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Abstract. Just 4 days after theM = 7.1 earthquake on
12 January 2010, Haitians could send SMS messages about
their location and urgent needs through the on-line mapping
platform Ushahidi. This real-time crowdsourcing of crisis
information provided direct support to key humanitarian re-
sources on the ground, including Search and Rescue teams.
In addition to its use as a knowledge base for rescue opera-
tions and aid provision, the spatial distribution of geolocated
SMS messages may represent an early indicator on the spa-
tial distribution and on the intensity of building damage.

This work explores the relationship between the spatial
patterns of SMS messages and building damage. The latter
is derived from the detailed damage assessment of individ-
ual buildings interpreted in post-earthquake airborne photos.
The interaction between SMS messages and building dam-
age is studied by analyzing the spatial structure of the corre-
sponding bivariate patterns.

The analysis is performed through the implementation of
cross Ripley’s K-function which is suitable for characteriz-
ing the spatial structure of a bivariate pattern, and more pre-
cisely the spatial relationship between two types of point sets
located in the same study area.

The results show a strong attraction between the patterns
exhibited by SMS messages and building damages. The in-
teractions identified between the two patterns suggest that the
geolocated SMS can be used as early indicators of the spatial
distribution of building damage pattern. Accordingly, a sta-
tistical model has been developed to map the distribution of
building damage from the geolocated SMS pattern.

The study presented in this paper is the first attempt to
derive quantitative estimates on the spatial patterns of novel
crowdsourced information and correlate these to established
methods in damage assessment using remote sensing data.
The consequences of the study findings for rapid damage de-
tection in post-emergency contexts are discussed.

1 Introduction

As natural disasters have become major threats to human life
and to nations’ economies, collaborative crisis technologies
are being developed in order to enhance the capacities of
governments and organizations in crisis management. The
added value of these technologies is related to the timely pro-
vision of relevant information for effective decision-making
in crisis management and disaster response (Al-Khudhairy,
2010). One of the major new developments in collabora-
tive crisis technologies is crowdsourcing which has been de-
fined as the “the act of taking a job traditionally performed
by a designated agent ... and outsourcing it to an undefined,
generally large group of people in the form of an open call”
(Howe, 2008). Crowdsourcing is attributed with social con-
vergence because it facilitates people’s participation in emer-
gency management, it supports local and collective intelli-
gence in a crisis, and it counterbalances mass media through
citizen journalism (Dandoulaki and Halkia, 2010). There is a
mounting number of experiences in the use of crowdsourcing
in crisis management: New Orleans floods in 2005, Califor-
nia wildfires in 2007, l’Acquila earthquake in 2009, etc. The
most unprecedented example is, undoubtedly, the devastat-
ing Haiti earthquake on 12 January 2010. Just hours after
the earthquake struck, a global effort to leverage existing in-
ternet and mobile technologies, including social networking
platforms, was set up.

Ushahidi (http://www.ushahidi.com/), a platform that
gathers distributed data via SMS, e-mail, and social web
sites was the first to deploy its capacities to ascertain the
needs of victims and other relief and aid requirements on the
ground (Hattotuwa and Stauffacher, 2011). Thanks to this
platform, the affected communities in Haiti could text their
location and urgent needs to a free number “4636”. The re-
ceived messages were then translated, categorized and geo-
located for visualization on a map. More than 3500 reports
were mapped almost in real-time on the Ushahidi platform
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Figure 1. Location of the study area in Port-au-Prince 25 
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Fig. 1. Location of the study area in Port-au-Prince.

between 12 January and the end of March 2010. The great-
est number of reports were received up to 23 January, and
dropped off almost immediately thereafter.

In the meantime, another type of crowdsourcing activity
emerged in the first week after the disaster with the aim
of identifying damage to buildings using earth observation
technology. More than 600 experts from 23 different coun-
tries joined the World Bank-UNOSAT-JRC team to assess the
damage states of individual buildings using very high resolu-
tion aerial imagery (Corbane et al., 2011). The main outcome
from this collaborative effort was a detailed building damage
assessment that was finalized within two months of the earth-
quake and shared with the Haitian government in support of
the Post-Disaster Needs Assessment (PDNA) and Recovery
Framework (Kemper et al., 2010).

