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Abstract. The erosion of a beach depends on various storml Introduction

characteristics. Ideally, the risk associated with a storm

would be described by a single multivariate return period that

is also representative of the erosion risk, i.e.a 100yr multi-Return periods based on univariate statistical analysis of in-
variate storm return period would cause a 100 yr erosion redependent extreme events are widely used to quantify risk
turn period. Unfortunately, a specific probability level may in order to specify design conditions in engineering. Typi-
be associated with numerous combinations of storm characta@l examples are the estimation of design flood conditions
teristics. These combinations, despite having the same muffor dam or stormwater designs. In coastal zone management
tivariate probability, may cause very different erosion out- the characterization of storm events that result in beach ero-
comes. This paper explores this ambiguity problem in thesSion is an important issue. Univariate return periods are not
context of copula based multivariate return periods and usSufficient for describing a sea storm as it's rarity and destruc-
ing a case study at Durban on the east coast of South Africdiveness are a function of wave heiglit), wave period [),
Simulations were used to correlate multivariate return peri-Storm duration D), wave direction 4), water level ()

ods of historical events to return periods of estimated storn@nd storm inter-arrival time/{. With respect to coastal ero-
induced erosion volumes. In addition, the relationship of theSion the larger the wave height, storm duration and water
most-likely design eventSalvadori et al.2011) to coastal level the greater the erosion. The contribution of wave pe-
erosion was investigated. It was found that the multivariateriod to erosion is less intuitiveran Gent et al(2008 and
return periods for wave height and duration had the highestan Thiel de Vries et al(2008 found that an increase in
correlation to erosion return periods. The most-likely designWave period leads to an increase in erosion. However, lo-
event was found to be an inadequate design method in itéal fluid particle accelerations decrease with increading
current form. We explore the inclusion of conditions based@ll €lse remaining equal, which in turn should provide less
on the physical realizability of wave events and the use oférosion potential. The wave direction is not only important
multivariate linear regression to relate storm parameters tdfom alongshore and cross shore current perspective but also
erosion computed from a process based model. Establishint} terms of sheltering. For example, a beach sheltered in a
a link between storm statistics and erosion consequences c&fven direction from a 100-yr wave height may experience

resolve the ambiguity between multivariate storm return pe-€Ss erosion than a 50yr wave height from its exposed di-
riods and associated erosion return periods. rection. The effect of storm inter-arrival time (or it's inverse

the storm frequency) is complementary to that of storm dura-
tion. If the inter-arrival time between two consecutive storms
is short, the beach will not have sufficient time to recover
and therefore will be eroding from a lower level. Short inter-

arrival times are therefore in effect similar to an increase in
the duration of individual events.
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Fig. 1. A map of (a) South Africa showing Durban and a map (b the Durban Bight showing the location of profile C and the Durban
harbour.

The synthetic design stornCérley and Cox2003 only 2 Case study
considers wave height and duration and it assumes that an
x-yr storm produces-yr erosion. Considering the interde- The east coast of South Africa has 18 yr of reliable wave data
pendence off, T, D, A, W and/ together with their indi-  from wave recording buoys near the city of Durban (Fig).
vidual and collective influence on erosion, it is overly sim- Corbella and Stretc{20123 provide details of the dat&or-
plistic to assume that the return period Bfand D corre- bella and Stretclf2012 defined a storm event in terms of
sponds to the return period of the corresponding erosion vola significant wave height threshold as follows: a storm event
ume. The return periods of design events should therefore bbegins when a significant wave height exceeds a thresh-
derived from multivariate statistics. In this paper we estimateold of 3.5m and ends when the significant wave height falls
these multivariate return periods using the approach of copbelow 3.5m for a period of at least 2 weeks. The period be-
ulas and Kendall’s return periods as describedSbivadori ~ tween the start and end time, not including the 2 weeks, is the
et al.(2011). storm durationD and the time between the events is the calm

