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Abstract. This work treats reverse flood routing aiming at
signal identification: inflows are inferred from observed out-
flows by orienting the Muskingum scheme against the wave
propagation direction. Routing against the wave propagation
is an ill-posed, inverse problem (small errors amplify, lead-
ing to large spurious responses); therefore, the reverse so-
lution must be smoothness-constrained towards stability and
uniqueness (regularised). Theoretical constrains on the coef-
ficients of the reverse routing scheme assist in error control,
but optimal grids are derived by numerical experimentation.
Exact solutions of the convection-diffusion equation, for a
single and a composite wave, are reverse-routed and in both
instances the wave is backtracked well for a range of grid
parameters. In the arduous test of a square pulse, the re-
sult is comparable to those of more complex methods. Seed-
ing outflow data with random errors enhances instability; to
cope with the spurious oscillations, the reversed solution is
conditioned by smoothing via low-pass filtering or optimi-
sation. Good-quality inflow hydrographs are recovered with
either smoothing treatment, yet the computationally demand-
ing optimisation is superior. Finally, the reverse Muskingum
routing method is compared to a reverse-solution method of
the St. Venant equations of flood wave motion and is found
to perform equally well, at a fraction of the computing ef-
fort. This study leads us to conclude that the efficiently at-
tained good inflow identification rests on the simplicity of
the Muskingum reverse routing scheme that endows it with
numerical robustness.

1 Character of the reverse routing problem

The forward calculation of the propagation of a flood wave
in an open channel, known as flood routing, is a problem
of applied hydrology that has been studied extensively. The
relevant methods of solution, all within the framework of

one-dimensional free-surface flow, span the spectrum from
numerical solutions of the hydraulic equations of Barré de
Saint-Venant to storage routing models of the diffusion-wave
type (Koussis, 2009), and have utility in such applications
as flood warning, river training and urban storm drainage
design. On occasion, however, flood related questions are
posed in the reverse sense, such as, e.g., in signal identifica-
tion (hydrologic forensics): ”Which inflow created the out-
flow observed at cross-section X, or the observed flood pro-
file along reach Y?” We may be also interested in operating a
reservoir (optimal outflow control) to minimise downstream
flood damage (Sz̈ollósi – Nagy, 1987). Bruen and Dooge
(2007) point out that reliable solution techniques of the latter
problem would be valuable in handling of urban flash flood-
ing.

Yet reverse routing is an inverse problem and as such not
well posed. A problem is well-posed when its solution exists,
is unique and stable (Bronstein and Semendjajew, 1964), that
is, small changes in the initial condition (forcing) cause small
changes in the response. The reverse routing solution clearly
exists, but must be constrained for stability by a smoothness
condition, which however does not ensure uniqueness. This
is readily seen when attempting to solve a diffusion equa-
tion in reverse time: back-stepping is equivalent to calculat-
ing forward with a negative diffusion coefficient. The con-
sequence is that errors, either present in the initial data or
incurred in the computation (e.g., due to finite machine pre-
cision – rounding errors) are amplified instead of reduced by
positive diffusive spreading. This manifestation of the irre-
versibility of diffusion, or of diffusion-like processes such as
dispersion, must be considered in developing a back-stepping
method.

The main features of flood wave motion are translation
and attenuation, the latter due to (hydraulic) wave diffusion;
both are nonlinear features resulting in nonlinear deforma-
tion. The linear convection – diffusion equation (CDE),
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stated in terms of the dischargeq (Lighthill and Whitham,
1955; Dooge, 1973), is the simplest physically grounded
flood wave model that describes wave translation and atten-
uation well, and is important because its range of validity is
wide (Perumal and Sahoo, 2007):
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in which x is the thalweg distance andt is time. The con-
stant parameters, kinematic wave celerityck and coefficient
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Realising that the same CDE-type describes the propa-
gation of diffusion flood waves and one-dimensional mass
transport (Koussis, 1983), we can apply the method advanced
here also to contaminant transport in streams, often mod-
elled as an one-dimensional advection-dispersion problem
(Fischer et al., 1979). The solute mass is transported by ad-
vection – the contaminant movement by the mean flow ve-
locity u (equivalent to the kinematic wave [KW] motion) –
and by dispersion (longitudinal dispersion coefficientDL) –
the mathematical equivalent to hydraulic wave diffusion, but
due to differential advection of fluid parcels. The mass trans-
port CDE is written in terms of the concentrationC [e.g., in
mg/L], in the place of the volumetric flow rateq.