Both the crisis reports collected on Ushahidi and the
remote sensing derived building damage assessment illus-
trate how the synergy between technology developments and
crowdsourcing can generate crucial information to the re-
sponse phase following a major disaster. However, while
crisis reports were made available shortly after the disaster
and mapped in near real-time, the detailed building damage
assessment required a much larger effort and a longer pe-
riod of time for completion. This difference in timeliness
of precise damage location reports suggests that the labour
intensive image interpretation work could potentially benefit
from the information gathered from the crowdsourced crisis
information. The present work is the first quantitative study
aimed at analysing the complementary relationship between
the two data sources. The approach involves studying the
relationship between the spatial distributions of crisis reports
and building damage in order to explore the potential of mod-
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Figure 2. Number of crisis reports recorded daily between the January 12 and 30 March 2010 8 

2.2 Building damage assessment based on airborne imagery 9 
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Fig. 2. Number of crisis reports recorded daily between 12 January
and 30 March 2010.

elling the spatial pattern in structural building damage based
on geolocated crisis reports. The paper is organized as fol-
lows: first, the dataset including crisis reports and building
damage assessment is described (Sect. 2). Then the method-
ology and the results of the analysis of the patterns of crisis
reports and building damage are presented (Sect. 3). An at-
tempt to model the building damage distribution is then pre-
sented and discussed (Sect. 4). The final section (Sect. 5)
summarizes the main conclusions and perspectives for fur-
ther investigations.

2 Dataset description

2.1 Crisis reports recorded on Ushahidi platform

For this study, a test area of approximately 9 by 9 km in Port-
au-Prince, Haiti (centre coordinate: 18.547◦ N, 72.312◦ W),
was selected (Fig. 1). In the period between January 12
and the end of March, 3596 actionable crisis reports were
mapped on Ushahidi. Those included in the study area rep-
resent a dataset of 1645 crisis reports. As shown in Fig. 2,
the greatest number of reports were recorded up to 23 Jan-
uary and dropped off almost immediately thereafter. This
corresponds to the end of the emergency period announced
by the United Nations (Heinzelman and Waters, 2010). Re-
ports sent after 23 January were mostly unrelated to dis-
aster response. The “4636” project volunteers were work-
ing on the translation, geotagging, and categorization of
SMS messages and numerous email-, web- and social media-
communications. Each message was categorized into one of
the following categories: emergency, public health, security
threats, infrastructure damage, natural hazards, and services
available. The collaborative model used by Open Street Map
enabled “4636” project volunteers to associate the reports
with a geographical location and generate a crowdsourced
map of events (Fig. 3).
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Fig. 3. Spatial distribution of building damage and crisis reports within the observation window of approximately 9× 9 km.

2.2 Building damage assessment based on airborne
imagery

On 18 January, high resolution aerial photography (with
15 cm spatial resolution) was acquired over the affected ar-
eas in Haiti by Google Inc. and made publicly accessible via
Google Earth and a dedicated FTP server. The aerial pho-
tographs were analysed by a group of volunteers who at-
tempted to visually assess each individual building and as-
sign it to a damage grade based on the European Macroseis-
mic Scale – 1998 (EMS-98) classification schema (Grünthal
and Levret, 2001). EMS-98 scale includes five damage
grades: 1 – no visible damage; 2 – minor damage; 3 – mod-
erate damage; 4 – very heavy damage; and 5 – destroyed.
For the purpose of this study, damage grades 4 and 5 were
grouped together (grade 4 and 5) because these grades in-
clude buidlings that are beyond repair (i.e. “total losses” in a
reconstruction sense) and are the most likely locations where
human victims may be present (i.e. a focus for search and
rescue). All building centroids were marked, including those
that did not exhibit visible damage (EMS grade 1). The

overall building damage data set within the previously de-
fined study area consisted of a total of 161 281 points, with
120 137 points assigned to damage grade 1, 7348 points as-
signed to damage grade 3, and 33 796 assigned to damage
grades 4 and 5 (Fig. 3).