A relationship between sea storm multivariate return pe-period/. The storm definition is illustrated schematically in
riods and erosion return periods could be established fronfig. 2. The valuesd, D, T and W are all defined in deep
empirical data. However, this is difficult to achieve in prac- water and experience no sheltering effects.
tice since beach survey data must be available for both before Durban has an extensive record of beach profiles over
and after storm events and be close enough to the events tha Yr. Profile C (Fig1b) was used exclusively for the present
only the effects of the storm are measured. This type of datgtudy as itis representative of the Durban Bight, while avoid-
is often too rare to establish a confident statistical model. Ining most of the sheltering influence of the harbour breakwa-
this study we overcome this data shortage by calculating théers and from the perpendicular beach structures. The records
consequential erosion from historical storm events using thedf interest in this study are those that bound storm events and
process-based XBEACH moddR¢elvink et al, 2009. We only two events from 1998 and 2007 met these requirements.
then calculate the average recurrence intervals for the simu-
lated erosion volumes and identify which multivariate return )
periods correspond to the erosion return periods. In essence 1 heoretical background and methods
we attempt to vgrlfy the assumptlons' of the synth'etlc' deS|grb.1 Marginal distributions
storm. We also investigate the selection of a multivariate de-

sign event using th&alvadori et al(2011) most-likely de- 1,4 generalized extreme value (GEV) distribution was used

sign event method. as the marginal distributions off, D, T and W. The
GEV has been used extensively for extreme value analy-
sis of hydrological events and specifically for wave heights
by Guedes Soares and Scof2004); Chini et al. (2010;
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8 1 (20129 model will be used in this paper. It should be noted
7 that this is typical of a deep ocean coast and shallow seas
6| will have a strong correlation between wave height and water
s level. The Clayton copula has a generator function expressed
£, as
I 3] 1 )
5] o) =5 -1 (4)
; | whered is the dependence parameter gnd a number be-
0 10 20 20 0 50 tween 0 and 1. The 3-dimensional hierarchical copula has 2
Time (hrs) generatorsp; andgy and is expressed as

Fig. 2. lllustration of the storm definition showing the significant ¢ (¢, u», u3)
wave heightH, storm durationD and calm period. L 1
=07 (v2 (91 lor ) + 91201 ) +92(w) ) 5)

Mendez(2008; Minguez et al.(2010, andRuggiero et al. The simulations presented in this paper have been per-
(2010. The GEV encompasses three distributions often reformed by the conditional inversion methdgvu and Trede
ferred to as Type |, Il and Ill. The probability density func- 2006 201Q De Michele et al.2007 Nelsen 2006. Given
tion is given by the non-exceedance probability of a wave heigtite non-
1 1 exceedance probability of durati@hcan be estimated from
y=o-l exp(— <1+ kﬂ) k) <1+ P M) k (1)  the conditional lawG of the bivariate copula as
g g

Go(d|h) = 9,C(h,d). (6)

for (14 k==£) < 0 and whergu is the location parameter,
is the scale parameter ahds the shape parameter. The non-exceedance probability of the wave periocan

The maximum likelihood method was used to estimate thethen be estimated conditionally based on the given values of
GEV parameters and the Akaike information criterion (AIC) & andd from the bivariate and trivariate copula as
was used to evaluate the appropriateness of the GEV model. opaCh.d.1)

The AIC is given by G3(t|h,d) = 5, 1Chd) @)

AIC = 2n —2In(L), (2) = _

The non-exceedance probability of water lewelis as-
wheren is the number of parameters in the probability distri- sumed independent @&f, d ands and is therefore simulated
bution andZ is the maximized value of the likelihood func- independently.

tion for the estimated parameters. It should be noted thal?, T and D are also dependent on
_ wave direction. Wave direction was precluded from the cop-
3.2 Archimedean copulas ula model as all the sampled storm events fall betweefi 110

] ) ) and 180 with an average direction of 147Since there is no
Copulas provide a method of modeling the dependencies besignificant rank correlation betweei and wave direction,

tween the variables responsible for erosion. They are matheye assume that all storm events are equally likely to arrive
matical functions that join or couple multivariate probability fom any direction between 11@nd 180.

distribution functions to their one-dimensional marginal dis-
tribution functions. A detailed introduction to copulas is pro- 3.3 Return periods
vided by Nelsen(2006; Salvadori and De Michel&010);