Source signal identification is a forensic activity of a regu-
latory agency, and may also interest the courts. For example,
a regulator may wish to recover the input signal from a source
suspected to have caused an observed pollution incident. The
recovery entails reverse computation of mass transport to the
source by stepping back in time. Dispersion can be appre-
ciable under ordinary transient loadings and is important in
spills (e.g.,Li , 1972; Koussis et al., 1990). The Streeter-
Phelps textbook-solution of the BOD-DO problem considers
only the dominant advection for computational convenience.
Taking into account the correspondencesq → C, ck → u and
D → DL, the reverse flood routing methodology presented
in the sequel applies also to the challenging inverse problem
of source signal identification in streams, assuming that ad-
vection dominates mass transport.

2 Formulation of the reverse routing problem

We treat the signal identification problem on the basis of the
diffusion-wave model described by Eqs. (1)–(3), using a re-
verse Muskingum routing scheme. This reverse routing ap-
proach is tried for the first time. The Muskingum scheme ap-
proximates the propagation of the diffusion wave efficiently
when the kinematic wave mode dominates;Lighthill and
Whitham(1955) showed that the main flood body travels as
a KW. The routing scheme derives from a first-order accu-
rate finite difference (FD) discretisation of the KW equation
and becomes a second-order accurate diffusion-wave prop-
agation solver by matching the numerical diffusion coeffi-
cient of the KW equation solution scheme to the hydraulic
diffusion coefficient of the CDE (matched artificial diffusion
MAD).

Exact solution reversal is possible when the propagation
is strictly kinematic. Hence, a numerical scheme that orig-
inates in the KW equation yet allows for numerical diffu-
sion that matches the physical diffusion constitutes a promis-
ing basis for reversing the wave propagation computation-
ally. First Cunge(1969) analysed such a scheme for flood
routing; Koussis(1975, 1978, 2009, 2010) also linked stor-
age routing to the diffusion-wave model. The good per-
formance of Matched Artificial Diffusion (MAD) schemes
in forward routing has been verified in flood [e.g.,Koussis,
1975; Weinmann, 1977; Perkins and Koussis, 1996] and in
pollution routing in streams (Koussis et al., 1983; Koussis
et al., 1990). The same holds for the MAD-based solution
component of longitudinal transport in groundwater (Syri-
opoulou and Koussis, 1991; Garćıa-Delgado and Koussis,
1997; Koussis et al., 2003).

In contrast to the rarely studied reverse flood routing
problem (Bruen and Dooge, 2007), the related source sig-
nal identification problem of mass transport in groundwa-
ter has been studied (in one dimension, at first) along sev-
eral lines (Michalak and Kitanidis, 2004). Early attempts
placed the solution in the framework of function fitting (pa-
rameter estimation of an assumed source function). Later,
however, researchers used various methods to solve this re-
verse problem:Skaggs and Kabala(1994, 1998) and Liu
and Ball (1999) used the complete (deterministic) estima-
tion method of Tikhonov regularisation,Woodbury and Ul-
rich (1996, 1998) the (stochastic) minimum relative entropy
method, andSnodgrass and Kitanidis(1997) geostatistics;
Neupauer et al.(2000) compared the Tikhonov regularisa-
tion and minimum relative entropy methods. The quasi-
reversibility method ofSkaggs and Kabala(1995) gave un-
satisfactory results;Atmadja and Bogtzoglou(2001) solved
the transport equation in reverse time with the backward
beam equation.Skaggs and Kabala(1998) studied the lim-
itations in recovering source signal information in relation to
the transport parameters, the accuracy of field data and the
time of plume evolution.
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Fig. 1. Reverse flood routing in a stream reach of lengthL:
qout(t) = q(L,t) observed outflow hydrograph,qin(t) = q(0,t) in-
flow hydrograph;−→ direction of reverse routing.

The proposed method is conceptually and computationally
much simpler than the aforementioned ones. It tackles re-
verse routing by solving the CDE (1) indirectly, yet explic-
itly in reverse time, on the premise of kinematic-dominated
wave propagation. Figure 1 shows the concept of identifying
the inflow hydrographqin(t) = q(0,t) from an observed out-
flow hydrograph atx = L, qout(t) = q(L,t). Note that, in the
reverse mass transport problem, a field profileCf ield(x,T )

may often be the initial condition at timeT . In reverse flood
routing, this corresponds to a flow profileqf ield(x,T ) in a
reach of interest; the proposed method can be used to solve
this problem as well.

