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Abstract. We propose a saturated binary mixture model for
debris flows of the Coulomb-mixture type over temporally
varying topography, where the effects of erosion and depo-
sition are considered. Due to the deposition or erosion pro-
cesses, the interface between the moving material and the
stagnant base is a non-material singular surface. The motion
of this singular surface is determined by the mass exchange
between the flowing layer and the ground. The ratio of the
relative velocity between the two constituents to the velocity
of the solid phase is assumed to be small, so that the gov-
erning equations can be reduced to a system of the quasi-
single-phase type. A shock-capturing numerical scheme is
implemented to solve the derived equation system. The de-
position shapes of a finite mass sliding down an inclined pla-
nary chute are investigated for a range of mixture ratios. The
geometric evolution of the deposition is presented, which al-
lows the possibility of mimicking the development of levee
deposition.

1 Introduction

Debris flows are collections of geological materials (e.g.
sand, cobbles, pebbles or even rocks) mixed with water or
slurry, which are driven by gravity to slide over complex ter-
rain. Such flows often cause heavy casualties and the de-
struction of houses and other facilities. There is considerable
interest in predicting what the endangered areas are and in
forecasting their evolution and behaviour in order to quantify
the risks. A comprehensive description of both theoretical
and applied aspects of debris flow is available inTakahashi
(2007). Efforts for the theoretical modelling of the move-
ment of debris flows have mainly concentrated either on the
rheology of the flowing material or on the influences due to

the geometry of the basal surface. The present study is de-
voted to the description of the movement of shallow debris
flows over a non-trivial topography, with the processes of en-
trainment and deposition being integrated into the model.

One of the pioneering trials describing geophysical flows
over real complex terrain with a depth-integrated equation
system can be dated back toSavage and Hutter(1989), of
which a review together with its extensions are given inPuda-
saini and Hutter(2007). Pudasaini and Hutter(2003) andPu-
dasaini et al.(2005b) designed an orthogonal coordinate sys-
tem, which is suitable for the bed surface of chutes or of a
channel-type form. The Particle-Image-Velocimetry (PIV)
technique has been adpoted for velocity measurement and
the results compared with theoretical predictions is avail-
able inPudasaini et al.(2005a). In their coordinate system,
the curvature and the twisting of the channel are included.
Bouchut and Westdickenberg(2004) (BW), on the other
hand, presented an arbitrary coordinate system for modelling
gravity-driven flows of the shallow-water type over general
topographic surfaces. Although in BW’s coordinate system
explicit expressions of basis vectors and curved coordinates
along the locally varying basis vectors are only available for
special cases, mostly for simple surfaces or locally defined
surfaces, it is desirable to have some flexibility in the choice
of (possibly curvilinear) coordinates, and is very helpful to
describe the local topography for the purpose of numerical
simulations. In a similar approach,De Toni and Scotton
(2005) proposed a formulation for granular flows over a non-
trivial terrain topography. Based on BW’s work,Luca et al.
(2009b) derived non-Cartesian, topography-based avalanche
equations for the gravity-driven flows of ideal and viscous
fluids. A thorough discussion of the hierarchy of avalanche
models with an arbitrary topography can be found inLuca
et al.(2009a).
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The aforementioned models are all related to single-phase
granular flows. However, since debris flows are often trig-
gered by excessive rainfall or initiated due to excessive
groundwater, a more realistic description should include
solid-fluid mixtures, as described byIverson(1997), Iver-
son and Denlinger(2001), Pudasaini et al.(2005c), Pitman
and Le(2005), Pelanti et al.(2008), Luca et al.(2009b) and
more recently byPudasaini(2011) and Luca et al.(2012).
Iverson (1997) and Iverson and Denlinger(2001) derived
the mass and momentum balance equations by treating the
debris flows as a saturated mixture (Coulomb-Mixture the-
ory). Based on the well-documented, grain-fluid measure-
ments, they assumed the ratio of the relative velocity be-
tween the two constituents to the solid velocity to be rather
small. As a consequence, the force of the interaction be-
tween the constituents is annihilated in the equation system.
Pudasaini et al.(2005c) proposed a model based on the same
concept, but in an orthogonal curved and twisted coordinate
system. Notably inPudasaini et al.(2005c), levee forma-
tion was first observed in their numerical simulation. De-
spite the fact that interactions between the phases have been
largely omitted in the previous work, they are generally as-
sociated with the constituent pressures and play an important
role. Taking into account the effects due to the non-vanishing
relative velocity,Pitman and Le(2005) derived a model for
a binary mixture, in which each constituent moves according
to its own mass and momentum equations. A slightly modi-
fied version ofPitman and Le(2005) can be found inPelanti
et al. (2008). Along the same line,Luca et al.(2009b) for-
mulated model equations in the arbitrary coordinate system
proposed byBouchut and Westdickenberg(2004). In Pu-
dasaini(2011), the Mohr-Coulomb plasticity and the solid
volume fraction gradient enhanced non-Newtonian viscous
stresses were respectively applied to model the solid stress
and fluid extra stress, in which the interaction between the
two constituents is taken into account. The generalized inter-
facial momentum transfer is modeled by including the vis-
cous drag, buoyancy force, and the relative acceleration be-
tween the solid and the fluid particles (the virtual mass). The
generalized drag force covers both the solid-like and fluid-
like contributions. The model equations are written in a
multi-curvature, curvilinear coordinate system that fits the
basal topography. Beyond the fully developed mixture mod-
els, Luca et al.(2012) considered a shallow two-layer de-
bris flow with clean water in the upper layer. They derived
a depth-integrated equation system for a three-dimensional
topography.

Taking into account the mass exchange between the mov-
ing layer and static base,Bouchut et al.(2008) proposed a
one-dimensional model for a general topography, in which
the basal surface is time dependent. The formulism of the
unified coordinate (UC) system (see e.g.Hui, 2004, 2007) al-
lows one to construct a deformable mesh system that moves
coincidentally with pseudo-particles on the basal surface.
Taking advantage of the introduction of the UC system and

the concept of general topography inBouchut and West-
dickenberg(2004), Tai and Kuo(2008) proposed a single-
phase model with a deformable coordinate system for two-
dimensional mountain slopes, where the coordinateζ = 0
always coincides with the varying topographic surface. A
single-phase model for a three-dimensional topography was
proposed byTai et al.(2012), and it is capable of success-
fully resolving the real catastrophic Hsiaolin landslide (Tai-
wan), seeKuo et al.(2011). The present study is a Coulomb-
mixture extension ofTai et al. (2012)’s work with tempo-
rally varying coordinates for the entrainment-deposition pro-
cesses. Through the numerical investigation of a finite mass
flow, the key features are illustrated in which the geometric
evolution of the deposition as well as the levee formation are
presented.

The rest of the paper is constructed as follows: Sect. 2
summarizes the derivation of the governing equations where
the terrain-following coordinate system, the simplified bal-
ance equations, the boundary conditions, the manipulation
of the stresses, and the erosion-deposition rate are briefly
discussed. The numerical investigation of finite mass flows
leading to the formation of the deposition heaps is described
in Sect. 3. Concluding remarks noting the achievements and
inferences for further work are recapitulated in Sect. 4.

2 Model equations

2.1 Terrain-following coordinate system

The modern geographic information system (GIS) delivers
digital representations of ground surface topography. These
data can be interpolated as explicit descriptions of non-trivial
terrains in horizontal-vertical, Cartesian coordinates. The
unit normal vector of a topographic surface can thus be de-
fined. Letting thex- andy-axes lie on the horizontal plane
and thez-axis point upward in the vertical direction, the to-
pographic surfaceS can be given byz−zb(x,y,t) = 0. Fol-
lowing Bouchut and Westdickenberg(2004), the unit normal
vector is determined by

n = −c∂xzbêx −c∂yzbêy +cêz

= −sx êx −sy êy +cêz ,
(1)

where ∂xzb and ∂yzb are the partial derivatives with re-
spect to the horizontal coordinates andc =

[
1+ (∂xzb)

2
+

(∂yzb)
2
]−1/2. If rb represents a point on the topographic sur-

faceS, one can define an arbitrary coordinate systemOξηζ

by allowing

τ ξ ≡
∂rb

∂ξ
, τ η ≡

∂rb

∂η
(2)

to be thenatural basisof the tangent space toS, and

τ ζ ≡
τ ξ ×τ η

||τ ξ ×τ η||
(3)
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Fig. 1. The Cartesian(x,y,z) and arbitrary(ξ,η,ζ) coordinates.

can be decomposed as (see Fig. 1)

r = rx êx +ry êy +rz êz = rb +ζn

= (x−ζsx)êx +(y−ζsy)êy +(zb +ζc)êz .
(4)

Thus, the tangential vectors of the local natural bases read

gξ ≡
∂r

∂ξ
= τ ξ +ζ

∂n

∂ξ
, gη ≡

∂r

∂η
= τ η +ζ

∂n

∂η
. (5)

It is straightforward to prove thatgζ ≡ gξ×gη/||gξ×gη||=
n, see e.g. Luca et al. (2009b). As mentioned in Bouchut
and Westdickenberg (2004), this system is an arbitrary co-
ordinate system, so that the coordinates are generally non-
orthogonal. The readers are referred to Pudasaini et al.
(2003) for a systematic application of non-orthogonal coor-
dinates in avalanche flow modeling.