To analyze the accuracy of the remote sensing-based dam-
age assessment, a validation dataset consisting of 6,492
buildings was created from ground surveys (Corbane et al.,
2011). Based on the comparison of the remote sensing re-
sults to the ground survey data using the original five dam-
age categories in the ground survey (EMS-98 grades 1 to 2,
grade 3, grade 4, and grade 5), the overall accuracy of the re-
mote sensing results reached 61 %. However, when the dam-
age grades were aggregated into only three categories (i.e.
grades 3 or less, 4, and 5), the overall accuracy increased to
73 %. The commission and omission errors suggested that
there is a lot of confusion, even for grade 5. Further analysis
of the errors has been undertaken and these results showed
that 20 % of the total error, which is directly attributed to the
interpreter, can be avoided through better damage assessment
protocols (Shankar, 2010).
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3 Analysis of the spatial patterns of crisis reports and
building damages and the relationship between them

Given these two independent point datasets, it is attempted,
firstly, to study the spatial pattern of each individual dataset
and, secondly, to explore the relationship between them. This
empirical step is intended to analyse the potential of geolo-
cated crisis reports in predicting an early estimate of the
patterns of structural damage following a large earthquake.
The geolocated crisis reports and the centres of individual
buildings identified on the aerial photos were regarded as
marked spatial point patterns (Illian et al., 2008) since the
locations were recorded as two dimensional points (X,Y ) in
a geographical space and each location included information
about the point (i.e. whether the point is a SMS or a build-
ing damage state). Such data correspond to the family of
spatial point processes called multivariate spatial point pat-
terns, which are forms of marked point patterns that have a
small number of qualitative marks (e.g. SMS message text,
damage grade 1, grade 2, etc.) (Dixon, 2002). Several
methods exist for the analysis of marked spatial point pat-
terns. They can be broadly classified into two types (Perry
et al., 2006): the first consists of area-based statistics and
rely on various characteristics of the frequency distribution
of the observed numbers of points in regularly denied sub-
regions of the study area (cells). The area-based approach
suffers from certain limitations, not only when applied to the
analysis of a set of points but also when analysing the re-
lationship between point distributions. This is because the
results of area-based statistics depend on the choice of the
cell size and they are often insufficient for distinguishing dif-
ferent distributions (Fard et al., 2008). The second type of
method corresponds to distance-based techniques and uses
information on the spacing of points to characterize the pat-
terns. Modern statistics for spatial point patterns (Moller and
Waagepetersen, 2007) are tailored to the second type of tech-
niques as they tend to describe the short-range interaction
among the points, which explains the mutual positions of the
points. Quite often this concerns the degree of attraction or
repulsion among points and the spatial scales at which it op-
erates. This family of statistics allows both characterizing
an entire pattern and modelling the geometrical properties of
the structure represented by the points (Illian et al., 2008).
Hence, it represents an interesting avenue to be researched
for studying the spatial patterns of crisis reports and build-
ing damage. In the following, some brief and basic proper-
ties of spatial point patterns are introduced (Sect.3.1). Then
the individual patterns as well as the relative distributions of
crisis reports and building damage are analysed using explo-
rative statistical analysis adapted to spatial point processes
(Sect.3.2. This step is essential for the fitting and the valida-
tion of a suitable parameterized model that is consistent with
the observed point pattern (Sect.4).

3.1 Marked spatial point patterns

From a probabilistic point of view, a point pattern is a re-
alization of a point process X. A point process can be de-
scribed as a probabilistic model producing almost surely lo-
cally finite sets of locations (x1,x2,..,xn) in a sampling win-
dowW ⊂ <

2 (Diggle, 1986). In addition to each pointu in a
spatial point processX, there may be an associated random
variablemu called a mark. The process8 = {(u,mu) : u ∈ X}

is called a marked point process (Stoyan and Stoyan, 1996).
It is commonly assumed in certain applications that the point
process is stationary, i.e. its probability distribution is invari-
ant against translations. We will assume that this hypothesis
holds. Ripley’s K-function (Ripley, 1976) is based on this
assumption:

K(r) = λ−1E (1)

Intuitively K(r) is the mean (= E = expected) number of
other points of the process lying within a circle radiusr , cen-
tered about a typical point (x,y) of the process, divided by
the intensityλ of the process (Mattfeldt, 2005). In the case
of univariate spatial patterns, we define the self-K function
K ii(r).