We begin with a reprise of the forward solution. The
Muskingum-Cunge flood routing scheme (Cunge, 1969) is
obtained by considering pure KW propagation, described by
Eq. (1) with D = 0. Discretising the KW equation only in
space, over a grid element1x = xi+1−xi , and using the spa-
tial weighting factorθ to position the temporal derivative in
1x, Fig. 2, yields the ordinary differential equation (method
of lines)

θ
dq

dt

∣∣
i
+(1−θ)

dq

dt

∣∣
i+1+

ck

1x

[
qi+1(t)−qi(t)

]
≈ 0. (4)

Then, settingdq/dt ≈ (qn+1−qn)/1t and centring the spa-
tial difference in1t = tn+1− tn give

θ
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1t
+

Fig. 2. Grid element for the discretisation of the KW equation and
the routing calculations.

ck

q(xi+1,tn)−q(xi+1,tn+1)
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+
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q(xi+1,tn+1)−q(xi,tn+1)

21x
≈ 0. (5)

After collecting terms, we obtain the following well-
known Muskingum FD scheme:

q[(i +1)1x,(n+1)1t] = a1q(i1x,n1t)+

a2q(i1x,(n+1)1t)+a3q((i +1)1x,n1t) (6)

a1 =
C+2θ

C+2−2θ
;a2 =

C−2θ

C+2−2θ
;a3 =

−C+2−2θ

C+2−2θ
(7)

The ai ′s in Eqs. (6) and (7) depend on the weighting factorθ

and the Courant number

C = ck1t/1x (8)

The expansion of the grid functions in Eq. (4) in Taylor
series aroundxi = i1x, tn = n1t to second order yields the
CDE Eq. (9), when second derivatives appearing in these
expansions are expressed as second spatial derivatives via

the KW equation,∂q
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+ck
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DN is a numerical diffusion coefficient that is linked to the
spatial discretisation:

DN = ck1x(0.5−θ), or θ = 0.5(DN/ck1x). (10)
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SettingDN = D in Eqs. (10) relatesθ to the grid Peclet num-
ber, Eq. (11), as follows:

P= ck1x/D, (11)

θ = 0.5−(D/ck1x) = 0.5−P−1. (12)

Thus, the explicit Eq. (6) (with Eqs.7–8) solves a CDE
with second-order accuracy, provided that expressing the
mixed and temporal second derivatives via the spatial one
is sufficiently accurate (near-KW mode). This scheme is un-
conditionally stable for physically realisable cases, i.e., for
D > 0 (θ < 0.5); θ = 0.5, C = 1 give exact KW motion. The
leading term of the remainder in Eq. (9) is (Cunge, 1969):
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ck1x2
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From Eq. (6), we develop the explicit reverse routing
scheme forq(xi,tn):

q(i1x,n1t) = b1q((i +1)1x,(n+1)1t)+

b2q(i1x,(n+1)1t)+b3q((i +1)1x,n1t) (14)

Thebi
′s are obviously related to the ai

′s of Eq. (7) and writ-
ten as follows:

b1 =
C+2(1−θ)

C+2θ
;b2 =

−C+2θ

C+2θ
;b3 =

C−2(1−θ)

C+2θ
(15)

For 0.5> θ ≥ 0, Eq. (15) yields: b1 ≥ 1, and 1> b2 ≥ 0
for C ≤ 2θ , henceC ≤ 1; b3 < 0, but less so asC → 1 and
θ → 0.5. Negative coefficients cause spurious oscillations
and should be avoided if possible, or be kept small.

Given observations of the discharge (or of the stage, to be
converted to flow via a rating curve) at the cross-section at
x = L, qout(t) = q(L,0≤ t ≤ T ) (outflow) and the condition
q(L,t ≥ T ) = qbase, the inflow (source signal)qin(t) can be,
in principle, recovered by sequential application of Eq. (14)
on the outflow data. As shown in Fig. 1, the reverse computa-
tion marches fromt = T , x = L to t = 0, x = 0. Yet, Eq. (14)
is inherently unstable to disturbances forθ < 0.5. Prior to de-
vising stabilising mechanisms, however, we study the sensi-
tivity of reverse integration, because suitable grid parameters
in Eq. (14) help error control. In theory, grid design min-
imises the leading remainder termR that is responsible for
numerical dispersion (phase errors, not attenuation).R van-
ishes atC = 1 for all θ , but this theoretically optimal condi-
tion does not hold strictly, for the scheme is based on the ap-
proximate conversion of∂2q/∂t2 and∂2q/∂x∂t to ∂2q/∂x2

via the KW equation. The numerical tests ofCunge(1969)
reveal a similar behaviour for the forward solution.

Obviously, the duration of the inflow hydrograph is shorter
than that of the outflow hydrograph (see space-time domain
in Fig. 1). Exploiting this fact, we carry out the reverse cal-
culations only inside the domain delimited by the KW char-
acteristics passing through the endpoints of the outflow hy-
drograph. The aim of this restriction is control of spurious,

troublesome oscillations that a recovered inflow can contain,
not computational efficiency. Indeed, this measure largely
eliminates unphysical tail oscillations of the source signal.