The unified coordinate method (e.g., Hui, 2004, 2007)
introduces a transformation from the Cartesian coordinates
(x,y,z) to some arbitrary coordinates(ξ,η,ζ),

dr = Qdt+Ω̃dξ (6)

or in the component form

drx = Qxdt+Adξ+Ldη+Pdζ ,

dry = Qydt+Bdξ+Mdη+Qdζ ,

drz = Qzdt+Cdξ+Ndη+Rdζ ,

whereQ = Qxêx +Qyêy +Qzêz is the velocity of the lo-
cal coordinate (mesh) and̃Ω is the Jacobian matrix of the
coordinate transformation. With definition (4), the Jacobian
matrix is given by

Ω̃≡Gradr =

(

Id −s

s
T

c c

)(

(Id−ζ∂xs)∂ξx 0

0 1

)

, (7)

whereId is the2×2 unit matrix,

s=

(

sx

sy

)

, ∂xs=









∂sx

∂x

∂sx

∂y
∂sy

∂x

∂sy

∂y









, ∂ξx=









∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η









. (8)

With the small curvature and shallow flow depth assump-
tions, i.e.ζ∂xs=O(ǫ1+α), the Jacobian matrix and the tan-
gential vectors of local natural basis reduce to

Ω̃= Ω̃b +O(ǫ1+α)

=

(

Id −s

s
T

c c

)(

∂ξx 0

0 1

)

+O(ǫ1+α),
(9)

and

gξ = τ ξ +O(ǫ1+α) , gη = τ η +O(ǫ1+α), (10)

respectively, whereǫ = H/L≪ 1 is the aspect ratio of shal-
low flows and α ∈ (0,1). Approximations (9) and (10)
greatly reduce the complexity of the coordinate transforma-
tion for deriving the model equations; see Sect. 2.4.

2.2 Simplified equations of mass and momentum con-
servation

We consider here saturated binary mixtures. The true densi-
ties of both of the constituents are assumed to be constant, i.e.
ρ̂s =const. andρ̂f =const., and their partial densities in the
mixture are determined by their corresponding volume frac-
tions, i.e., the density of the mixtureρ = ρs +ρf = νsρ̂s +
νf ρ̂f , and the volume fractions are subjected toνs +νf = 1.
With the assumption of no mass exchange between the con-
stituents, the balance equations of mass and momentum read

∂ρs

∂t
+∇·(ρsvs)= 0,

ρs
∂vs

∂t
+ρs(vs ·∇)vs −∇·T̃s = ρsg+ι

(11)

for the solid constituent and

∂ρf

∂t
+∇·(ρfvf )= 0,

ρf
∂vf

∂t
+ρf(vf ·∇)vf −∇·T̃f = ρfg−ι

(12)

for the fluid constituent. In this notationg is the gravitational
acceleration, andvs/f andT̃s/f represent the velocity and
stress tensor of the solid/fluid constituent, respectively. In
(11)2 and (12)2, ι denotes the interaction force between the
two constituents. With the help of the conditionνs +νf = 1
and the assumption of constant true densities, (11)1 and (12)1
merge to become

∇·
[

vs +νf(vf −vs)
]

= 0. (13)

Following Pudasaini et al. (2005c), with the introduction of
the fluid specific dischargeq = νf (vf −vs) the momentum
equation of the fluid phase (12)2 can be recast to

ρf
∂

∂t

(

q
νf

+vs

)

+ρf

[

(

q
νf

+vs

)

·∇
](

q
νf

+vs

)

−∇·T̃f = ρfg−ι.

(14)

Fig. 1. The Cartesian(x,y,z) and arbitrary(ξ,η,ζ ) coordinates.

to be the unit normal vector. With the definitions in Eqs. (2)
and (3), one can easily prove thatτ ζ = n. For a point at a
distanceζ above the topographic surface, its position vector,
r, can be decomposed as (see Fig. 1)

r = rx êx +ry êy +rz êz = rb+ζ n

= (x −ζ sx)êx +(y −ζ sy)êy +(zb+ζ c)êz .
(4)

Thus, the tangential vectors of the local natural bases read

gξ ≡
∂r

∂ξ
= τ ξ +ζ

∂n

∂ξ
, gη ≡

∂r

∂η
= τ η +ζ

∂n

∂η
. (5)

It is straightforward to prove that gζ ≡

gξ ×gη/||gξ ×gη|| = n, see e.g.Luca et al. (2009b).
As mentioned inBouchut and Westdickenberg(2004), this
system is an arbitrary coordinate system, so that the coordi-
nates are generally non-orthogonal. The readers are referred
to Pudasaini et al.(2003) for a systematic application of
non-orthogonal coordinates in avalanche flow modeling.

The unified coordinate method (e.g.Hui, 2004, 2007) in-
troduces a transformation from the Cartesian coordinates
(x,y,z) to some arbitrary coordinates(ξ,η,ζ ),

dr = Qdt +�̃dξ (6)

or in the component form

drx = Qxdt +Adξ +Ldη+Pdζ ,

dry = Qydt +Bdξ +Mdη+Qdζ ,

drz = Qzdt +Cdξ +Ndη+Rdζ ,

whereQ = Qx êx +Qy êy +Qzêz is the velocity of the local
coordinate (mesh) and̃� is the Jacobian matrix of the coordi-
nate transformation. With definition (4), the Jacobian matrix
is given by

�̃ ≡ Gradr =

(
Id −s

sT
c

c

)(
(Id −ζ ∂xs)∂ξ x 0

0 1

)
, (7)

whereId is the 2×2 unit matrix,

s=

(
sx
sy

)
, ∂xs=


∂sx

∂x

∂sx

∂y

∂sy

∂x

∂sy

∂y

, ∂ξ x =


∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

. (8)

With the small curvature and shallow flow depth assump-
tions, i.e.ζ∂xs=O(ε1+α), the Jacobian matrix and the tan-
gential vectors of local natural basis reduce to

�̃ = �̃b+O(ε1+α)

=

(
Id −s

sT
c

c

)(
∂ξ x 0

0 1

)
+O(ε1+α),

(9)

and

gξ = τ ξ +O(ε1+α) , gη = τ η +O(ε1+α), (10)

respectively, whereε = H/L � 1 is the aspect ratio of shal-
low flows andα ∈ (0,1). Approximations Eqs. (9) and (10)
greatly reduce the complexity of the coordinate transforma-
tion for deriving the model equations; see Sect.2.4.

2.2 Simplified equations of mass and momentum
conservation

We consider here saturated binary mixtures. The true densi-
ties of both of the constituents are assumed to be constant,
i.e. ρ̂s =const. andρ̂f =const., and their partial densities in
the mixture are determined by their corresponding volume
fractions, i.e. the density of the mixtureρ = ρs+ρf = νsρ̂s+

νf ρ̂f , and the volume fractions are subjected toνs+ νf = 1.
With the assumption of no mass exchange between the con-
stituents, the balance equations of mass and momentum read

∂ρs

∂t
+∇ ·(ρsvs) = 0,

ρs
∂vs

∂t
+ρs(vs·∇)vs−∇ · T̃s= ρsg+ ι

(11)

for the solid constituent and

∂ρf

∂t
+∇ ·(ρfvf) = 0,

ρf
∂vf

∂t
+ρf(vf ·∇)vf −∇ · T̃f = ρfg− ι

(12)

for the fluid constituent. In this notation,g is the gravita-
tional acceleration, andvs/f and T̃s/f represent the velocity
and stress tensor of the solid/fluid constituent, respectively.

www.nat-hazards-earth-syst-sci.net/12/269/2012/ Nat. Hazards Earth Syst. Sci., 12, 269–280, 2012



272 Y. C. Tai and C. Y. Kuo: Debris flows of the Coulomb-mixture type over temporally varying topography

In Eqs. (11)2 and (12)2, ι denotes the interaction force be-
tween the two constituents. With the help of the condition
νs + νf = 1 and the assumption of constant true densities,
(11)1 and (12)1 merge to become

∇ ·
[
vs+νf(vf −vs)

]
= 0. (13)

Following Pudasaini et al.(2005c), with the introduction of
the fluid specific dischargeq = νf(vf − vs) the momentum
equation of the fluid phase (12)2 can be recast to

ρf
∂

∂t

(
q
νf

+vs

)
+ρf

[( q
νf

+vs
)
·∇

](
q
νf

+vs

)
−∇ · T̃f = ρfg− ι.

