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Abstract. This work treats reverse flood routing aiming at one-dimensional free-surface flow, span the spectrum from
signal identification: inflows are inferred from observed out- numerical solutions of the hydraulic equations of Batde
flows by orienting the Muskingum scheme against the waveSaint-Venant to storage routing models of the diffusion-wave
propagation direction. Routing against the wave propagationtype (Koussis 2009, and have utility in such applications
is an ill-posed, inverse problem (small errors amplify, lead-as flood warning, river training and urban storm drainage
ing to large spurious responses); therefore, the reverse salesign. On occasion, however, flood related questions are
lution must be smoothness-constrained towards stability anghosed in the reverse sense, such as, e.g., in signal identifica-
uniqueness (regularised). Theoretical constrains on the coefion (hydrologic forensics): "Which inflow created the out-
ficients of the reverse routing scheme assist in error controlflow observed at cross-section X, or the observed flood pro-
but optimal grids are derived by numerical experimentation.file along reach Y?” We may be also interested in operating a
Exact solutions of the convection-diffusion equation, for a reservoir (optimal outflow control) to minimise downstream
single and a composite wave, are reverse-routed and in botflood damage $2l16si — Nagy 1987. Bruen and Dooge
instances the wave is backtracked well for a range of grid(2007) point out that reliable solution techniques of the latter
parameters. In the arduous test of a square pulse, the rgroblem would be valuable in handling of urban flash flood-
sult is comparable to those of more complex methods. Seedng.
ing outflow data with random errors enhances instability; to  Yet reverse routing is an inverse problem and as such not
cope with the spurious oscillations, the reversed solution iswell posed. A problem is well-posed when its solution exists,
conditioned by smoothing via low-pass filtering or optimi- is unique and stabléfonstein and Semendjaje964), that
sation. Good-quality inflow hydrographs are recovered withis, small changes in the initial condition (forcing) cause small
either smoothing treatment, yet the computationally demandehanges in the response. The reverse routing solution clearly
ing optimisation is superior. Finally, the reverse Muskingum exists, but must be constrained for stability by a smoothness
routing method is compared to a reverse-solution method otondition, which however does not ensure uniqueness. This
the St. Venant equations of flood wave motion and is foundis readily seen when attempting to solve a diffusion equa-
to perform equally well, at a fraction of the computing ef- tion in reverse time: back-stepping is equivalent to calculat-
fort. This study leads us to conclude that the efficiently at-ing forward with a negative diffusion coefficient. The con-
tained good inflow identification rests on the simplicity of sequence is that errors, either present in the initial data or
the Muskingum reverse routing scheme that endows it withincurred in the computation (e.g., due to finite machine pre-
numerical robustness. cision — rounding errors) are amplified instead of reduced by
positive diffusive spreading. This manifestation of the irre-
versibility of diffusion, or of diffusion-like processes such as
1 Character of the reverse routing problem dispersion, must be considered in developing a back-stepping
method.
The forward calculation of the propagation of a flood wave The main features of flood wave motion are translation
in an open channel, known as flood routing, is a problemand attenuation, the latter due to (hydraulic) wave diffusion;
of applied hydrology that has been studied extensively. Theboth are nonlinear features resulting in nonlinear deforma-
relevant methods of solution, all within the framework of tion. The linear convection — diffusion equation (CDE),
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stated in terms of the discharge(Lighthill and Whitham
1955 Dooge 1973, is the simplest physically grounded

flood wave model that describes wave translation and atten\We treat the signal identification problem on the basis of the
uation well, and is important because its range of validity is diffusion-wave model described by Eq4)+(3), using a re-

2 Formulation of the reverse routing problem

wide (Perumal and Saho@007):

(1)

in which x is the thalweg distance ands time. The con-
stant parameters, kinematic wave celetityand coefficient
of hydraulic diffusionD, in a channel of widthB, ~ const,
are referenced to a dischargg at which the Froude num-
ber isFo = (¢2B,/gA3)Y/2; A is the flow area, a function of
the depthy, ¢ the gravitational acceleration ars the bed
slope:

9, > 44, )

Clr = — |y— = — —|y=

k dA x=const B, dy x=const

D=2 (1- p?Fe?) 3)
2B, S,

p depends on the flow formulai = 2/3 for Manning’s for-
mula, g, = (1/n)A(,y§/3501/2 for wide channels, where is

related to the bed roughness, and commori,? « 1.

verse Muskingum routing scheme. This reverse routing ap-
proach is tried for the first time. The Muskingum scheme ap-
proximates the propagation of the diffusion wave efficiently
when the kinematic wave mode dominatesghthill and
Whitham (1955 showed that the main flood body travels as
a KW. The routing scheme derives from a first-order accu-
rate finite difference (FD) discretisation of the KW equation
and becomes a second-order accurate diffusion-wave prop-
agation solver by matching the numerical diffusion coeffi-
cient of the KW equation solution scheme to the hydraulic
diffusion coefficient of the CDE (matched artificial diffusion
MAD).