3 Grid Design: Tests with perfect measurements

We investigate optimal grid design through reverse-time
tests, withck = 1 andD = 1, V = 30 (loading) and space
and time scales 600 and 300, respectively (consistent units),
as used bySkaggs and Kabala(1994, 1998). The solution for
a Dirac pulse of contentV released atxo outside the domain
is (Kreft and Zuber, 1978; Szymkiewicz, 2002)

q(x,t) =
V x

(4πDt3)0.5
exp

(
−

[(x −xo)−ckt]
2

4Dt

)
(16)

The test grids covered the range 0< C ≤ 1.2, 0≤ θ(P) ≤

0.5. Volume conservation and form fidelity were deemed
paramount for judging a solution; therefore the ranking of
the recovered inflow signals was based on the bias error mea-
sure EM , Eq. (17), (in all tests, mass was conserved with
EM < 0.002, or 0.2 %) and on the shape criterionr, Eq. (18):

EM = |cumulative volume difference between

recovered and analytic inflow|/V (17)

r = (root−mean−squared−error of recovered

inflow)/(σ of analytic inflow) (18)

The tests confirm the anticipated result thatCoptimal 6= 1; in-
deed, propagation is less KW-like asθ → 0 andCoptimal de-
viates more from 1. According to Eq. (13), R decreases as
θ(P) increases, indicating improved accuracy with stronger
KW behaviour. The dots of optimalC vs. θ(P) pairs shown
in Fig. 3 form a soft upper limit ofC, while theθ -values
should not be less than≈ 0.25; results forθ < 0.25 are quasi-
stable (oscillations are contained only forC > 2), but poor.
The optimalC[θ(P)]-curve confirms approximately the lim-
iting condition onb2, C < 2θ , only up to θ ≈ 1/3; in the
range 1/4 ≤ θ ≤ 1/3 the optimalC[θ(P)]-curve is steeper;
of course, at the KW-point holds exactlyC = 1, θ = 0.5
(P→ ∞). As a rule of thumb for good grid design, one may
use the best-fit relationC = 19.27θ2

+17.57θ −3.04 in the
range 0.25≤ θ ≤ 0.45 (θ = 0.45→ P= 20).

More or less strict grid design is required depending on
the scale of the problem and on the content of the pulse (Sk-
aggs and Kabala, 1998), because the information of the field
data that is useable for signal recovery diminishes as diffu-
sion/dispersion progresses.

Next, we test these grid design rules on similar prob-
lems, but with wave parametersck = 1 m s−1 and D =

1000 m2 s−1, which correspond to a channel of rectangu-
lar cross-section of widthB ≈ 61 m slopeSo ≈ 4× 10−4

and Manning’sn = 0.04, so that at a mean uniform flow
qo = 50m3 s−1 the depth isyo ≈ 1.36 m. We generate the
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Fig. 3. Grid design for reverse routing test problem: the dark dots
indicate optimal design; the stippled area +++ indicates grids satis-
fying the modest shape accuracy criterionr < 0.3.

required data by releasing a Dirac pulse of volumeV =

5×106 m3 outside the domain atx = xo = −200 km,t = 0,
which has the advantage of yielding an analytical solution
– Eq. (16) – without convolution. These data are an inflow
wave (source signal atx = 0), Eq. (19), and nominally perfect
field measurements atx = L = 200 km, i.e., 200 km down-
stream, Eq. (20):

q(0,t)=
V x

(4πDt3)
exp

[
−

(−xo −ckt)
2

4Dt

]
(19)

q(L,t)=
V x

(4πDt3)
exp

[
−

[(L−xo)−ckt]
2

4Dt

]
(20)

The reverse scheme Eqs. (14)–(15) performs generally
well with suitable grids. Figure 4 demonstrates the sensi-
tivity of the model to the choice ofC andθ , showing inflow
signals recovered from the same outflow hydrograph using a
near optimal and a non-optimal grid.

However, depending on the grid, the recovered signal can
exhibit more or less pronounced spurious oscillations. It is
the presence of negative coefficient(s) in Eq. (14) that causes
oscillations in signal reversal, just as oscillations appear, e.g.,
for a2 < 0, in the forward solution (scheme Eq.6), causing
the outflow dip in Muskingum flood routing. But becausea2
is not inherently negative, oscillations in the forward solution
are suppressed effectively by selectingC andθ such that all
ai ≥ 0 (e.g.,Bowen et al., 1989). Indeed, this numerical arti-
fact is removed entirely forθ = 0 (time derivative positioned
atxi+1). In the reverse solution, oscillations cannot be elim-
inated (at least,b2 < 0 or b3 < 0), yet can be contained (for
perfect input data) by using an appropriate grid.