(14)

In Iverson(1997), it is justified that|vf − vs| � νf |vs|. As
shown inPudasaini et al.(2005c), with this condition and
after some algebraic manipulation, equations (13) and the
addition of (11)2 and (14) form an equation system of the
quasi-single-phase,

∇ ·vs= 0,

∂vs

∂t
+∇ ·(vs⊗vs) =

1
ρ
∇ · T̃total+g,

(15)

whereρ = ρs+ρf is the density of the mixture and̃Ttotal =

T̃s+ T̃f indicates the total stress in the mixture. In another
words, in this simplified theory, the assumption|vf −vs| �

νf |vs| implies thatvs serves as the representative velocity.
Henceforth, for brevity, we will usev instead ofvs unless
otherwise stated.

2.3 Boundary conditions and mixture behaviour laws

The flowing layer is bounded by the upper free surface and
the lower basal surface. The free surface is assumed to be
a material surface for both constituents, so that there is no
mass exchange across it. If the free surface is described by
Fh = 0, the kinematic boundary condition reads

∂Fh

∂t
+v ·∇Fh = 0. (16)

At the basal surface, erosion/deposition is considered. If
Fb = 0 represents the basal surface with a velocityvint, the
kinematic boundary condition reads

∂Fb

∂t
+vint ·∇Fb = 0 or

∂Fb

∂t
+v ·∇Fb = (v−vint) ·∇Fb.

(17)

Choosing the unit normal vectorn pointing into the flowing
layer, the erosion-deposition function (volume flux) can be
defined by

EG
= vint ·n w.r.t. the ground, or

EL
= (vint −v) ·n w.r.t. the moving mixture.

(18)

Here, it is worth noting thatEG
= EL only occurs when

v ·n = 0, i.e. there is pure sliding at the basal surface. This
also indicates that the densities above and below the basal
interface must be different ifv ·n 6= 0 (see e.g.Tai and Kuo,
2008). To obtain a terrain-following coordinate system, we
choose the local coordinate velocityQ = (vint ·n)n to move
coincidentally with erosion or deposition, i.e.

Q = Qξgξ +Qηgη +Qζ gζ = EGgζ . (19)

We consider the Coulomb-mixture approach proposed
by Iverson(1997), Iverson and Denlinger(2001) or Puda-
saini et al.(2005c). The total mixture stress is assumed
to be T̃total = T̃s+ T̃f = T̃e+pI + νf T̃f vis, whereT̃e is the
inter-granular effective stress,p is the pore fluid pressure,
andT̃f vis is the deviator stress due to the viscous interstitial
fluid, andI is the identity tensor. In the cited works, the fluid
stress is defined as̃Tf = −pI + νf T̃f vis and the solid stress
is postulated to bẽTs = T̃e. Iverson and Denlinger(2001)
have argued that a linear variation of fluid pressure is appro-
priate and suggested a parameter,3f ∈ (0,1), to express the
fluid pressure as a fraction of the total basal normal stress,
i.e. pbed= −n · T̃f,bn = −3f n · T̃total,bn. The linear varia-
tion of fluid pressure implies that the parameter3f remains
constant in the depth-wise direction.Pudasaini et al.(2005c)
mentioned that3f is a continuous parameter that depends on
factors such as the flow thickness and the time and diffusion
of the basal pore pressure in the stream-wise direction of the
flow body. The linear distribution assumption of the pore
fluid pressure and the constant value of3f in the flow depth-
wise direction suggest that the solid and fluid stresses are in
the form of

n · T̃sn = (1−3f)n · T̃totaln,

n · T̃fn = 3f n · T̃totaln = −p
(20)

throughout the flow depth. The interstitial fluid is assumed
to obey the conventional law of incompressible Newtonian
fluids, and the fluid pressure is expressed by a fraction3f of
the total normal stress. As a consequence, the viscous stress
of the fluid constituent is thus proposed to be

νf T̃f vis = 23fνfµfD, (21)

whereµf is the viscosity of the pore fluid andD =
1
2(∇v +

∇vT ) is the stretching tensor.
The solid constituent is assumed to follow Mohr-Coulomb

behaviour: The granular material is an incompressible con-
tinuum and the slip plane appears inside the bulk of the ma-
terial when the internal state of stress equals the yield stress,
i.e. the yield occurs when||tt || = tanφ||tn||, wherett andtn
are the shear and normal stresses, respectively, acting on a
planar element inside the granular material, andφ is the in-
ternal friction angle of the medium. Some other variants of
the Mohr-Coulomb flow law can be found in (e.g.Luca et al.,
2009a; De Toni and Scotton, 2005; Greve et al., 1994; Gray
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et al., 1999; Iverson and Denlinger, 2001; Pudasaini and Hut-
ter, 2003; Gray et al., 2003). In the present study, we would
like to exempt ourselves from the complexity of the Mohr-
Coulomb constitutives and to illustrate the key features of
the model. Thus, we focus on a simpler isotropic (hydraulic)
model for the solid constituent.

For the dynamic boundary conditions, the flow surface is
assumed to be traction free for both of the constituents, i.e.

T̃snh = 0 and T̃fnh = 0, (22)

wherenh is the unit normal vector of the flow surface. At
the basal surface, the Coulomb friction law is applied to the
solid constituent, viz.

T̃sn−(n · T̃sn)n =
v

|v|
(n · T̃sn)tanδ, (23)

with δ being the angle of basal friction andn the unit normal
vector pointing into the flow body. For the fluid constituent,
the no-slip condition is applied at the basal surface.

2.4 UC formulation and leading-order model equations

With the unified coordinates, there are two coordinate sys-
tems, and every vectorial quantity can be expressed using
either systems. For index operation in these coordinate sys-
tems, we usei,j ∈ {x,y,z} andm,n ∈ {ξ,η,ζ } for the vec-
torial components unless otherwise specified. For instance,
we haveT̃ = T ij êi ⊗êj = T nmgn⊗gm = 6im êi ⊗gm for the
same stress tensor expressed with different dyadic combina-
tions of the Cartesian basisêi and the UC basisgn. With the
notations

(T ij ) =

T xx T xy T xz

T yx T yy T yz

T zx T zy T zz

 , (T nm) =

T ξξ T ξη T ξζ

T ηξ T ηη T ηζ

T ζ ξ T ζη T ζ ζ


(6im) =

6xξ 6xη 6xζ

6yξ 6yη 6yζ

6zξ 6zη 6zζ

 ,

they are related by

(6im) = �̃(T nm) = (T ij )�̃
−T

, (24)

see e.g.Tai et al.(2012).
Following Tai and Kuo(2008) or Tai et al. (2012), the

simplified quasi-single-phase equation system (15) can be
rewritten in the UC formulation,

∂tJ +∂m

[
J
(
vm

−Qm
)]

= 0,

∂t

(
Jvi

)
+∂m

[
Jvi

(
vm

−Qm
)]

=
1
ρ
∂m

(
J 6im

total

)
+Jgi ,

(25)

for i ∈ {x,y,z} andm ∈ {ξ,η,ζ }, where6im
total = 6im

s +6im
f ,

J = det�̃ and Q = Qξ gξ + Qηgη + Qζ gζ . Equations in

(25) are essentially the evolution ofJ andJvi with respect to
the topography-fitted mesh system. The main benefit of this
formulation is the uncomplicated computation of the time
derivative∂t (J vi), because the velocityvi is expressed in the
Cartesian coordinates whose orientations are fixed in space.

