9
W (m) 0.85 0.86 0.87

Erosion volumes(m3 m−1) 132 160 193
Erosion return periods(yr) 25 56 141

lustrated in Fig.7 that shows level curves for storms (solid
lines) and erosion (dashed lines) for return periods of 100,
50 and 25 yr and for constantT = 15 s andW = 1 m above
mean sea level. The intersection of storm lines with the ero-
sion lines represents a point where the erosion return period
is equal to the storm return period. In four dimensions this
intersection is not unique and so the most-likely design event
is used to select the most probable event. This method was
performed for 25, 50 and 100 yr erosion return periods. The
resulting storms (combinations ofH,T ,D,W ) were then run
through XBEACH to verify the method. Table3 shows that
the method produces erosion return periods that are consis-
tent with the storm return periods. The 25 yr return periods
correspond exactly and there is only a minor difference be-
tween the 50 yr events. The 100 yr storm event translates to
an erosion of 141 yr. Although this difference seems sig-
nificant, when comparing the erosion volumes there is less
than 10 % difference between the 100 yr (180 m3) and 141 yr
(193 m3) erosion event. The difference can be attributed to
errors and/or uncertainties in the regression model and the
erosion probability distribution for extreme events.

5 Discussion

In an ideal situation a multivariate return period of a storm
would be equivalent to that of the erosion associated with
that storm. This would provide a quantifiable risk to the mul-
tivariate return period and make the design process simpler.

The most-likely design event has been suggested as a
method for identifying design events, but without a direct
link to its physical consequences (in this case erosion) it can-
not provide a meaningful measure of the associated risks.
A link can be provided by using a “structure function” ap-
proach (e.g.Hawkes, 2008andCallaghan et al., 2008). The
complexity in achieving this can be appreciated by consider-
ing the effects of storm duration. Equilibrium profile theory
suggests that an increased water level and wave height will
cause a beach profile to retreat to a new equilibrium level.
For this new equilibrium to be established the sea conditions
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Fig. 5. A comparison of the erosion estimated from the multiple
linear regression and XBEACH.
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Fig. 6. Surface plot of erosion as a function of wave heightH and
storm durationsD, for the given wave periodT = 16 s and water
level W = 1.0 m above mean sea level. Contours of erosion levels
50, 100, 150, 200, 250 m3 m−1 are shown on the surface. Corre-
sponding erosion return periods can be inferred from Fig.4.

must be sustained for a certain amount of time. Once this
threshold of time has been exceeded the profile will cease to
change further. This means that a statistical model may pre-
dict a rare storm duration of say 300 h but it will not cause
any more erosion than a 100-h storm. That is, the sensitivity
of erosion to the storm duration may decrease as the duration
increases. Therefore, beyond a certain duration threshold it
may be more appropriate to consider the occurrence of larger
wave heights instead of longer durations.

The ambiguity of multivariate return periods has not been
sufficiently developed for practicing designers to employ
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Figure 7: Level curves of storm parameters H and D for storm (solid lines) and
erosion (dashed lines) return periods of 100, 50 and 25 year for T = 15 s and
W = 1.0 m.

lation study. Kendall’s return period provides a promising de-
scription of copula based return periods. Durban’s largest storm
event on record, the 2007 storm, was estimated to have a 120
year return period with a 34 year erosion return period. Based
on simulations of idealized historical storms, a bivariate return
period of wave height and duration had the strongest corre-
lation to erosion return period. The most-likely design event
proposed by Salvadori et al. (2011) provides a means to over-
come the ambiguity of multivariate return periods by selecting
the most probable events for a specified exceedance probabil-
ity. However the method is purely statistical and the lack of any
link to the underlying physical consequences limits its useful-
ness for design applications. We have proposed physical con-
straints (wave steepness) as well as multiple linear regression
to produce iso-erosion surfaces to improve the appropriateness
of design event estimates. The results suggest that appropriate
conditioning can provide a method for estimating multivariate
storm return periods that are consistent with the return peri-
ods of the consequential erosion events. Further research is re-
quired to investigate the generality of this approach and should
involve testing at other locations with different wave climates
and shoreline characteristics.
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Fig. 7. Level curves of storm parametersH andD for storm (solid
lines) and erosion (dashed lines) return periods of 100, 50 and 25 yr
for T = 15 s andW = 1.0 m above mean sea level