The spurious oscillations are explained by considering a
grid element as a linear Muskingum-reservoir with time con-
stant1x/ck. The output is obtained by convolving the sys-
tem response function (SRF) with the input. The forward
solution of Eq. (4), takingqi(0) = qi+1(0) = 0 without loss

Fig. 4. Single-peak inflow hydrograph recovered through reverse
routing from perfect outflow data atx = 200 km with grids:C =

0.75, θ = 0.35 (near-optimal) andC = 0.8, θ = 0.4 (non-optimal);
the analytical inflow is also shown for comparison.

of generality, is (Nash, 1959; Venetis, 1969)

q =
ck/1x

(1−θ)2

∫ t

0
qi(τ )exp

{
−

ck(t −τ)

1x(1−θ)

}
dτ

−
θ

1−θ
qi(t) (21)

Evidently, the negative term in Eq. (21) is the root cause
of spurious oscillations forθ > 0; however, these oscillations
can be masked numerically by usingC ≥ 2θ in Eqs. (6)–(7).

Similarly, formal reverse solution of Eq. (4) for qi(t),
again forqi(0) = qi+1(0) = 0, gives

qi+1 =
−ck/1x

θ2

∫ t

0
qi+1(τ )exp

{
−

ck(t −τ)

1x(1−θ)

}
dτ

−
1−θ

θ
qi+1(t) (22)

Reorienting the convolution integral in Eq. (22) from T to
t < T (sign reversal conforms to a calculation that steps back
in time) yields the reverse response Eq. (23):
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qi+1 =
ck/1x

θ2

∫ t<T

T

qi+1(τ )exp
{
−

ck(t −τ)

1x(1−θ)

}
dτ

−
1−θ

θ
qi+1(t) (23)

Alternatives to Eq. (14) can be derived from Eq. (23) by
numerical evaluation of the integral (Nash, 1959; Seus and
Rösl, 1972; Koussis, 1975; Koussis, 1980; Bowen et al.,
1989), yet oscillations are expected again, since division by
θ indicates potential severe instability asθ → 0. Indeed, our
initial tests of Eqs. (14)–(15) for feasible grids showed that
the accuracy in the recovery of inflow signals suffers greatly
for θ < 0.25. Of course, the reverse KW solution (obtained
for θ = 0.5, C = 1) is exact, as in the forward routing.

Next, we test the scheme’s ability to recover more complex
signals, such as from two impulsesV1 = 5×106 m3 andV2 =

2.5× 106 m3 released, respectively, atxo1 = −200 km and
at xo2 =−275 km, att = 0 (obtained by twice-superposing
Eq.16); the observations are made again atx = 200 km. The
results of reverse routing are shown in Fig. 5.

4 Reverse routing with imperfect measurements

So far, the outflow data have been assumed perfect; however,
measurement errors make always field data inexact. For this
reason, the performance of the reverse scheme Eqs. (14) –
(15) is tested also with error-seeded data. The nominal dis-
crete field dataqout(t) = q(L,t), corresponding to Eq. (20)
and depicted in Fig. 6a, are seeded with multiplicative ran-
dom error (ε = 10 % error magnitude or error level,ξi = ith
random deviate) to yield “measured” outflowsqout|ε(t) as
follows:

q|ε(L,t) = qout|ε(t) = qout(t)(1+εξi) (24)

This test highlights difficulties entailed in reverse routing.
As Fig. 6b shows, reverse integration after only a few spa-
tial steps (number depends on grid resolution) amplified the
errors greatly, noise gradually dominating the computed hy-
drograph. Hence, some sort of data conditioning is needed
to control noise amplification and glean true from spurious
information. To this end, we alternated routing and filter-
ing. Näıve three-point moving average gave erratic results,
from failure to control noise (perturbations persisted) to over-
damping. In contrast, the symmetric, second order, five-point
Savitzky-Golay low-pass filter [weightsωo = 0.486,ω−1 =

ω1 = 0.343,ω−2 = ω2 = −0.086, (Press et al., 1996)], Fig. 7,

〈qout,i〉 =

2∑
j=−2

ωjqout,i+j (25)

produced well-timed and smooth, but slightly attenuated in-
flow signals, with mass error EM≤ 0.07; negative values were
eliminated before and after filtering. A four-point filter was

Fig. 5. Double-peak inflow hydrograph recovered through reverse
routing from perfect outflow data atx = 50 km with grids:C = 0.75,
θ = 0.35 (near-optimal) andC = 0.8, θ = 0.4 (non-optimal); the an-
alytical inflow is also shown for comparison.

applied att = 1t and no filter att = 0. Figure 8 shows recov-
ered inflows, rescaled to proper mass. Despite the somewhat
lacking peak sharpness of the recovered signals, these tests
indicate that this simple data conditioning retains much of
the physical information intact.