The equation system (25) is further exploited with scal-
ing analysis to isolate the physically non-significant terms in
the governing equations. In the scaling analysis, we first de-
fine the aspect ratio asε = H/L � 1, which is the ratio of a
typical flow thicknessH to a typical length-scaleL on the
tangent space related to the basal surface. The variables are
non-dimensionalized in a similar way to that done inGray
et al. (1999), Pudasaini et al.(2005b), Tai and Kuo(2008)
or Tai et al.(2012). The non-dimensionalization parameters
are defined as follows:

(ξ,η,ζ,h,b)dim = L(ξ,η,εζ,εh,b)non,

(vξ ,vη,vζ , t)dim =
√

gL(qξ ,qη,εqζ ,g−1t)non,

(T
ξξ
s ,T

ηη
s ,T

ζ ζ
s )dim = ρgH (T

ξξ
s ,T

ηη
s ,T

ζ ζ
s )non,

(T
ξζ
s ,T

ξη
s ,T

ηζ
s )dim = ρgHϑ0(T

ξζ
s ,T

ξη
s ,T

ηζ
s )non,

(∂ξn,∂ηn)dim = 1/R(∂ξn,∂ηn)non,

(26)

whereϑ0 =O(εβ) represents the typical magnitude of the
friction coefficient and 0< β < 1. Here,∂ξn and∂ηn respec-
tively denote the curvatures in theξ - andη-directions. The
curvatures are characterised by the inverse of the curvature
radiusR. With the small curvature assumptionK= L/R =

O(εα) and 0< α < 1, one obtainsζ∂xs=O(ε1+α), which
leads to

�̃ = �̃b+O(ε1+α) and J = det�̃ = Jb+O(ε1+α),

see Tai and Kuo (2008) or Tai et al. (2012) for details.
The viscous effect of the pore fluid is non-negligible in the
present study and it is non-dimensionalized by

(T̃f vis,p)dim = ρgH (T̃f vis,p)non. (27)

The velocity component(vx,vy,vz), the erosion-deposition
rateEG/L and the stress tensor(6im) are scaled by

(vi,EG,EL)dim =
√

gL(vi,εEG,εEL)non,

(6im)dim = ρgH (6im)non.
(28)

With the help of scalings Eqs. (26)–(28), integrating the
equations in (25) from the baseζ = 0 to the free surfaceζ = h

yields the depth-averaged mass conservation

∂t

(
Jbh

)
+∂ξ

(
Jbhvξ

)
+∂η

(
Jbhvη

)
= −JbEL

+O(ε1+α)
(29)

and the depth-integrated momentum equation
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∂t

(
Jbhvi

)
+∂ξ

(
Jbhvivξ

)
+∂η

(
Jbhvivη

)
= ∂ξ

[
εJbh

(
6

iξ
s +6

iξ
f

)]
+∂η

[
εJbh

(
6

iη
s +6

iη

f

)]
−Jbvi

bE
L

−Jb

(
6

iζ
s,b+6

iζ
f,b

)
+Jbhgi

+O(ε1+α),

(30)

where the Leibniz rule, the kinematic boundary conditions
(16)–(18), the traction free condition at the free surface, and
the local coordinate velocity (19) have been applied (see also
Tai et al., 2012). The over-lines denote the depth-averaged
values of the over-lined physical quantities and the subscript
“b” indicates the physical quantities at the basal surface.

The velocity componentvi can be decomposed into two
parts,vi

= vi
‖
+εvζ ni , wherevi

‖
represents the velocity com-

ponent tangential to the topographic surface and the other
indicates the velocity component normal to the topographic
surface (for details seeTai et al., 2012). With this decompo-
sition, one obtains the depth-averaged value

vi = vi
0+εvζ ni

+O(ε1+γ ), (31)

where the coordinate transformation is defined byvx
0

v
y

0

vz
0

= �̃b

v
ξ
0

v
η

0

0

 . (32)

The velocity components on the right hand side,vm
0 = vm +

O(ε1+γ ), m ∈ {ξ,η} andγ = min(α,β), are the velocity in
the tangential space of the terrain-fitted UC coordinates and
the velocity component normal to the topographic surfacev

ζ
0

vanishes. By virtue of the introduction of the representative
mean values,vi

0 andvm
0 , the advection terms in (30) can be

approximated by

vivm = $‖vi
0v

m
0 +ε vζ vmni

+O(ε1+γ ), (33)

where$‖ is the momentum correction factor,i ∈ {x,y,z} and
m ∈ {ξ,η} (seeTai et al., 2012).

Multiplying the momentum Eq. (15)2 by �̃ and after some
algebraic manipulations, theζ -component reduces to

∂ζ T
ζ ζ
total+Kv ·(∂ξn)v‖ = c+O(ε) (34)

in the dimensionless form, whereas the second term

v ·(∂ξn)v‖ = vi(∂ξn
i)vξ

+vi(∂ηn
i)vη

is the contribution of the local curvature. With traction free
boundary condition, Eq. (34) can be depth-integrated and
yields the total normal stress on the basal surface

T
ζ ζ
total,b = T

ζ ζ
s,b +T

ζ ζ
f,b

= −hc+Khv ·(∂ξn)v‖ +O(ε)

= −hc+KAc +O(ε),

(35)

and the depth-averaged total normal stress

T
ζ ζ
total= T

ζ ζ
s +T

ζ ζ
f = −

1
2(hc−KAc)+O(ε). (36)

The stress term6iζ
s,b in (30) represents the basal Coulomb

friction (23). With the help of (35) and the fraction of the
total normal stress for the solid constituent at the base, the
Coulomb friction of the solid constituent reads

6
iζ
s,b = T

ζ ζ
s,bni

+
vi

b
||vb||

T
ζ ζ
s,b tanδ

= (1−3f)(−hc+KAc)

(
ni

+
vi

b
||vb||

tanδ

)
+O(ε1+γ ).

(37)

Because the normal stresses of the solid constituent are as-
sumed to be isotropic as in hydraulic theories (the simplifi-
cation used in the present study), i.e.T

ξξ
s = T

ηη
s = T

ζ ζ
s , and

because3f is introduced for the decomposition of the total
normal stress, the depth-averaged solid stress term in (30)
may be recast as

6
xξ
s 6

xη
s

6
yξ
s 6

yη
s

6
zξ
s 6

zη
s

=

(
∂ξ x

sT
c

∂ξ x

)T
ξξ
s 0

0 T
ηη
s

+O(εβ)

= −
1
2(1−3f)hc

(
∂ξ x

sT
c

∂ξ x

)(
1 0

0 1

)
+O(εγ ).

(38)

Adapting the Navier-Stokes equations with the no-slip
boundary condition at the basal surface, the fluid stresses in
(30) can then be approximated by

∂ξ

(
εJbh6

iξ
f

)
+∂η

(
εJbh6

iη

f

)
−Jb6

iζ
f,b

= Jb4i
f −Jb3f

(
hc−KAc

)
ni

+O(ε1+α),

(39)

where

4i
f = ε�̃i

m,b

{
−h

∂ (3fch)

∂m
+

3fh

NR

(
∂2vm

0

∂ξ2
+

∂2vm
0

∂η2

)
−

33f

ε2NR

vm
0

h

}
with i ∈ {x,y,z} andm ∈ {ξ,η}. The dimensionless parame-
ter NR = ρH

√
gL(νfµf)

−1 is a dynamic scaling factor anal-
ogous to the Reynolds number for Newtonian fluids (cf.Iver-
son and Denlinger, 2001; Pudasaini et al., 2005b).

With the derived stress and the depth-averaged approxima-
tions, the equation system (29)–(30) can be rearranged into
the forms,

∂t

(
Jbh

)
+∂ξ

(
Jbhv

ξ
0

)
+∂η

(
Jbhv

η

0

)
= −JbEL

+O(ε1+γ )
(40)
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and

∂t

(
Jbhvi

0

)
+∂ξ

(
Jbh$‖vi

0v
ξ
0

)
+∂η

(
Jbh$‖vi

0v
η

0

)
−∂ξ

(
εJbh6

iξ
s

)
−∂η

(
εJbh6

iη
s

)
= −Jbvi

bE
L

−(1−3f)Jb
vi

b
||vb||

Nbtanδ

+JbNbni
+Jb4i

f +Jbhgi
+O(ε1+γ ),

(41)

for the mass and momentum conservation, whereNb = hc−

KAc is the normal pressure on the basal surface. As men-
tioned inGray et al.(1999), the termKAc tanδ =O(εα+β)

is assumed to contribute to the leading- and first-order bal-
ances, i.e.α + β ≤ 1. In case of 1< α + β < 1+ γ or
α +β ≥ 1+γ , this term can be neglected and the momen-
tum balances are accurate to orderO(εα+β), orO(ε1+γ ), re-
spectively. Note that the momentum Eq. (41) is comprised of
three equations, but with (32), only two of them are indepen-
dent. We choose the first two (i ∈ {x,y}) as the representative
momentum equations.

Equations (40)–(41) are the resultant model equations.
These equations essentially describe the evolution of the
mass conservation and the Cartesian components with re-
spect to the topography-fitted mesh system. The first term
on the right hand side (RHS) of (41) accounts for the
entrainment-deposition processes and the second term (RHS)
is the Coulomb friction of the solid constituent to the flow.
Since thex- andy-axes lie on the horizontal plane, the grav-
ity components are zero,gx

= gy
= 0, and so is the fifth term

on the RHS of (41). Thus, it appears that there is no gravity-
acceleration in the formulation. This, however, is not true,
because the gravity acceleration in this formulation is incor-
porated into the model equations via the reacting basal pres-
sureNb, the third term on the RHS of (41). This is different
than the models byPudasaini and Hutter(2003) andPuda-
saini et al.(2005b,c), in which the gravitational force is de-
composed into three non-zero components along three mutu-
ally orthogonal coordinates that follow the channel. In these
models, the basal Coulomb friction is also enhanced by the
curvature and the twist of the channel.