In the case of a marked point patterns, the generalization
of K(r) to more than one type of point is called the cross-K
function and is computed as follows:

Kij (r) = λ−1
j E (2)

The idea behind the cross-K function is the average number
of other points (j) found within the distancer from the typi-
cal point (i).

The K-function can be used not only to summarize the
point pattern but also to test hypotheses about the pattern,
estimate parameters, and fit models.

In practice, it is recommended to use the L-function, which
is a variance stabilizing transformation when the K-function
is estimated by non-parametric methods (Besag and Clifford,
1989) (Eq. 3):

L(r) =
√

K(r)/π − r (3)

As for Ripley’s K-function, we can define a univariate
Lii(r)and multivariateLij (r) estimators. TheLii(r) and
Lij (r) numerical descriptors are concerned with detecting
and describing, respectively, the intra-type correlations (i.e.
relationship between points with the same mark) and inter-
type correlations (i.e. relationship between points of different
marks). They are hence suitable for exploring the patterns of
crisis reports and building damage and for analysing the re-
lationships between them.

3.2 Results of intra-type and inter-type correlations

The self-functionLii(r) and the cross-functionLij (r) were
applied to the marked point dataset consisting of the geolo-
cated crisis reports and the individual buildings assigned to
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Figure 4. Self functions Lii with i= building damage grade 1 (a); i= building damage grade 3 31 
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under the hypothesis of independence of populations. 33 

Fig. 4. Self functionsLii with i = building damage grade 1(a); i = building damage grade 3(b); i = building damage grades 4 and 5(c)
andi = crisis reports(d), with envelopes computed under the hypothesis of independence of populations.

damage grades 1, 3, 4, and 5. They were used to evaluate
evidence for (i) clustering or dispersion of points patterns of
the same type and (ii) attraction or repulsion between points
of different types. This is usually performed by comparing
the distributions of the observed values ofL(r) to theoreti-
cal values of a Poisson point process in which the events are
distributed independently according to a uniform probability
distribution over the regionW and they do not exhibit any
form of interaction. As most spatial statistics, theL(r) func-
tion requires tests of clearly identified hypotheses. The clas-
sical null hypothesesH0 against which theL(r) function is
usually tested are independence or complete spatial random-
ness (CSR) (Dixon, 2002). As the theoretical distributions
of the estimators are unknown, the corresponding confidence
intervals are commonly estimated through Monte Carlo sim-
ulations of the specific null hypothesisH0 (Diggle, 1983).
For the analysis of inter-type correlations, we used the hy-
pothesis of CSR which indicates no clustering or dispersion
of data points of the same type. For the analysis of intra-
type correlations, we used the hypothesis of independence
of populations which corresponds to the absence of attrac-
tions or repulsion between data points of different types. All
the analyses were implemented in R software using spatstat

(Baddeley and Turner, 2005) and ads packages (Pelissier and
Goreaud, 2007).

Figure 4 shows the results of the computation of self-
functionsLii used to study inter-type correlations for build-
ing damage grades 1 (Fig. 4a), 3 (Fig. 4b), 4 and 5 (Fig. 4c),
and for crisis reports (Fig. 4d), under the hypothesis of CSR.
It allows studying the intra-type correlations that correspond
to the spatial pattern of each level of building damage as well
as the spatial pattern of crisis reports.

The number of simulations was set to 1000 and the lo-
cal confidence intervals were computed at significance level
α = 0.1. Ripley’s edge effect correction was applied when the
sample circles overlap the boundary of the sampling window
(Ripley, 1977). Due to edge effect correction, the maximum
radius of the sample circles is usually set to be half the longer
side for a rectangle sampling window (Goreaud and Pélissier,
1999). In our case, the study area is 9× 9 km, thereforeL(r)
function was estimated for distances up to 4.5 km inr = 10 m
increments.

The values of the self-functionsLii are positive for all
building damage grades (Fig. 4a, b, and c) and for crisis
reports (Fig. 4d). In addition, the observedL(r) function
lies above the critical values of a CSR process computed by
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Fig. 5. Cross L-functionsLij with i = crisis reports,j = damage grade 1(a) i = crisis reports,j = damage grade 3(b) i = crisis reports,
j = damage grades 4 and 5,(d) Cross L-functionsLji with j = damage grades 4 and 5,i = crisis reports, with envelopes computed under
the hypothesis of independence of populations. The red arrows indicate the magnitude of the significant attraction for a given distance.