Next, we use the finite-duration square pulse ofNeupauer
et al. (2000) to demonstrate the recovery of a source signal
by reverse routing of profile field data, i.e., from observations
(here, of concentration) along the stream at a constant time.
In their paper,Neupauer et al.(2000) seeded that field profile
with multiplicative random errorε = 0.05= 5 % for compat-
ibility with the comparison of the methods of Tikhonov regu-
larisation and of minimum relative entropy. Figure 9a shows
the field profile generated for our test, also withε = 0.05.
The unit-size square pulse shown in Fig. 9b and c starts at
t = 125 and ends att = 225, has massM = 100 and the field
profile is observed along 0≤ x ≤ 300 at t = T = 300; the
transport parameters areu = 1 andDL = 1, all given in con-
sistent units. Reverse-time integration results with Savitzky-
Golay filtering on a gridθ = 0.33, C = 1.16 are displayed
in Fig. 9b; the recovered source signal hasr = 0.25. Note

Nat. Hazards Earth Syst. Sci., 12, 217–227, 2012 www.nat-hazards-earth-syst-sci.net/12/217/2012/



A. D. Koussis et al.: Reverse flood routing with the inverted Muskingum storage routing scheme 223

Fig. 6. (a) Field measurements of outflow hydrograph, “perfect”,
ε = 0 %, and seeded with errorε = 10 %;(b) reverse-computed dis-
charge hydrograph after a few space steps.

Fig. 7. Concept of reverse routing with filtering with the sym-
metric, second order, five-point Savitzky-Golay low-pass filter;
weights:ω0 = 0.486,ω−1 = ω1 = 0.343,ω−2 = ω2 = −0.086.

that data conditioning, via filtering, has enlarged the Courant
number range relative to that shown in Fig. 3.

Fig. 8. Reverse routing with low-pass filtering (symmetric, second
order, five-point Savitzky-Golay filter) of single-peak and double-
peak imperfect outflow hydrographs.

5 Reverse routing of imperfect data with optimisation

For yet sharper signal definition, we explore coupling reverse
routing with optimisation, choosing the general-purpose
code Solver bundled with the widely used MS Excel. Of
course, any of the numerous available optimisation codes
can be used instead of Solver; we stress that we used Solver
simply because of its ready availability. However, because
“Solver has a marked tendency to stop at a point that is not
a solution and declare that it has found a solution” (McCul-
lough and Wilson, 2002), we re-checked its solutions.

The solution was optimised using as objective function

min{α21x
∑

(12)2
+

∑
(δN)2

}, (26)

and the physically plausible constraints of non-negative
concentrations and of the volume (or mass) of iterated
hydro/polluto-graphs, or profiles, not exceeding the vol-
ume (or mass) of the data curve at the previous time
step.

∑
(12)2

=
∑

{[12(F/Fmax)/1x2
]i}

2 is the sum of
the squared second derivatives of a field curveF (discharge
or concentration) normalised by the field curve’s maximum;∑

(δN )2
=

∑
[(Fifi)/Fmax]

2 is the sum of normalised devi-
ations of the computed from a reference curvefi , andα a
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Fig. 9. Reverse routing of a concentration profile seeded with 5 %
multiplicative random error:(a) error-contaminated field data at
time t = T = 300; (b) recovered square pulse by reverse-routing
to the source, with low-pass filtering;(c) recovered square pulse by
reverse-routing to the source, with optimisation.

weighting parameter. Deviations are normalised to empha-
sise the peak region. Minimising

∑
(12)2 controls noise,

for stability, via a suitableα that balances noise suppression
and artificial smoothing. Spurious oscillations are thus elim-
inated without loss of vital signal details. Through

∑
(δN )2,

the optimisation seeks to match the shape of the iterated
to a reference curve, but since the reference curve is un-
known (the solution is being sought), the deviations must

Fig. 10. Reverse flood routing with optimisation of outflow data
seeded with 10 %-error:(a) single-peaked signal,(b) double-
peaked signal.

be referenced approximately. Arguing that routing reversal
with Eq. (14) over a single grid box yields a solution whose
gross shape is close to the correct one (noise affecting only
the solution details), we reference deviations to the curve
(hydro/polluto-graph or profile) reversed with Eq. (14).