The formulation of (40)–(41) has several advantages over
the existing models of the Coulomb-mixture type. First, due
to the fact that the orientations of thex- andy-axes are fixed
in space, the complexity for computing the evolution of the
conservative variables is greatly reduced. Second, even with
deposition/erosion, the coordinate surfaceζ = 0 always co-
incides with the topographic surface, so that the mesh auto-
matically fits the moving topography with the progression of
time.

2.5 Erosion-deposition rate

The angle of repose is one of the most important features of
granular media. With respect to this angle and the BCRE
model proposed byBouchaud et al.(1994), Tai and Kuo
(2008) suggested that the erosion-deposition processes can

be divided into three states for dry granular material rela-
tive to the neutral angle (the angle of repose of the material,
θn), and a speed threshold (corresponding to a kinetic energy
threshold). These three states are:immobile basal surface,
deposition, anderosion, which take place at the base. In the
present study, we consider a saturated mixture, in which case
the interstitial fluid may affect the value of the neutral angle.
Rondon et al.(2011) investigated granular collapses in a fluid
and found there to be a roughly linear proportion between the
initial solid volume fraction and the final deposition slope. In
Coulomb-mixture theory, the solid normal stress at the base
is assumed to be a fraction, 1−3f , of the total basal nor-
mal stress. Similar to the dry case, the local natural angle
of the mixture is thus assumed to be linearly proportional to
the fraction of the solid normal stress, i.e.θnl = (1−3f)θn.
Therefore, the three states of the erosion-deposition mecha-
nism correspond to

θ < θnl and||v‖|| > vth ⇒ EG
= 0 : stationary bed,

θ < θnl and||v‖|| < vth ⇒ EG > 0 : deposition,

θ > θnl ⇒ EG < 0 : erosion.

(42)

In (42), θ indicates the local inclination angle,||v‖|| repre-
sents the tangential speed along the topography and the speed
thresholdvth is given byvth = αv (θ − θnl)

2, whereαv is an
empirical constant. Utilizing the same concept as inTai et al.
(2012), the local inclination angleθ is defined to be the prin-
cipal inclination angle determined by the ratio of the vertical
velocity component,vz

0, to the tangential speed over the to-
pography, viz.

θ = arcsin

(
−vz

0

||v0
‖
||

)
(43)

and

vz
0 =

sT

c
(∂ξ x)v0

‖
=
(
∂xb ∂yb

)(vx
0

v
y

0

)
. (44)

Following Tai and Kuo(2008) and Tai and Lin (2008),
the deposition rate is proposed to be a function of the local
thickness of the flowing layer and the difference between the
inclination angle and the neutral angle,

EG
= er h̃(θnl −θ), (45)

whereh̃ = h+αh

√
h with an adjustment coefficientαh that

manifests the erosion-deposition rate when the flow is very
thin. The three states are implemented by the functioner ,

er = αe
{
fregH(θnl −θ)+H(θ −θnl)

}
, (46)

where H(•) is the Heaviside step function, the term
fregH(θnl −θ) accounts for deposition/stagnancy andH(θ −

θnl) for the entrainment. Parameterαe is an empirical con-
stant rate factor. To incorporate the threshold speedvth in
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the erosion-deposition rate and to distinguish the deposition
from stagnancy, the functionfreg

(
v0
‖
,vth,eα

)
is introduced in

such a way that

freg
(
v0
‖
,vth,eα

)
=

1

2

[
1− tanh

(
eα(||v0

‖
||−vth)

)]
, (47)

with a transition steepness factoreα. Based on (18), we relate
EG

= αEEL, where the parameterαE is essentially the den-
sity ratio between the flowing layer and the stationary bed, if
one takes into account the jump condition of the mass con-
servation at the interface.

3 Numerical investigation

The resultant model Eqs. (40)–(41) comprises a nonlinear
system, for which a high resolution non-oscillatory central
(NOC) scheme (see e.g.Jiang and Tadmor, 1998; Tai et al.,
2001; Liu et al., 2007) is applied to solve the steep gradi-
ents of the variables,Jbh, Jbhvx and Jbhvy . For the de-
termination of the location of the moving mesh, a trape-
zoidal integration is applied. At timetk, let the position of
the (i,j)−cell in the Cartesian coordinates be denoted by
xk

i,j = (xk
i,j ,y

k
i,j ,z

k
i,j )

T , and letQk
i,j = (Q

x,k
i,j ,Q

y,k
i,j ,Q

z,k
i,j )T

be the cell velocity. The new position of the cell is then up-
dated by

xk+1
i,j = xk

i,j +
1
21tk(Qt

i,j +Qt+1
i,j ), (48)

where the time step1tk = tk+1
− tk is determined by the

Courant-Friedrichs-Lewy (CFL) condition. Note that there
are alternative updating schemes for determining the coordi-
nate position, and that some errors might be introduced dur-
ing the simple updating process of (48). Nevertheless, the er-
rors are small and acceptable (see e.g.Hui et al., 1999). For
further details of the numerical implementation, the readers
are referred toTai and Lin(2008); Tai et al.(2012).

In the numerical investigation, the equations are solved in
dimensionless form. We consider a finite mass of a saturated
mixture sliding down an inclined flat chute (inclination angle
40◦ onto a horizontal plane. The transition zone lies between
ξ = 17.5 and 24.5 (dimensionless). The initial shape of the
mass is a parabolic cap with a base radius of 2.4 (dimen-
sionless). Its maximum height is 0.5. The center of the cap
is located at(4.6,0.0) on theξ -η-surface, and the tangential
components of the initial velocity are given by

v
ξ
0(ξ,η,0) =

{
1.2+(ξ −4.6)/2.4 for h 6= 0,

0.0 for h = 0,
(49)

andv
η

0(ξ,η,0) = 0.0 overall, which are transformed to the

horizontal ones(vx
0,v

y

0) by (vx
0,v

y

0)T = (∂ξ x)(v
ξ
0,v

η

0)T . The
local neutral angle of the mixture is determined byθnl =

(1−3f)θn with θn = 34◦ (the angle of repose of the solid

8 Y.C. Tai and C.Y. Kuo: Debris flows of the Coulomb-mixture type over temporally varying topography

Arc length   ξ

η
t = 3.000 Λ

f
 = 0.0

(without deposition)

−5
0
5

Arc length   ξ

η
t = 9.000

−5
0
5

Arc length   ξ

η
t = 12.000

−5
0
5

Arc length   ξ

η
t = 13.000

−5
0
5

Arc length   ξ

η
t = 15.000

−5
0
5

Arc length   ξ

η
t = 17.000

−5
0
5

Arc length   ξ

η
t = 18.000

0 5 10 15 20 25 30 35 40 45 50

−5
0
5

Fig. 2. Contour plots of the flowing mass down the inclined flat
plane onto the horizontal area, where the material is assumed to be
dry (Λf = 0), without adopting the deposition procedure.

et al., 2001; Liu et al., 2007) is applied to solve the steep
gradients of the variables,Jbh, Jbhvx andJbhvy. For the
determination of the location of the moving mesh, a trape-
zoidal integration is applied. At timetk, let the position of
the (i,j)−cell in the Cartesian coordinates be denoted by
xk

i,j = (xk
i,j ,y

k
i,j ,z

k
i,j)

T , and letQk
i,j = (Qx,k

i,j ,Qy,k
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be the cell velocity. The new position of the cell is then up-
dated by

xk+1

i,j = xk
i,j + 1

2
∆tk(Qt

i,j +Qt+1

i,j ), (48)

where the time step∆tk = tk+1 − tk is determined by the
Courant-Friedrichs-Lewy (CFL) condition. Note that there
are alternative updating schemes for determining the coordi-
nate position, and that some errors might be introduced dur-
ing the simple updating process of (48). Nevertheless, the er-
rors are small and acceptable (see e.g. Hui et al., 1999). For
further details of the numerical implementation, the readers
are referred to Tai and Lin (2008); Tai et al. (2011).