De Michele et al(2007). A return period or average recurrence intervab the av-
An Archimedean copul® is a solution to the functional erage time (usually expressed in years) between the realiza-
equation tions of two independent successive events. For a given prob-
ability level 0< p < 1, the return period can be expressed as
P(C(u,v)) =) +¢) 3) (Goda 2008

where u = F(x) and v= F(y) are marginal distribution

functions andp is the generator function. r(p) = HT
Corbella and Stretc20129 concluded that onlyH, T 1-p)

and D of the Durban wave data are inter-dependent and thexN

created a fully nested trivariate hierarchical Clayton cop-

ula to represent this wave climate. T8erbella and Stretch

8)

herewr is the average inter-arrival time of the storms.
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3.3.1 Multivariate return periods 1.000
0995 {———— === T 52 =
An engineer may be concerned with the risks associated with 8;322 :
storm events that have various combinations of wave height, 0.980 // :
storm duration, wave period, etc. With regards to erosion we « 097 |
are interested in the most-likely combinationff D, T and gggg / X
W for a given probability of exceedance. Unlike dam design 0.960 / i
where droughts make non-exceedances important, in coastal 995 7/ X
engineering we are usually only interested in the probability 0'9500,4 05 06 07 08 09 1

of exceedance. Storm inter-arrival time is an exception, but
if parameterized in terms of its inverse, namely as a storm _ _ _ o
frequency, then the same consideration applies. Fig. 3 Simulated relatl_o'nshlp betweer_w the Kendall's dlstrlb_utlon

The usefulness of multivariate return periods in designUnction K¢ and the critical levey (solid line). The dashed line
work is often debated and the difficulty in their application lrepresents a KRP of 100yr given i = 0.997142 for a critical
. . RN . . evel ofg = 0.705626.
is associated with linking the statistics to physical conse-
quences. Examples of previous work on multivariate return
periods from copulas arBalvadori(2004); Salvadori et al.
(2007); Salvadori and De Michel¢2010; Salvadori et al.
(2011.

A multivariate return period is inherently ambiguous be-
cause different combinations of probabilities may produce
the same return period. Events that have an equal probabilit
of exceedance define iso-hyper-surfaces or critical Iaygrs
for a critical levelq. We adopt the notation frorBalvadori
et al.(2011) and define a critical layer as

e}

Kendall's K¢ expresses a multivariate quantile relationship
(Genest et al.2007) and measures the probability of events
occurring in the regiomR =, i.e. in the sub-critical region de-

lineated byL.7. Since a general analytical expression kqr
oes not exist for all copula familieSélvadori et a].2011),
e estimateX ¢ from simulations such that for a simulated
sample ofm variablesus, ..., u,, from ad-copulaC, the
estimate of the Kendall’s distribution function is

N 1
L =xer! Feo=q) @ Kew=g2ucw=o (13)
where F' is ad-dimensional distributionF = C(Fx, ..., Fy)

. o X . 3.4 Kendall's return period
and F € (0,1). This definition provides 3 probability re-

gions: The return period, in Eq. (11) is referred to as the Kendall's
1. a sub-critical regionR; that includes events with return period (KRP). In order to use the KRP in practice, a
F<g; relationship between the critical levgland K¢ is required.

Using Egs. 6) and (7), we simulate 5000000 samples of

2. a critical, set ori_g where all events have a constant , 4, t andw in an attempt to produce an almost contin-

F=gq; uous distribution. The samples were then used to estimate
K¢ for various critical levelg;. The resulting relationship is
shown in Fig.3 and the dotted line shows the value K¢

From a coastal engineering perspective we are interestedndq corresponding to a KRP of 100yr. The critical levels
in potentially destructive events, or in other words eventscorresponding to KRP’s of 25, 50 and 100 yr were all calcu-
in the super-critical regiorSalvadori et al(2011) defines a  lated and corresponding critical layers inferred for the copula
super-critical return period, for a multivariate random vari-  C(h,d, t, w).
ableX as,

w 3.5 The most-likely design realization

3. asuper-criticak_” that includes events with > g.