In reverse routing with Solver optimisation, the same ran-
dom error as before was added to the field data, i.e.,ε = 0.1 =
10 % to the single- and double-peaked source signals andε =
0.05 = 5 % to the square pulse. All runs used field data sam-
pled at various resolutions from the same data series. Recov-
ered source signals are rescaled to correct mass errors EM ≤

0.05. For the particular signals, grids 0.25≤ θ ≤ 0.41, 0.55
≤ C ≤ 1.5 with α in the range 4.0≤ α ≤ 7.0 giver ≤ 0.35.
Figure 10 shows signals optimised withα = 7 for θ = 0.4
andC = 0.8. The best recovered double-peaked source sig-
nal hasr = 0.16 and was obtained withθ = 0.27,C = 0.75
andα = 4.5.

Results of the square-pulse reverse transport, with Solver
optimisation, shown in Fig. 9c, were computed withθ = 0.37,
C = 0.95 andα = 4.5. Reverse routing with optimisation
is again superior (r = 0.20) to reverse routing with low-
pass filtering (r = 0.25), both methods achieving accuracy
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comparable to that of the Tikhonov regularisation and the
minimum relative entropy methods (Neupauer et al., 2000).
Relative to low-pass filtering, optimisation also improves
grid design flexibility (0.25≤ θ ≤ 0.41; for highest accuracy,
θ ≥ 1/3, C ≥ 2/3 and mostly close toC = 1; 4.5≤ α ≤ 6.0),
however computing intensity increases greatly.

Based on tests with analytical solutions, our work proved
the ability of the direct reverse routing scheme Eqs. (14)–(15)
to recover known source signals, in conjunction with a pro-
cedure for noise control. In real applications, however, un-
known source signals must be recovered from data measured
in the field. Therefore, we amend the previously presented
tools and synthesise the following methodology that is ap-
propriate for real applications. From the measured field data,
source signals are reverse-computed with optimisation for a
series ofα-values (say, in the range 3.5≤ α ≤ 6.0). Then,
forward routing is executed (Eqs.6–7), using the recovered
source signals as input and obtaining solutionsFα(x,t;α).
These are compared to the observed field data on the ba-
sis of an error measure, such as the root-mean-squared-error
(rmse), and the optimalα is estimated from the minimum of
the rmse [Fα(x,t;α)] curve. Finally, the best estimate of the
source signal is reverse-computed with the optimalα.

6 The reverse routing example of Bruen and Dooge

Bruen and Dooge(2007) studied, by Fourier analysis, the
stability of reverse routing with the de St. Venant equations,
discretised via the four-point box scheme of Preissman, simi-
lar to the one used bySzymkiewicz(1993, 1996). They con-
sidered three inputs, a short-duration square pulse, a single
sinusoid and a train of 10 such sinusoids, with 1 h and 10 h
periods of both the pulse and the sinusoid. The base flow was
qbase= 500 m3 s−1 and peak inflow 4500 m3 s−1; the chan-
nel had rectangular cross-sections of widthB = 100 m, slope
So = 0.971× 10−3, Manning’sn = 0.025, and length 200 km,
but the routing was executed only over the first 100 km. Re-
verse routing was unable to recover the high-frequency in-
flow signals, the most severe of which was the single sinu-
soid of 1-h period; the reverse calculation either broke down
rapidly or yielded inflow hydrographs with peaks of 1500–
2500 m3 s−1. In the case of the 10-h sinusoid and pulse, the
outcomes were quite good; the inflow signal was recovered
well, except in one (sinusoid) and two intervals (pulse) of
concentrated oscillations associated with rapid flow changes.
Interestingly,Bruen and Doogefound that the stability of re-
verse routing increased the closer to the outflow section of
the grid element the temporal derivatives were evaluated; this
is opposite from the behaviour of the reverse Muskingum box
scheme, in whichθ → 0 promotes instability.

The parameters of the corresponding linearised CDE (1)
were evaluated from Eq. (2), ck = 6.325 m s−1 by linear re-
gression in 400 m3 s−1

≤ q ≤ 6000 m3 s−1, and from Eq. (3),
D = 11 073 m2 s−1 at the uniform flow rateqo = 2500 m3 s−1

Fig. 11. Reverse routing of the sinusoidal inflow hydrograph of
Bruen and Dooge(2007).