In the numerical investigation, the equations are solved in
dimensionless form. We consider a finite mass of a saturated
mixture sliding down an inclined flat chute (inclination angle
40◦ onto a horizontal plane. The transition zone lies between
ξ = 17.5 and24.5 (dimensionless). The initial shape of the
mass is a parabolic cap with a base radius of2.4 (dimen-
sionless). Its maximum height is0.5. The center of the cap
is located at(4.6,0.0) on theξ-η-surface, and the tangential
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Fig. 3. Contour plots of the flowing mass and the evolution of
the deposition heap, whereΛf = 0 and the deposition procedure
is adopted in the computation.

components of the initial velocity are given by

vξ
0
(ξ,η,0)=

{

1.2+(ξ−4.6)/2.4 for h 6= 0,

0.0 for h = 0,
(49)

andvη
0 (ξ,η,0) = 0.0 overall, which are transformed to the

horizontal ones(vx
0 ,vy

0 ) by (vx
0 ,vy

0 )T = (∂ξx)(vξ
0 ,vη

0 )T . The
local neutral angle of the mixture is determined byθnl =
(1−Λf)θn with θn = 34◦ (the angle of repose of the solid
constituent). The basal friction coefficient of the solid con-
stituent against the chute surface in (23) is taken to beµ =
tanδ = tan23◦. Once the deposition takes place, the mate-
rial accumulates on the basal surface and the friction angle
is then changed toθn. Parameter NR is set to be3×105 as
in Pudasaini et al. (2005c). In the computation, the values of
the parameters of the erosion-deposition rateEG in (45) are
identical to those in Tai and Lin (2008), which areαv = 1.0,
αh = 0.1, αe = 2.0, eα = 20 andαE = 0.9. The initial mesh
size is set to be∆ξ = ∆η = 0.2; the aspect ratioǫ = 1; the
superbee slope limiter is used for cell-reconstruction of the
physical quantities; and the CFL number is selected to be
0.4. The momentum correction factor̟‖ is set to be1.0 in
the present simulation for ease of comparison. The readers
are referred to Tai et al. (2011) for a more detailed discussion
of the factor̟ ‖.

In the result figures (Figs. 2 to 7), the flowing mass is
represented by the sequential contours of flow thickness, in

Fig. 2. Contour plots of the flowing mass down the inclined flat
plane onto the horizontal area, where the material is assumed to be
dry (3f = 0), without adopting the deposition procedure.

constituent). The basal friction coefficient of the solid con-
stituent against the chute surface in (23) is taken to beµ =

tanδ = tan23◦. Once the deposition takes place, the mate-
rial accumulates on the basal surface and the friction angle
is then changed toθn. Parameter NR is set to be 3×105 as
in Pudasaini et al.(2005c). In the computation, the values of
the parameters of the erosion-deposition rateEG in (45) are
identical to those inTai and Lin(2008), which areαv = 1.0,
αh = 0.1, αe = 2.0, eα = 20 andαE = 0.9. The initial mesh
size is set to be1ξ = 1η = 0.2; the aspect ratioε = 1; the
superbee slope limiter is used for cell-reconstruction of the
physical quantities; and the CFL number is selected to be
0.4. The momentum correction factor$‖ is set to be 1.0 in
the present simulation for ease of comparison. The readers
are referred toTai et al.(2012) for a more detailed discussion
of the factor$‖.

In the result figures (Figs.2 to 7), the flowing mass is
represented by the sequential contours of flow thickness in
which the levels of the contour lines are 0.001, 0.01 and from
0.05 to 0.49 at increments of 0.04. The thick red lines indi-
cate the outlines of the deposition heaps and there is a transi-
tion zone lying between the vertical dash-dotted lines.

Figure2 shows the thickness contour plots of the dry mass
(3f = 0) moving down the chute without the entrainment-
deposition process. In the inclined section of the chute, the
flowing mass accelerates in the down-slopeξ -direction and
slightly extends in the transverseη-direction. Once the front
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Fig. 2. Contour plots of the flowing mass down the inclined flat
plane onto the horizontal area, where the material is assumed to be
dry (Λf = 0), without adopting the deposition procedure.

et al., 2001; Liu et al., 2007) is applied to solve the steep
gradients of the variables,Jbh, Jbhvx andJbhvy. For the
determination of the location of the moving mesh, a trape-
zoidal integration is applied. At timetk, let the position of
the (i,j)−cell in the Cartesian coordinates be denoted by
xk

i,j = (xk
i,j ,y

k
i,j ,z

k
i,j)

T , and letQk
i,j = (Qx,k

i,j ,Qy,k
i,j ,Qz,k

i,j )T

be the cell velocity. The new position of the cell is then up-
dated by

xk+1

i,j = xk
i,j + 1

2
∆tk(Qt

i,j +Qt+1

i,j ), (48)

where the time step∆tk = tk+1 − tk is determined by the
Courant-Friedrichs-Lewy (CFL) condition. Note that there
are alternative updating schemes for determining the coordi-
nate position, and that some errors might be introduced dur-
ing the simple updating process of (48). Nevertheless, the er-
rors are small and acceptable (see e.g. Hui et al., 1999). For
further details of the numerical implementation, the readers
are referred to Tai and Lin (2008); Tai et al. (2011).

In the numerical investigation, the equations are solved in
dimensionless form. We consider a finite mass of a saturated
mixture sliding down an inclined flat chute (inclination angle
40◦ onto a horizontal plane. The transition zone lies between
ξ = 17.5 and24.5 (dimensionless). The initial shape of the
mass is a parabolic cap with a base radius of2.4 (dimen-
sionless). Its maximum height is0.5. The center of the cap
is located at(4.6,0.0) on theξ-η-surface, and the tangential
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Fig. 3. Contour plots of the flowing mass and the evolution of
the deposition heap, whereΛf = 0 and the deposition procedure
is adopted in the computation.

components of the initial velocity are given by

vξ
0
(ξ,η,0)=

{

1.2+(ξ−4.6)/2.4 for h 6= 0,

0.0 for h = 0,
(49)

andvη
0 (ξ,η,0) = 0.0 overall, which are transformed to the

horizontal ones(vx
0 ,vy

0 ) by (vx
0 ,vy

0 )T = (∂ξx)(vξ
0 ,vη

0 )T . The
local neutral angle of the mixture is determined byθnl =
(1−Λf)θn with θn = 34◦ (the angle of repose of the solid
constituent). The basal friction coefficient of the solid con-
stituent against the chute surface in (23) is taken to beµ =
tanδ = tan23◦. Once the deposition takes place, the mate-
rial accumulates on the basal surface and the friction angle
is then changed toθn. Parameter NR is set to be3×105 as
in Pudasaini et al. (2005c). In the computation, the values of
the parameters of the erosion-deposition rateEG in (45) are
identical to those in Tai and Lin (2008), which areαv = 1.0,
αh = 0.1, αe = 2.0, eα = 20 andαE = 0.9. The initial mesh
size is set to be∆ξ = ∆η = 0.2; the aspect ratioǫ = 1; the
superbee slope limiter is used for cell-reconstruction of the
physical quantities; and the CFL number is selected to be
0.4. The momentum correction factor̟‖ is set to be1.0 in
the present simulation for ease of comparison. The readers
are referred to Tai et al. (2011) for a more detailed discussion
of the factor̟ ‖.

In the result figures (Figs. 2 to 7), the flowing mass is
represented by the sequential contours of flow thickness, in

Fig. 3. Contour plots of the flowing mass and the evolution of
the deposition heap ,where3f = 0 and the deposition procedure is
adopted in the computation.Y.C. Tai and C.Y. Kuo: Debris flows of the Coulomb-mixture type over temporally varying topography 9
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Fig. 4. Contour plots of the flowing mass and the evolution of the
deposition heap, whereΛf = 0.1 with the deposition procedure be-
ing adopted in the computation.

which the levels of the contour lines are0.001, 0.01 and from
0.05 to 0.49 at increments of0.04. The thick red lines indi-
cate the outlines of the deposition heaps and there is a transi-
tion zone lying between the vertical dash-dotted lines.

Figure 2 shows the thickness contour plots of the dry mass
(Λf = 0) moving down the chute without the entrainment-
deposition process. In the inclined section of the chute, the
flowing mass accelerates in the down-slopeξ-direction and
slightly extends in the transverseη-direction. Once the front
reaches the horizontal plane, the basal friction decelerates
the mass and brings the front to rest. Att = 17 the entire
flow body is “almost” at the state of rest. There is no clear
criterion to determine the duration of the motion as argued
in Tai and Kuo (2008). In contrast to Fig. 2, Fig. 3 depicts
the results of the same condition but with the entrainment-
deposition procedure. Similarly, the flow front slows down
on the horizontal section. The deposition heap begins to form
at the front part slightly beforet = 12, and develops back-
wards. The whole flow body comes to the state of rest at
t = 16.526, when the total volume of the flowing layer is less
than10−6 of the initial volumeVint = 4.520. No significant
difference is found between the shapes of the deposit of the
sliding material body between Figs. 2 and 3. However, with
the deposition procedure in the latter case, much more details
of the flow are revealed, especially in relation to the forma-
tion of the deposit. These details illustrate the advantages to
be gained by adopting the entrainment-deposition procedure
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Fig. 5. Contour plots of the flowing mass and the evolution of the
deposition heap, whereΛf =0.2 with the deposition procedure be-
ing adopted in the computation.

in the computation; see also the comparison with experimen-
tal observations in Tai and Kuo (2008).