Monte Carlo simulations and the magnitudes of deviations
from CSR are high, which indicate that both small-scale and
large-scale clustering patterns characterize the spatial distri-
butions of crisis reports and all levels of building damage.
These results suggest that building damage of a same type
or grade tend to occur in the vicinity of each other. The
same could be said about crisis reports that happen to be sent
from neighboring locations. Also noticeable in Fig. 4d is
the nugget effect (more than one point at a same location)
in the spatial pattern of crisis reports, which is due to many
coincident locations in the data. This is related to limita-
tions in the geotagging precision of the received messages,
which is based mainly on street addresses. Messages with
ambiguously- or approximately-defined addresses create cri-
sis report points which seem to overlap. For instance, 17 dif-
ferent messages assigned to different categories were found
at the location of Delmas 73.

Figure 5 represents the cross-L functionsLij used to study
inter-type correlations under the hypothesis of independence
of populations. This hypothesis leads to an interpretation of
the spatial interaction between the two a priori different pop-
ulations of crisis reports and building damage. Each building

damage grade has been considered separately in this analysis
allowing the study of differences in interactions’ type (e.g. at-
traction or repulsion) and strength depending on the observed
damage grade. The results show that for interactions between
crisis reports and EMS-98 damage grade 1 (Fig. 5a), the
computedLij lies outside the Monte-Carlo simulation en-
velope (90 % confidence interval), indicating significant in-
teractions between crisis reports and non-damaged buildings
at mid-range distances (between 1 and 3.5 km). Inversely,
for interactions between crisis reports and EMS-98 damage
grades 3 (Fig. 5b),Lij lies inside the envelope, suggesting
insignificant interactions between crisis reports and moder-
ately affected buildings. When analyzing the interactions be-
tween crisis reports and heavily affected/destroyed buildings
(EMS-98 damage grades 4 and 5), the following results were
obtained (Fig. 5c): (i) for small-scale distances (r < 1 km
approximately) the values ofLij are inside the confidence in-
terval ofH0, indicating independence between the two pop-
ulations; ii) for large-scale distances (1< r < 3 km approxi-
mately), the observedLij crosses outside the upper bounds
of the envelope indicating an attraction between the two pop-
ulations; (iii) for larger distances (r > 3 km approximately),
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the two populations are no longer correlated. A more or less
similar behavior is observed when analyzing the symmetric
Lij function (Fig. 5d) between building damage grades 4 and
5 and crisis reports. It is also important to note that the mag-
nitude of the attraction between crisis reports and building
damage grades 4 and 5 is much larger than the one observed
between crisis reports and non-damaged buildings. This sup-
ports our initial hypothesis on the existence of a correlation
between crisis reports and building damage. In fact, the re-
sults show that there is evidence of a statistically significant
correlation between the spatial patterns of crisis reports and
building damage at distances ranging between 1 km and up
to approximately 3.5 km. This means that in 1 to 3.5 km ra-
dius circles, the number of crisis reports surrounding a ran-
domly chosen damaged building is greater than expected if
the two patterns were completely independent. A possible
interpretation to the attraction effect observed at the range of
1 to 3.5 km could be that people tend to move to safe areas
before sending the reports. However, below 1 km, the two
patterns show a slight but not significant tendency towards
attraction, indicated by values ofLij close to the upper con-
fidence boundary. The large difference between the overall
densities of damaged buildings and crisis reports may be the
reason behind the absence of a significant attraction at short
range distances. Below 1 km, few crisis reports were reg-
istered with respect to the number of heavily affected and
destroyed buildings.

The attraction between the patterns at the identified dis-
tances suggests that (i) the two distributions appear to have
the same triggering event which in this case corresponds to
the earthquake and (ii) that the observed patterns are the re-
sult of a pairwise interaction process. Thus, using the results
of inter-type and intra-types correlations of crisis reports and
heavily affected or destroyed buildings, it is attempted to
model the spatial structure of building damage using the lo-
cations of crisis reports.