(yo ≈ 6.28 m,Fo ≈ 0.5). We considered the single sinusoid
(aboveqbase) with periodT = 2π/ω = 10 h,qin(t) = Q/2(1−

cos2πωt), and generated the outflow hydrograph by forward
routing through 15 Muskingum-reservoirs (1x = 6667 m,θ =
0.2374;1t = 900 s,C = 0.84). Figure 11 shows the remark-
ably accurate inflow recovery attained, even when the out-
flow signal was seeded withε = 10% error. In the latter case,
reverse routing was coupled with low-pass filtering (symmet-
ric, second order, eleven-point Savitzky-Golay filter, with
weights: ω0 = 0.207, ω−1 =ω1 = 0.196, ω−2 = ω2 = 0.161,
ω−3 =ω3 = 0.103, ω−4 = ω4 = 0.021, ω−5 =ω5 =−0.084;
Press et al., 1996) and 1 % mass correction. The good perfor-
mance of the method on a grid withθ ≈ 0.24 was verified in
additional tests withθ < 0.25 (andC > 0.5), in which the si-
nusoidal inflow hydrograph was regained largely intact. The
increased flexibility in the choice of grid parameters is due
to the large volume of the wave (an order of magnitude more
than in the previous tests), given the similar number of space
and time steps involved in the reverse routing. Generally, it
appears that the overall high fidelity of the recovery bene-
fits from the simplicity of the reverse routing scheme, which
endows it with numerical robustness.

The 15-Muskingum-reservoirs outflow hydrograph is very
close to that of the Kalinin-Miljukov model’s 29 concen-
trated (θ = 0) linear reservoirs (each representing a unit reach
LKM ≈ 3450 m; θ = 0), the highest spatial resolution pos-
sible in storage routing withθ ≥ 0 (Kalinin and Miljukov,
1958; Koussis, 2009). Using1x <LKM is possible, but then
θ < 0, implying the physical abnormality that storage de-
clines while the inflow rises. Reversing the Kalinin-Miljukov
outflow using, by necessity, fewer storage elements than
29 understandably yields slightly less accurate inflows, be-
cause the forward and reverse schemes are not compatible.
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7 Summary and conclusions

We have shown that inflows can be identified from outflows
by reverse application of the Muskingum routing scheme,
which approximates diffusion-wave behaviour closely by ap-
propriate choice of its parameters, assuming kinematic-wave
as dominant mode of flood propagation (holds largely). Be-
cause routing against the wave propagation is an ill-posed
problem, the reverse solution of error-seeded data was
smoothness-constrained for stability.

In the case of perfect data, theoretically constraining
the coefficients of the reverse routing scheme assisted in
error control; however, optimal grid design was derived
through numerical experimentation against exact solutions
of the convection-diffusion equation, for single and com-
posite waves. Wave propagation was backtracked well in
all instances for a range of grid parameters. In an arduous
square pulse test, results comparable to those of more com-
plex methods were achieved. Seeding the outflow signal with
random errors (mimicking field observations) made reverse
routing unstable. To cope with spurious oscillations, the re-
versed solution was conditioned (smoothing) via low-pass
filtering or optimisation; good-quality inflow hydrographs
were recovered by either method, but the computationally
demanding optimisation was superior. Also advanced was an
optimisation-based procedure to identify an unknown signal
from imperfect data, involving multiple reverse and forward
runs; an objective comparison of predicted vs. the observed
outflow hydrograph determines the optimalα-value for the
identification of the inflow signal by reverse routing. Finally,
the reverse Muskingum routing scheme performed as well as
the orders of magnitude more demanding reverse solution of
the St. Venant equations of flood wave motion.

Our tests involved prismatic channels to benefit from ex-
isting analytical solutions, but the reverse routing scheme
is also applicable to natural streams, with properly selected
grids, as is the forward Muskingum scheme. Because most
stream morphologies prescribe variable space steps (by nu-
merical analysis: accuracy always diminishes on variable
grids),1t must be chosen such that theC-values are an ac-
ceptable compromise over theθ(1x)-range.

This study leads us to conclude that the good fidelity of
inflow identification rests on the simplicity of the Musk-
ingum storage reverse routing scheme that endows it with
numerical robustness and computational efficiency.

Edited by: A. Bartzokas
Reviewed by: two anonymous referees
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Bruen, M. and Dooge, J. C. I.: Harmonic analysis of the stability
of reverse routing in channels, Hydrol. Earth Syst. Sci., 11, 559–
568,doi:10.5194/hess-11-559-2007, 2007.

Cunge, J. A.: On the subject of a flood propagation computation
method (Muskingum method), J. Hydraul. Res., 7, 205–230,
1969.

Dooge, J. C. I.: Linear theory of hydrologic systems, Tech. Bull.
No. 1468, Agricultural Research Service, United States Depart-
ment of Agriculture, Washington D.C., 1973.

Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., and Brooks, N.
M.: Mixing in inland and coastal waters, Academic Press, 1979.
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