them in coastal applications. We have proposed a method
that can estimate storm events that are analogous to that of
associated erosion events. The multivariate analysis is fairly
complicated to implement and although it is the correct way
to define a storm return period, we suggest a univariate anal-
ysis ofH andD and a bivariate analysis ofHD may provide
a reasonable engineering estimate of the associated erosion
return period. We suggest that if the wave height return pe-
riod is significantly larger than that of the duration then the
erosion return period will approximate the wave height return
period and vice versa. If the wave height and duration return
periods are similar then the bivariate return period may be
representative of the erosion and thus satisfy the assumptions
of the synthetic design storm (Carley and Cox, 2003).

Typically, a univariate analysis of storm parameters in-
adequately describes the erosion potential of a multivariate
storm event. Table4 shows the various return period defini-
tions for the events presented in Table3. None of the return
periods except the trivariateτ(HDT) are close to being con-
sistent with the corresponding erosion return periods. In this
case the lower dimensional return periods overestimate the
risk (or underestimate the return periods) associated with the
storm erosion.

The use of return periods that are directly linked to erosion
consequences is important for well-informed coastal man-
agement. Coastal managers often make decisions on wave
parameter based return periods without understanding that
the associated impact may be significantly different. The
method demonstrated in this paper allows the estimation of
an unambiguous return period from limited field data by sim-
ulating sea storm erosion in XBEACH. Combined with mul-
tivariate regression, this essentially yields a structure func-
tion in the spirit of those described byColes and Tawn(1994)
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Table 4. The magnitude of different return periods (univariate, bi-
variate, etc.) for the events listed in Table3 which were selected to
have multivariate return periods of 25, 50 and 100 yr with matching
associated erosion return periods.

Storm return period (yr) 25 50 100

Return period definition (yr):
τ (H) 2.0 3.1 58
τ (T ) 7.3 13 11
τ (D) 3.2 3.3 3.0
τ (W) 1.6 1.7 1.8
τ (HD) 4.0 6.3 14
τ (HDT) 16 37 100

andReeve(1998). The regression derived structure function
is expected to be site and project specific and would have to
be re-computed using XBEACH (or from a detailed record
of beach surveys) for each application.

6 Conclusions

This paper has explored the relationship between multivari-
ate return periods and erosion return periods through a sim-
ulation study. Kendall’s return period provides a promising
description of copula based return periods. Durban’s largest
storm event on record, the 2007 storm, was estimated to
have a 120 yr (multivariate) return period with a 34 yr ero-
sion return period. Based on simulations of idealized histor-
ical storms, the multivariate return period with the strongest
correlation to erosion return period was a bivariate return pe-
riod of wave height and duration. We have shown that a uni-
variate analysis of storm parameters cannot adequately de-
scribe erosion risks and will lead to overestimation. Caution
is required when attempting to define erosion risks by sim-
ple return periods of few dimensions. The most-likely design
event proposed bySalvadori et al.(2011) provides a means
to overcome the ambiguity of multivariate return periods by
selecting the most probable events for a specified exceedance
probability. However, the method is purely statistical and the
lack of any link to the underlying physical consequences lim-
its its usefulness for design applications. We have created a
type of erosion structure function using multiple linear re-
gression and based on the XBEACH model. This erosion
structure function has been used to improve the appropriate-
ness of the design event estimates. The results suggest that
appropriate conditioning can provide a method for estimat-
ing multivariate storm return periods that are consistent with
the return periods of their consequential erosion events. Fur-
ther research is required to investigate the generality of this
approach and should involve testing at other locations with
different wave climates and shoreline characteristics.
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