Figures 4 to 7 show the results computed withΛf = 0.1
to Λf = 0.4 in increments of0.1. Apparently, there are no
significant differences among the outlines of the flow body
at t = 3.0 when they are flowing on the inclined section
(ξ ≤ 17.5). This may be due to the short distance from the
initial position, so the spreading of the mixture is still inthe
beginning stages. However, as in Pudasaini et al. (2005c), the
influence of the fluid constituent on the sliding mass becomes
significantly distinguishable when the mass is deposited on
the horizontal plane. For the values ofλf = 0.0 to Λf = 0.4,
the duration of sliding increases from16.526 to 23.749 di-
mensionless time units. In addition, the maximum run-out
distance increases and the deposition heap extends in the
longitudinal direction as the value ofΛf increases. This is
because a larger value ofΛf provides higher fluid-like mo-
bility which overcomes the basal friction caused by the solid
constituent moving against the basal surface. This matches
the physical intuition. In allΛf 6= 0 cases, the deposition
heap begins to form aroundt = 12. However, it is worth
noting that the deposition heap develops from the front for
Λf = 0.0 (see Fig. 3), whilst it is found to form initially at the
rear flanks and develops forwards to the front forΛf ≥ 0.2
(Figs. 5 to 7).

Our attention is further drawn to the finding that the fluid
constituent leads to levee formation at the rear. This levee

Fig. 4. Contour plots of the flowing mass and the evolution of the
deposition heap, where3f = 0.1 with the deposition procedure be-
ing adopted in the computation.
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deposition heap, whereΛf = 0.1 with the deposition procedure be-
ing adopted in the computation.

which the levels of the contour lines are0.001, 0.01 and from
0.05 to 0.49 at increments of0.04. The thick red lines indi-
cate the outlines of the deposition heaps and there is a transi-
tion zone lying between the vertical dash-dotted lines.

Figure 2 shows the thickness contour plots of the dry mass
(Λf = 0) moving down the chute without the entrainment-
deposition process. In the inclined section of the chute, the
flowing mass accelerates in the down-slopeξ-direction and
slightly extends in the transverseη-direction. Once the front
reaches the horizontal plane, the basal friction decelerates
the mass and brings the front to rest. Att = 17 the entire
flow body is “almost” at the state of rest. There is no clear
criterion to determine the duration of the motion as argued
in Tai and Kuo (2008). In contrast to Fig. 2, Fig. 3 depicts
the results of the same condition but with the entrainment-
deposition procedure. Similarly, the flow front slows down
on the horizontal section. The deposition heap begins to form
at the front part slightly beforet = 12, and develops back-
wards. The whole flow body comes to the state of rest at
t = 16.526, when the total volume of the flowing layer is less
than10−6 of the initial volumeVint = 4.520. No significant
difference is found between the shapes of the deposit of the
sliding material body between Figs. 2 and 3. However, with
the deposition procedure in the latter case, much more details
of the flow are revealed, especially in relation to the forma-
tion of the deposit. These details illustrate the advantages to
be gained by adopting the entrainment-deposition procedure
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deposition heap, whereΛf =0.2 with the deposition procedure be-
ing adopted in the computation.

in the computation; see also the comparison with experimen-
tal observations in Tai and Kuo (2008).

Figures 4 to 7 show the results computed withΛf = 0.1
to Λf = 0.4 in increments of0.1. Apparently, there are no
significant differences among the outlines of the flow body
at t = 3.0 when they are flowing on the inclined section
(ξ ≤ 17.5). This may be due to the short distance from the
initial position, so the spreading of the mixture is still inthe
beginning stages. However, as in Pudasaini et al. (2005c), the
influence of the fluid constituent on the sliding mass becomes
significantly distinguishable when the mass is deposited on
the horizontal plane. For the values ofλf = 0.0 to Λf = 0.4,
the duration of sliding increases from16.526 to 23.749 di-
mensionless time units. In addition, the maximum run-out
distance increases and the deposition heap extends in the
longitudinal direction as the value ofΛf increases. This is
because a larger value ofΛf provides higher fluid-like mo-
bility which overcomes the basal friction caused by the solid
constituent moving against the basal surface. This matches
the physical intuition. In allΛf 6= 0 cases, the deposition
heap begins to form aroundt = 12. However, it is worth
noting that the deposition heap develops from the front for
Λf = 0.0 (see Fig. 3), whilst it is found to form initially at the
rear flanks and develops forwards to the front forΛf ≥ 0.2
(Figs. 5 to 7).

Our attention is further drawn to the finding that the fluid
constituent leads to levee formation at the rear. This levee

Fig. 5. Contour plots of the flowing mass and the evolution of the
deposition heap, where3f = 0.2 with the deposition procedure be-
ing adopted in the computation.

reaches the horizontal plane, the basal friction decelerates
the mass and brings the front to rest. Att = 17 the entire
flow body is “ almost” at the state of rest. There is no clear
criterion to determine the duration of the motion as argued
in Tai and Kuo(2008). In contrast to Fig.2, Fig. 3 depicts
the results of the same condition but with the entrainment-
deposition procedure. Similarly, the flow front slows down
on the horizontal section. The deposition heap begins to form
at the front part slightly beforet = 12, and develops back-
wards. The whole flow body comes to the state of rest at
t = 16.526, when the total volume of the flowing layer is less
than 10−6 of the initial volumeVint = 4.520. No significant
difference is found between the shapes of the deposit of the
sliding material body between Figs.2 and3. However, with
the deposition procedure in the latter case, many more details
of the flow are revealed, especially in relation to the forma-
tion of the deposit. These details illustrate the advantages to
be gained by adopting the entrainment-deposition procedure
in the computation; see also the comparison with experimen-
tal observations inTai and Kuo(2008).

Figures4 to 7 show the results computed with3f = 0.1
to 3f = 0.4 in increments of 0.1. Apparently, there are no
significant differences among the outlines of the flow body
at t = 3.0 when they are flowing on the inclined section
(ξ ≤ 17.5). This may be due to the short distance from the
initial position, so the spreading of the mixture is still in the
beginning stages. However, as inPudasaini et al.(2005c), the
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Fig. 6. Contour plots of the flowing mass and the evolution of the
deposition heap, whereΛf = 0.3 with the deposition procedure be-
ing adopted in the computation.
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Fig. 7. Contour plots of the flowing mass and the evolution of the
deposition heap, whereΛf = 0.4 with the deposition procedure be-
ing adopted in the computation.
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Fig. 8. Cross-sectional view of the flowing mass and evolution of
the deposition heap alongη at ξ = 33.0. The black dotted lines at
ζ =0 represent the basal surface of the chute, the red lines indicate
the interface of the deforming deposition heap and the blue solid
lines mark the free surface of the flowing layer.

formation cannot be obtained in the single-phase simulation
(see Fig. 2 or 3). With the Coulomb-mixture theory, Puda-
saini et al. (2005c) were the first to obtain levee formation
in their numerical investigation. They called it the “reverse
Barchan dune” type. In their theory, the deposition proce-
dure was not taken into account. With the introduction of
the deposition process, our simulation results agree with the
results obtained in that former study. Furthermore, the de-
position process enables the possibility of analyzing the ge-
ometric evolution of the deposition heap in greater detail.In
our simulation withΛf 6= 0.0, deposition initiates from the
margins. When the deposition is initiated at the margins of
the rear part, the central part moves at a higher speed in the
down-slope direction, which postpones the deposition. The
development of the levee deposition along the transverseη-
direction atξ = 33.0 is illustrated in Fig. 8. Att = 15, de-
position heaps begin to form at the side flanks. While the
mass-flux decreases and passes through this cross-section,
the levee deposition heaps bound the flowing mass, devel-
oping fast toward the center (ζ = 0). The thickness of the
flowing layer then decreases rapidly depositing a growing
heap. The mass flux vanishes shortly aftert = 18.0. After
this stage, the flowing mass freezes and the final deposition
profile remains in a stagnant state.