Tx
Salvadori et al(201]) presented a solution to the ambigu-
Alternatively, t, can be defined in terms of the sub-critical ity problem discussed in Se&.3.1by proposing the most-
regionR; as likely design event method. The method essentially uses the
density of the multivariate distribution to identify which val-
y = ——— (12) ues lying onLqF are relatively more likely to occur than oth-
1-Kc(g) ers. The most-likely design realizatiég for a critical level

where K¢ is the Kendall’s distribution functionGenest ¢ was defined as
et al, 1993 associated with thé-copulaC and is given by

n

SML = arg max 14
Kc(g) = P(C(Uy,...,Uq) < q). (12) ML gxeLqFf(x) (14)
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where f(x) is the multivariate density and for our model is 200

given by 180

()= f(H.T, D, W) (15) 6 Jhl
=c(Fu), F(1), F(D)) - 10 //
FUH).£(T).£(D). f(W) (16) T 120

and where:(-) is the trivariate copula density given by % 100 N

53 S 80
c(h,d, 1) = Clh,t,d). (17) c P
The most-likely design realization unfortunately does not © 40 x

have any direct link to physical processes and so cannot 20

in general provide a design storm event that is meaning-

ful in terms of its physical consequences. This can only be 0 -

achieved by linking storm characteristics to erosion, which 1 10 100

is considered in Sect.3 Return period (years)

Fig. 4. The return periods of XBEACH simulated erosion volumes

3.6 Erosion estimation by process-based models for profile C with the fitted exponential distribution (solid line).

There are numerous process-based numerical models avail-
able for estimating cross-shore erosioBclioonees and ) )
Theron 1995. Corbella and StretcH20129 compared 42 Erosion retum periods

XBEACH to SBEACH (arson etal. 1990 and the Time . )
In order to calculate erosion volumes a beach profile mea-

Convolution model Kriebel and Dean1993. They con- . . .
cluded that XBEACH provided the best results for the Dur- surement is required before and after a storm. Since such data
as only available on two occasions we estimate the erosion

ban beaches and it was therefore adopted for the prese . o
study. XBEACH is a public-domain model and although it is P({)Yf past events using XBEACH. The historical storm events

not yet fully developed, it has been used in numerous recen ere first |dea_LI|zed using the def|n!t|on N F@._aqd t_hen
studies that have shown it's results to be satisfactory (e.gF’S(ad to quantify the erosion at profile C. The limitations of
these simulations are the idealization of the wave height, the

Roelvink et al, 2009 Hartanto et a].2017). o
The copula mogdel was consltruct](gd from wave dataconstant wave direction of 147 refer to Sect3.2) and the

recorded in a water depth of approximately 40 m. Simulated'dem'calI pre-st(_)rm beach profll_el shape. Flgarxmpws the
waves therefore need to be transformed into nearshore Coﬁ:_alculated erosion volumes ?rm ) for recurrence intervals

ditions. The SWAN model was used to transform the wave"P to 100 yr with a fitted exponential distribution. These ero-

conditions to a 20m depth at the seaward boundary of thé:'ion return periods represent a volume lost from the average
XBEACH model domain volume of profile C and do not consider storm inter-arrival

timel. If a designer is concerned with the effects of inter-
arrival times we suggest that it can be included by increasing

4 Results the storm duration or alternatively modeling the calm period
N . using a non-stationary Poisson process.
4.1 Empirical erosion In an attempt to identify which return periods best repre-

. ) . sent erosion return periods we calculate Kendall's tau rank

The empirical erosion data was limited to storms that 0C-coyrelation coefficients between the erosion return periods
curred in thg years 1993 and 2007. The 1995; storm evenk g univariate storm return period&d), (D), t(T), 1 (W),
caused profile C (refer Fid)) to erode 133 mm~*and the  ang multivariate storm return periods(HD), (HDT) and
2007 storm event caused the profile to erode 137m’. _7(HDTW). The results are shown in Table Storm dura-
Using the relationship developed between KRP and the crityion p had the strongest correlation with erosion, followed
ical levelq in Sect.3.3.], the return periods for the 2007 and by wave heightd. Wave periodl’ has a moderate correla-
1998 storms were estimated as 120yr and 15yr, respectivelyion and water leveW has no significant correlation. The