4 Modelling building damage using the locations of
crisis reports

4.1 The multi-type Strauss model

The inter-type and intra-type interactions between the two
point patterns of crisis reports and building damages have
been quantitatively described in the previous section. In the
current section, an attempt to model the intensity of building
damage using the spatial relationships identified in the pre-
vious step is presented. Because we are mainly interested in
modelling the interaction structure between crisis reports and
building damages, the most appropriate spatial model corre-
sponds to the family ofGibbs point processeswhich allows
including interactions between points (Renshaw and Särkkä,
2001). TheStrauss processis a special case of Gibbs models
that can be used to simulate a wide range of patterns from

simple inhibition to clustering (Strauss, 1975). Its extension
to multi-type marked point patterns is known as amulti-type
Strauss model. This model is potentially suitable for deriv-
ing the conditional intensity of building damage based on
the pairwise interactions between crisis reports and building
damages. The conditional density of a Strauss process is

λ(u,x) = β(u).γ t(u,x) (4)

whereβ(u) is the density at locationu, t (u, x) is the number
of eventsx that lie within a distancer of u and the interac-
tion parameterγ controls the strength of interaction between
points. For the special case thatγ = 1 the Strauss model
reduces to the homogeneous Poisson process with constant
intensityβ (first order term), the case thatγ = 0 corresponds
to a simple inhibition process, whereas forγ > 1 the model
produces a clustered process. For multi-type Strauss mod-
els, the second-order or pairwise interaction termc(u, v) u,
v ∈ W is given as:

cm,m′ (u,v) =

{
1
γm,m′

if ‖u−v‖ > r
m,m′

if ‖u−v‖ ≤ r
m,m′

(5)

whererm,m′ > 0 are interaction radii for typem with type
m′, andγm,m′ ≥ 0 are interaction parameters. Thus the con-
ditional density defined in Eq. (4) for a multi-type Strauss
process is defined as:

λ((u,i),x) = βi

∏
j

γ
ti,j (u,x)

i,j (6)

whereti,j (u,x) is the number of points inx, with mark equal
to j , lying within a distancer i,j of the locationu. The
interaction radii and the interaction parameter must satisfy
r i,j = r j,i andγij = γji (Baddeley et al., 2006a).

4.2 Fitting the multi-type Strauss model to crisis reports
and building damage

To fit the stationary multi-type Strauss process to the marked
point pattern, consisting of crisis reports and building dam-
age grades 4 and 5, the maximum pseudo-likelihood method
was used and was maximised using an extension of the
Berman-Turner device (Baddeley and Turner, 2000). In-
terested readers may refer to Berman and Turner (Berman
and Turner, 1992) for details on the computational device
developed for fitting Poisson models and to Baddeley and
Turner (2000) for details on its adaptation to pseudolikeli-
hoods of general Gibbs point processes.

Fitting the stationary multi-type Strauss process requires
the definition of interaction radiir i,j . Unfortunately, the pa-
rameterr i,j cannot be estimated by the Berman-Turner de-
vice and its value should be specified a priori (Baddeley et al.,
2006b). The most recommended approach is to determine it
by inspecting the plots of the Cross L-functions (Stoyan and
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Grabarnik, 1991). Hence, the results of the explorative sta-
tistical analysis (Sect.3.2) based on inter-type and intra-type
correlations were used to specifyr i,j as follows:

r i,j=

[
10 2000

2000 10

]
with i corresponding to crisis reports andj to building dam-
age grades 4 and 5. The minimum interaction distance be-
tween crisis reports and building damage grades 4 and 5 was
set to 2000 in order to accommodate the symmetry constraint
of the model. For fitting the model all of the 1645 locations of
crisis reports were used, while only 1000 randomly sampled
points, representing 3 % of the total damaged buildings, were
selected out of the total 33 796 heavily affected/destroyed
buildings. The sample size was determined following an
analysis of the effect of the sampling procedure on the model
graphical outputs. This consensus set corresponding to 3 %
of the total number of damaged buildings was found to be
a good compromise between: (i) the desired approximation
and (ii) memory issues encountered when trying to fit the
model with a larger sample corresponding to 10 % of the to-
tal damaged buildings.

The estimated first order termβ was 0.106×10−6 and the
estimated values of the interaction parameterγij between cri-
sis reports and building damage grades 4 and 5 were obtained
as:

γ (reports− reports) = 1.05

γ (reports−grade 4 and 5) = 1.05

γ (grade 4 and 5−grade 4 and 5) = 7.37

Figure 6 shows the fitted multi-type Strauss model for
building damage grades 4 and 5.