4 Concluding remarks

In this study, a depth-integrated equation system with de-
forming coordinates for a Coulomb-mixture over general to-
pography of small curvatures is introduced. The combination
of the unified coordinate (UC) method and BW’s arbitrary
coordinate system enables the possibility that the coordinates
can be set to move coincidentally with the temporally varying

Fig. 6. Contour plots of the flowing mass and the evolution of the
deposition heap, where3f = 0.3 with the deposition procedure be-
ing adopted in the computation.

influence of the fluid constituent on the sliding mass becomes
significantly distinguishable when the mass is deposited on
the horizontal plane. For the values ofλf = 0.0 to 3f = 0.4,
the duration of sliding increases from 16.526 to 23.749 di-
mensionless time units. In addition, the maximum run-out
distance increases and the deposition heap extends in the lon-
gitudinal direction as the value of3f increases. This is be-
cause a larger value of3f provides higher fluid-like mobility
which overcomes the basal friction caused by the solid con-
stituent moving against the basal surface. This matches the
physical intuition. In all3f 6= 0 cases, the deposition heap
begins to form aroundt = 12. However, it is worth noting
that the deposition heap develops from the front for3f = 0.0
(see Fig.3), whilst it is found to form initially at the rear
flanks and develops forwards to the front for3f ≥ 0.2 (Figs.5
to 7).

Our attention is further drawn to the finding that the fluid
constituent leads to levee formation at the rear. This levee
formation cannot be obtained in the single-phase simulation
(see Figs.2 or 3). With the Coulomb-mixture theory,Pu-
dasaini et al.(2005c) were the first to obtain levee forma-
tion in their numerical investigation. They called it the “
reverse Barchan dune” type. In their theory, the deposition
procedure was not taken into account. With the introduc-
tion of the deposition process, our simulation results agree
with the results obtained in that former study. Furthermore,
the deposition process enables the possibility of analyzing
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Fig. 6. Contour plots of the flowing mass and the evolution of the
deposition heap, whereΛf = 0.3 with the deposition procedure be-
ing adopted in the computation.
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Fig. 7. Contour plots of the flowing mass and the evolution of the
deposition heap, whereΛf = 0.4 with the deposition procedure be-
ing adopted in the computation.
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Fig. 8. Cross-sectional view of the flowing mass and evolution of
the deposition heap alongη at ξ = 33.0. The black dotted lines at
ζ =0 represent the basal surface of the chute, the red lines indicate
the interface of the deforming deposition heap and the blue solid
lines mark the free surface of the flowing layer.

formation cannot be obtained in the single-phase simulation
(see Fig. 2 or 3). With the Coulomb-mixture theory, Puda-
saini et al. (2005c) were the first to obtain levee formation
in their numerical investigation. They called it the “reverse
Barchan dune” type. In their theory, the deposition proce-
dure was not taken into account. With the introduction of
the deposition process, our simulation results agree with the
results obtained in that former study. Furthermore, the de-
position process enables the possibility of analyzing the ge-
ometric evolution of the deposition heap in greater detail.In
our simulation withΛf 6= 0.0, deposition initiates from the
margins. When the deposition is initiated at the margins of
the rear part, the central part moves at a higher speed in the
down-slope direction, which postpones the deposition. The
development of the levee deposition along the transverseη-
direction atξ = 33.0 is illustrated in Fig. 8. Att = 15, de-
position heaps begin to form at the side flanks. While the
mass-flux decreases and passes through this cross-section,
the levee deposition heaps bound the flowing mass, devel-
oping fast toward the center (ζ = 0). The thickness of the
flowing layer then decreases rapidly depositing a growing
heap. The mass flux vanishes shortly aftert = 18.0. After
this stage, the flowing mass freezes and the final deposition
profile remains in a stagnant state.

4 Concluding remarks

In this study, a depth-integrated equation system with de-
forming coordinates for a Coulomb-mixture over general to-
pography of small curvatures is introduced. The combination
of the unified coordinate (UC) method and BW’s arbitrary
coordinate system enables the possibility that the coordinates
can be set to move coincidentally with the temporally varying
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ing adopted in the computation.
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ing adopted in the computation.
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Fig. 8. Cross-sectional view of the flowing mass and evolution of
the deposition heap alongη at ξ = 33.0. The black dotted lines at
ζ =0 represent the basal surface of the chute, the red lines indicate
the interface of the deforming deposition heap and the blue solid
lines mark the free surface of the flowing layer.

formation cannot be obtained in the single-phase simulation
(see Fig. 2 or 3). With the Coulomb-mixture theory, Puda-
saini et al. (2005c) were the first to obtain levee formation
in their numerical investigation. They called it the “reverse
Barchan dune” type. In their theory, the deposition proce-
dure was not taken into account. With the introduction of
the deposition process, our simulation results agree with the
results obtained in that former study. Furthermore, the de-
position process enables the possibility of analyzing the ge-
ometric evolution of the deposition heap in greater detail.In
our simulation withΛf 6= 0.0, deposition initiates from the
margins. When the deposition is initiated at the margins of
the rear part, the central part moves at a higher speed in the
down-slope direction, which postpones the deposition. The
development of the levee deposition along the transverseη-
direction atξ = 33.0 is illustrated in Fig. 8. Att = 15, de-
position heaps begin to form at the side flanks. While the
mass-flux decreases and passes through this cross-section,
the levee deposition heaps bound the flowing mass, devel-
oping fast toward the center (ζ = 0). The thickness of the
flowing layer then decreases rapidly depositing a growing
heap. The mass flux vanishes shortly aftert = 18.0. After
this stage, the flowing mass freezes and the final deposition
profile remains in a stagnant state.

4 Concluding remarks

In this study, a depth-integrated equation system with de-
forming coordinates for a Coulomb-mixture over general to-
pography of small curvatures is introduced. The combination
of the unified coordinate (UC) method and BW’s arbitrary
coordinate system enables the possibility that the coordinates
can be set to move coincidentally with the temporally varying

Fig. 8. Cross-sectional view of the flowing mass and evolution of
the deposition heap alongη at ξ = 33.0. The black dotted lines at
ζ = 0 represent the basal surface of the chute, the red lines indicate
the interface of the deforming deposition heap, and the blue solid
lines mark the free surface of the flowing layer.

the geometric evolution of the deposition heap in greater de-
tail. In our simulation with3f 6= 0.0, deposition initiates
from the margins. When the deposition is initiated at the
margins of the rear part, the central part moves at a higher
speed in the down-slope direction, which postpones the de-
position. The development of the levee deposition along the
transverseη-direction atξ = 33.0 is illustrated in Fig.8. At
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t = 15, deposition heaps begin to form at the side flanks.
While the mass-flux decreases and passes through this cross-
section, the levee deposition heaps bound the flowing mass,
developing fast toward the center (ζ = 0). The thickness of
the flowing layer then decreases rapidly depositing a grow-
ing heap. The mass flux vanishes shortly aftert = 18.0. After
this stage, the flowing mass freezes and the final deposition
profile remains in a stagnant state.

4 Concluding remarks

In this study, a depth-integrated equation system with de-
forming coordinates for a Coulomb-mixture over general to-
pography of small curvatures is introduced. The combination
of the unified coordinate (UC) method and BW’s arbitrary
coordinate system enables the possibility that the coordinates
can be set to move coincidentally with the temporally varying
basal surface. This temporally varying, basal surface mimics
the erosion-deposition processes. The evolution of the basal
surface is postulated to be a function of the basal friction co-
efficient, sliding velocity, local thickness of the flowing layer,
and a kinetic energy threshold.

The key features of the proposed model are illustrated by
numerical simulations, in which a finite mass of a solid-fluid
mixture slides down an inclined flat chute to be deposited on
a horizontal plane. The levee formation, first obtained inPu-
dasaini et al.(2005c), is reproduced. By the introduction
of the entrainment-deposition process, it is possible to deter-
mine the duration of the flow motion and investigate the evo-
lution of the deposition heap in greater detail. The duration
and the maximum run-out distance increase as the value of
parameter3f increases, although the deposition takes place
around the same time point. Unlike with the dry granular
flow, deposition of the sliding mixture initially forms at the
rear flanks and then develops forwards to the flow front for
3f ≥ 0.2. In the transverse direction of the flow, the depo-
sition is initiated from the side margins and then develops
towards the flow center. It is not only the Coulomb friction
which brings the moving mass to the state of rest, but the vis-
cous force at the basal surface which also plays an important
role. The effect of the fluid viscous drag becomes significant
when the flow thickness tends towards zero. This is conjec-
tured to be the cause of the levee deposition(formation).

The assumption of the small relative velocity between the
solid and fluid constituents is nevertheless a strong restric-
tion to many real debris flows. In addition, the fraction pa-
rameter3f is assumed to be a constant throughout the flow
body during the simulation, and the erosion-deposition rate
is based on a simple intuitive approach. With these simpli-
fications, the present work sheds light on the roles that the
entrainment and deposition processes can play in this pro-
cess. This topic is still one of the most poorly understood
ones in debris-flow science (cf.Matthias and Hungr, 2005),
calling for future study and improvement.
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