Although there is a large difference in the storm return pe-xandall’s return period (HDTW) has a weaker correlation

riods, the resulting erosion was almost identical. This demonthant(H) mainly because it includes the water level that has
strates the difficulties associated with multivariate return pe, correlation. The multivariate return period correlations

riods. The relationship between storm return periods and ero-
sion return periods is non-linear and different profiles can be-  1ngte that the volumes are calculated above 1 m Chart Datum

have differently. while mean sea level is about 1.1 m Chart Datum at this location.

www.nat-hazards-earth-syst-sci.net/12/2699/2012/ Nat. Hazards Earth Syst. Sci., 12, 2658 2012
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Table 1. Kendall's tau correlation coefficients between the simu- Table 2. The most-likely design realizations for multivariate return
lated erosion return periods and the various multivariate storm reperiods 25, 50 and 100 yr and the associated erosion return periods.
turn periods. The statistical significance of the correlations are indi-

cated by their corresponding p-values. Storm return period (yr) 25 50 100

. : . torm characteristics:
Erosionvs  Correlation coefficient p-value Storm characteristics

H (m) 451 467 4.87
7 (D) 0.78 677 x 10717 T (s) 160 16.7 16.7
T (H) 0.56 288 x 10709 D (h) 29.9 399 514
T (T) 0.30 149 x 10703 W (m) 1.00 1.01 1.03
—01
W) 0.03 £50 x10 Erosion volumgm3m~1) 50 70 93
 (HD) 0.76 447 x 10-16 Erosion return periodyr) 3 4 8
T (HDT)  0.63 194 x 1071
T (HDTW)  0.50 921 x 10798

estimated for the return periods of 25, 50 and 100 yr. The ac-
tual observed values ranged between 3.5m and 8.5m which

improve with fewer variables — the correlation wittHDT) places the most-likely design events at the lower end of
improves onr (HDTW), andz (HD) gives a further improve- the observed range. The most-likely design method selects
ment. Note that all these correlation results may be expecte§vents that we can expect to see more often. However there
to depend on the definition used for the storm events @ig. is an immediate problem evident — all the event parameters
The correlations provide insight into an appropriate mul- share an equal weighting statistically but not in terms of their
tivariate description of an erosion event but do not undisput-Physically influence on erosion. Given that wave height is a
edly determine the combination &f and D as the best mul- principal parameter in erosion it should have greater impor-
tivariate descriptor. To illustrate this we consider the 2007tance. The result is that the 25, 50 and 100yr storm return
event. The 2007 event was the largest event ever recorded iperiods correspond to erosion return periods of 3, 4 and 8yr,
Durban. The Kendall’s return periodgHDTW) andz (HD) respectively (Table). The risks associated with the recur-
of the 2007 event were 120yr and 57 yr, respectively. Returrf€nce of the storm events are not consistent with those asso-
periodst (HDT) andz (H) were 34 yr and 31 yr, respectively. ciated with their consequential erosion levels.
The return period of the erosion predicted by XBEACH for ~ The following sections consider ways of constraining or
the idealized storm event was 34 yr. This demonstrates tha€fining the selection of the most-likely design realization by
in this caser (HDT) or 7 (H) provide the best descriptions of including the physical relationships betweéh 7', D and
the probability of the erosion event. In fact, considering the W @and the sensitivity of the erosion consequences to each.
5 largest erosion volumes, the erosion return periods may be ] )
described best by either the return period®), (D), 7(T), ~ 4-3-1 Constraints due to wave mechanics
(W) or t(HDT) depending on which parameter dominates
the erosion process. GenerallyHD) provides a reasonable
estimate of the erosion return period.