4.3 Prediction of building damage conditionally to SMS
messages

Given the fitted multi-type Strauss model and the estimated
parameters, it is possible to evaluate the fitted conditional
densityλ((u,i),x) of building damage grades 4 and 5 at ar-
bitrary new locationsu. Note thatx is always taken to be
the data pattern to which the model was fitted. For predicting
the conditional intensity, a regular square grid of 100 by 100
cells of 90 m was simulated over the observation window of
9× 9 km size. Figure 7a illustrates the result of predictions
at new locations. It shows the values of the conditional den-
sity of building damage obtained by the model. It is possible
to visually compare the patterns of the predicted conditional
density to the observed pattern of building damage density
calculated using the full set of heavily affected/destroyed
buildings (Fig. 7b). The latter was computed using a convo-
lution of the isotropic Gaussian kernel of standard deviation
σ set to 500 (Diggle, 1985). The value ofσ was determined
empirically by searching for the output that represented the
best the overall damage pattern without compromising the
sharpness of structural boundaries.
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Fig. 6. Fitted marked Gibbs point process. The triangles correspond
to the locations of SMS messages used in the modelling phase.

A simple visual inspection of the results allows evidenc-
ing a strong similarity between the patterns exhibited by the
model and the actual local variations of the damage pat-
tern. Although the predicted density values are much smaller
than the real ones (probably due to the choice of different
cell sizes for representing the information and to the use
of only 1000 points for the model-fitting stage) the damage
pattern is well reproduced by the multi-type Strauss model.
This demonstrates the usefulness of integrating the evidenced
pairwise interactions into a spatial model for predicting the
pattern of building damages.

4.4 Goodness of fit

The visual comparison of the patterns of predicted and ob-
served building damage densities corresponds to an infor-
mal validation of the fitted model. A more robust validation
method is however necessary to verify the potentials and lim-
itations of the selected model. One of the main drawbacks of
the multi-type Strauss model is the absence of a standard val-
idation method. Although summary statistics such as the K-
function are intended primarily for exploratory purposes, it is
also possible to use them as a basis for statistical inference,
especially in the case of a fitted multi-type Strauss model
(Baddeley et al., 2005). A Monte Carlo goodness-of-fit test
of fitted multi-type Strauss model can be conducted by com-
paring the values of K-function for the data with those from
simulations of the model (Besag and Diggle, 1977). Thus
for validating the model, the upper and lower limits of the
simulated K-function were computed using the Monte Carlo
goodness-of-fit test for 100 realizations of the point pattern
under the fitted multi-type Strauss model. Figure 8 shows the
computed envelopes of the fitted model and the cross-K func-
tion computed for crisis reports and building damage grades
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Figure 7. Predicted conditional density of building damage (7a) compared to the actual 2 
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Fig. 7. Predicted conditional density of building damage(a) compared to the actual building damage density(b).

4 and 5. It is obvious from this figure that the summary cross-
K function stays above the upper margin of the simulated en-
velope, which indicates that there is some variability in the
spatial intensity of the data that the fitted model is unable to
capture. The un-captured variability may be due to some co-
variate effect responsible in the formation of the point pattern
which needs to be considered in the modelling of the build-
ing damage pattern. Another reason for the deviation of the
simulated cross-K function from the observed one could be
related to the estimator K which is affected by spatial inho-
mogeneity as well as by spatial dependence between points.
Thus, in practice, the use of the K function in model criticism
is restricted to cases where the fitted model is homogeneous
and the data are still assumed to be homogeneous. Until now,
our analysis has been based on the assumption of homogene-
ity at both the exploratory and modelling stages. It would
be interesting in a follow-up study to examine the assump-
tion of an inhomogeneous trend in the marked point pattern.
For that, further analyses are needed to verify the existence
of a spatial trend and to evidence the covariate responsible
for the non-stationarity of the marked point pattern. In addi-
tion to the above mentioned issues, the resulting parameters
of the fitted multi-type Strauss model may be considered as
“invalid” or “undefined”, in the sense that the correspond-
ing probability density is not integrable. As announced in
(Kelly and Ripley, 1976), the Strauss process is defined only
for 0< γ < 1, which means that the density is not integrable
for γ > 1. The estimated values of the interaction param-
eterγij between crisis reports and building damage grades
4 and 5 are all greater than 1. This happens because in the
Berman-Turner device, the conditional intensity is treated as
if it were the mean in a Poisson loglinear regression model.
The latter model is well-defined for all values of the linear
predictor. The spatstat R package that was used in this study
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for 99 realizations. Obs= observed values of the cross-K func-
tion; mmean= estimated theoretical value of the summary function,
computed by averaging simulated values; hi= upper envelope of
simulations; lo= lower envelope of simulations.