The statistical model has no accommodation for the mechan-

ics of water waves, namely the processes in the generation

Ideally, the erosion return period would be identical to the 21d Propagation of ocean waves. Purely statistical models

storm return period. The following section is an attempt to M@y need to be constrained to avoid unrealistic results. For

provide a method to estimate events with improved Corre_example there is a Phy_s“?a' limitation on wave ste_zepne_ss be-

spondence. fore they brgak and _d|_55|pate. Wave steepness is defined as
the wave height#) divided by the wave length/() and for

4.3 Selecting design storms deep water waves is given by (e @oda 2008

The most-likely design realization is a purely statistical defi- H — @
nition. It could be a rare event that does not cause significant gT?
erosion of the coastline. For example it may select the storm
with the smallest significant wave height and water level, butThe maximum wave steepness is usually assumed tb be
with an extremely improbable duration. That combination of (Michell, 1893. It should be noted that th%}th relationship
parameters may result in a long return period but in realityis for regular waves and has limited value when applied to
the duration of such an event may be infinitely long without random wave conditions.
causing any erosion, i.e. erosion may be insensitive to dura- Physical constraints on wave heights and/or periods may
tion for that parameter range. also be associated with the wave generation processes and
Table 2 shows the results of the most-likely design esti- their distance from the area of interest. Storm durations
mate. Significant wave heights between 4m and 5m werenay have realizability constraints related to atmospheric

(18)
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circulation patterns or other factors. All these additional con-Table 3. The storm parameters associated with the multivariate re-

straints are highly location specific. turn periods 25, 50 and 100 yr and the associated erosion return pe-
Applying the wave steepness constraint alone to the selediods calculated by incorporating a multiple linear regression with

tion of the most probable design event does not change thée most-likely design event.

results shown in Tabl2 for the case study site.

Storm return period (yr) 25 50 100

4.3.2 Linking erosion to storm characteristics Storm characteristics:

H (m) 463 500 103

The next issue is to link the storm characteristics directly to T (s) 169 175 174
their erosion consequences. As already noted in 8ekidi- D (h) 904 950 83.9
rect measurements of the erosion due to specific storm events W (m) 085 0.86 087

are rare and difficult to obtain. A method of overcoming this
limitation is to use a process-based model, such as XBEACH,
to quantify the erosion due to each storm event. Since the
model attempts to represent the dominant physical processes
that drive erosion, this approach should reflect the underlying
physics of the problem. However, identical antecedent condilustrated in Fig.7 that shows level curves for storms (solid
tions are assumed for each profile response simulation whichnes) and erosion (dashed lines) for return periods of 100,
does not reflect the actual situation for all events. Further-20 and 25yr and for constafit=15s andW = 1m above
more, itis Current|y not practica| to use this approach to ac-Mmean sea level. The intersection of storm lines with the ero-
curately map the erosion caused by a comprehensive range §fon lines represents a point where the erosion return period
all possible storm parameters. Instead we use the simulatiol$ €qual to the storm return period. In four dimensions this
results previous|y emp|oyed for the ana|ysis of the erosionintersection is not Unique and so the mOSt-”ker dESign event
return periods (F|g4) and extrapo|ate from this Samp|e by is used to select the most prObabIe event. This method was
relating the erosion magnitudes to the storm paramefers Performed for 25, 50 and 100yr erosion return periods. The
T, D andW using multiple linear regression. The regression resulting storms (combinations &f, 7', D, W) were then run
equation was chosen to have the form of a truncated Taylofhrough XBEACH to verify the method. Tabshows that

Erosion volume¢m3m~—1) 132 160 193
Erosion return periodgyr) 25 56 141

series expansion, namely the method produces erosion return periods that are consis-
tent with the storm return periods. The 25yr return periods
E=Eo+EyH+EpD+ErT+EwW correspond exactly and there is only a minor difference be-
+EygH?+EypHD + Eyp HT + EgwHW tween the 50yr events. The 100 yr sto_rm event translate_s to
) an erosion of 141yr. Although this difference seems sig-
+EppD®+ Epr DT + EpwDW nificant, when comparing the erosion volumes there is less
+ Err T2+ EpwTW than 10 % difference between the 100 yr (18%) and 141 yr
4 B W2 (193 n¥) erosion event. The difference can be attributed to
ww errors and/or uncertainties in the regression model and the
te (19) erosion probability distribution for extreme events.
where the coefficient&y, Ey, ... are chosen to minimize

the sum of the squared errots The results are plotted in 5 Discussion

Fig. 5 and indicate that the regression model is adequate in

this case. Higher order terms could be included in B§) ( In an ideal situation a multivariate return period of a storm
to improve the results if necessary. The important outcomewvould be equivalent to that of the erosion associated with
of this analysis is that Eq1Q) allows iso-surfaces of ero- that storm. This would provide a quantifiable risk to the mul-
sion (and their associated return periods) to be located in thé&variate return period and make the design process simpler.

H, T, D, W parameters space. For example Fghows a The most-likely design event has been suggested as a
surface plot of erosion, together with iso-erosion contours,method for identifying design events, but without a direct
for a constant wave period; = 16's, and water levelV = link to its physical consequences (in this case erosion) it can-

1.0 mabove mean sea level. In this way individual storms camot provide a meaningful measure of the associated risks.
be related directly to their erosion consequences. For examA link can be provided by using a “structure function” ap-
ple to estimate a storm evetdTDW) representative of a 100 proach (e.gHawkes 2008and Callaghan et al.2008. The
year erosion level (180#m~1) we use the regression model complexity in achieving this can be appreciated by consider-
to determine thed, T, D, and W combinations that pro- ing the effects of storm duration. Equilibrium profile theory
duce the erosion within a specified tolerance. We then use theuggests that an increased water level and wave height will
most-likely design event to choose the most probable eventsause a beach profile to retreat to a new equilibrium level.
associated with the desired erosion level. The method is il4+or this new equilibrium to be established the sea conditions
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Fig. 5. A comparison of the erosion estimated from the multiple lines) and erosion (dashed lines) return periods of 100, 50 and 25 yr

linear regression and XBEACH. for T = 15s and¥ = 1.0 m above mean sea level

) them in coastal applications. We have proposed a method
yd that can estimate storm events that are analogous to that of
. associated erosion events. The multivariate analysis is fairly
complicated to implement and although it is the correct way
to define a storm return period, we suggest a univariate anal-
ysis of H and D and a bivariate analysis &fD may provide
a reasonable engineering estimate of the associated erosion
return period. We suggest that if the wave height return pe-
riod is significantly larger than that of the duration then the
erosion return period will approximate the wave height return
period and vice versa. If the wave height and duration return
periods are similar then the bivariate return period may be
representative of the erosion and thus satisfy the assumptions
of the synthetic design stornCérley and Cox2003.

Typically, a univariate analysis of storm parameters in-
Fig. 6. Surface plot of erosion as a function of wave heighand adequately describes the erosion potential of a multivariate
storm durationsD, for the given wave period = 16s and water ~ Storm event. Tabld shows the various return period defini-
level W = 1.0m above mean sea level. Contours of erosion levelstions for the events presented in TaBleNone of the return
50, 100, 150, 200, 250%m~1 are shown on the surface. Corre- periods except the trivariate HDT) are close to being con-
sponding erosion return periods can be inferred from &ig. sistent with the corresponding erosion return periods. In this

case the lower dimensional return periods overestimate the

risk (or underestimate the return periods) associated with the
must be sustained for a certain amount of time. Once thistorm erosion.

threshold of time has been exceeded the profile will cease to The use of return periods that are directly linked to erosion
change further. This means that a statistical model may preeonsequences is important for well-informed coastal man-
dict a rare storm duration of say 300 h but it will not cause agement. Coastal managers often make decisions on wave
any more erosion than a 100-h storm. That is, the sensitivityparameter based return periods without understanding that
of erosion to the storm duration may decrease as the duratiothe associated impact may be significantly different. The
increases. Therefore, beyond a certain duration threshold inethod demonstrated in this paper allows the estimation of
may be more appropriate to consider the occurrence of largesin unambiguous return period from limited field data by sim-
wave heights instead of longer durations. ulating sea storm erosion in XBEACH. Combined with mul-
The ambiguity of multivariate return periods has not beentivariate regression, this essentially yields a structure func-
sufficiently developed for practicing designers to employ tion in the spirit of those described Boles and Tawii1994)

Erosion (m?3)

Duration
(hours)
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