has internal procedures for deciding whether a fitted model is
valid and for projecting an invalid model to the nearest valid
model. These procedures are invoked when simulating a re-
alisation of the fitted model as in the case of the validation
test presented here. Mapping the fitted model to its nearest
valid model may also result in a deviation of the simulated
cross-K function from the observed one.
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5 Conclusion and outlook

This study presents the particularity of exploring for the first
time the relationship between geolocated crisis reports and
structural damage derived from remote sensing data. Its main
novelty lies in the use of methods for the exploration and
modelling of spatial point processes and their application to
the study of the building damage caused by the Haiti disas-
trous earthquake. The marked spatial point pattern analysis
demonstrated the existence of a strong clustering in the pat-
terns of building damage and crisis reports. In addition, this
analysis led to an understanding of the interactions involved
among the geolocated crowdsourced reports and heavily af-
fected or destroyed buildings identified in aerial photos. It
evidenced the presence of a spatial dependency between
these two distributions that was used in a multi-type Strauss
model for inferring the pattern of structural damage to build-
ings.

The main limitation of the approach is that it is data driven
hence the reliability of the results depends on the quality of
the input data. In this study the crowdsourced reports were
manually geotagged on the basis of sometimes ambiguously
defined street addresses. The issues of spatial data accu-
racy coupled with the limits inherent to the Strauss model
(e.g. symmetry constraint, absence of a standard validation
method) suggest a careful transposition of the approach to
other disasters.

Further developments are currently being implemented in
order to better understand the relationship between the loca-
tions of crowdsourced crisis reports and building damage:

1. A detailed analysis integrating the crisis reports’ dates
is being conducted in order to analyze the influence of
the time component on the strength of the correlation
between the crisis reports and building damage.

2. Another aspect that is being currently explored relates
to the integration of the reports’ categories (food, health,
etc.) into the analysis with the purpose of evidencing a
relationship between the type of message and the loca-
tion of building damage.

3. The validation of selected multi-type Strauss model
showed the presence of a spatial trend or covariate effect
that violates the assumption of homogeneity. Therefore,
a study of the possible influence of different covariates
derived from remote sensing data, such as the building
density or the distribution of rubble, on the quality of
the predictions is also undertaken. The purpose is to
introduce several explanatory variables into the model
and to analyze their added-value in terms of model im-
provement without overfitting.

4. The outcomes of the multi-type Strauss model should
be compared to the outputs of more classical models
that do not account for patterns of interaction among

points such as a Poisson and Cox model in which in-
tensities are directed by SMS locations. In the same
way, the results of the Strauss model must be analyzed
in comparison with the outputs of non-spatial stochas-
tic models (e.g. Tobit model) in order to better evaluate
the advantages and limitations of spatial point process
models.

5. It is necessary to reproduce this kind of analysis for
other disasters in order to better understand the com-
plex relationship between SMS reports and damaged
buildings and to better assess the added-value of spa-
tial modelling in predicting the intensity of damage to
infrastructures.

These research directions would allow to refine the analysis
presented in this paper and to get better insights on how peo-
ple utilized the Ushahidi opportunity to call for aid as well as
how people moved after the earthquake.

The main outcome of this study is the finding that near
real-time geolocated crisis reports can be used as early indi-
cators of the patterns of structural damage caused by a high
magnitude earthquake such as the 2010 Haiti earthquake.
Most of all, it demonstrated that the timeliness of crowd-
sourced information could help to produce an overall damage
pattern and to better organize the remote sensing efforts by
focusing the damage assessment on the most affected areas.

Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the view of the Joint Research Centre.
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