Exact solution reversal is possible when the propagation
is strictly kinematic. Hence, a numerical scheme that orig-
inates in the KW equation yet allows for numerical diffu-
sion that matches the physical diffusion constitutes a promis-
ing basis for reversing the wave propagation computation-
ally. First Cunge(1969 analysed such a scheme for flood
routing; Koussis(1975 1978 2009 2010 also linked stor-
age routing to the diffusion-wave model. The good per-
formance of Matched Artificial Diffusion (MAD) schemes
in forward routing has been verified in flood [e.BQussis
1975 Weinmann 1977 Perkins and Koussjid994 and in

Realising that the same CDE-type describes the propapollution routing in streamskoussis et al. 1983 Koussis
gation of diffusion flood waves and one-dimensional masset al, 1990. The same holds for the MAD-based solution
transport Koussis 1983, we can apply the method advanced component of longitudinal transport in groundwat8yi(-
here also to contaminant transport in streams, often modepoulou and Koussjs1991, Garda-Delgado and Koussis
elled as an one-dimensional advection-dispersion problem 997 Koussis et al.2003.

(Fischer et a].1979. The solute mass is transported by ad-

In contrast to the rarely studied reverse flood routing

vection — the contaminant movement by the mean flow ve-problem Bruen and Dooge2007), the related source sig-
locity u (equivalent to the kinematic wave [KW] motion) — nal identification problem of mass transport in groundwa-

and by dispersion (longitudinal dispersion coefficiént) —

ter has been studied (in one dimension, at first) along sev-

the mathematical equivalent to hydraulic wave diffusion, buteral lines Michalak and Kitanidis2004. Early attempts
due to differential advection of fluid parcels. The mass translaced the solution in the framework of function fitting (pa-

port CDE is written in terms of the concentratiéne.g., in
mg/L], in the place of the volumetric flow ratg

rameter estimation of an assumed source function). Later,
however, researchers used various methods to solve this re-

Source signal identification is a forensic activity of a regu- Verse problem:Skaggs and Kabalgl994 1998 and Liu
latory agency, and may also interest the courts. For exampleand Ball (1999 used the complete (deterministic) estima-
aregulator may wish to recover the input signal from a sourcetion method of Tikhonov regularisatioyoodbury and Ul-
suspected to have caused an observed pollution incident. Théch (1996 1998 the (stochastic) minimum relative entropy
recovery entails reverse computation of mass transport to thé1ethod, andSnodgrass and Kitanidi€l997) geostatistics;
source by stepping back in time. Dispersion can be appreNeupauer et al(2000 compared the Tikhonov regularisa-
ciable under ordinary transient loadings and is important intion and minimum relative entropy methods. The quasi-

spills (e.g.,Li, 1972 Koussis et al. 1990. The Streeter-

reversibility method ofSkaggs and Kabal@l 995 gave un-

Phelps textbook-solution of the BOD-DO problem considerssatisfactory resultsAtmadja and Bogtzoglo{200]) solved
only the dominant advection for computational convenience the transport equation in reverse time with the backward

Taking into account the correspondenges C, ¢, — u and

beam equation Skaggs and Kabald 998 studied the lim-

D — Dy, the reverse flood routing methodology presenteditations in recovering source signal information in relation to
in the sequel applies also to the challenging inverse problenih€ transport parameters, the accuracy of field data and the
of source signal identification in streams, assuming that adtime of plume evolution.

vection dominates mass transport.
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Fig. 1. Reverse flood routing in a stream reach of length 2Ax

qout(t) = q(L,t) observed outflow hydrograph;,(t) = ¢(0,t) in-

flow hydrograph;—> direction of reverse routing. ch q(Xi+1,tn+1) — g (Xis tn11) ~0 (5)
2Ax '

The proposed method is conceptually and computationally After collecting terms, we obtain the following well-

much simpler than the aforementioned ones. It tackles rel(nown Muskingum FD scheme:

verse routing b_y solving the CDEL)(indir'ectIy, yet expl_ic— gl +DAx, (n+1) Al =a1q (i Ax,n A+
itly in reverse time, on the premise of kinematic-dominated

wave propagation. Figure 1 shows the concept of identifying ‘A 1) Ar D) Ax Az 6
the inflow hydrograplain (t) = ¢ (0,¢) from an observed out- %q(iAx, (n+1)A1 +aeq (i +1)Ax,nAl) (©)
flow hydrograph ak = L, gout(t) = g(L,t). Note that, in the C+26 C—-20 —C+2-20

reverse mass transport problem, a field profilg.;q (x, T) = C+2_29§a2= C+2—20;832 C+2-20 )
may often be the initial condition at tim&. In reverse flood
routing, this corresponds to a flow profig;..«(x,T) ina  The a’sin Egs. €) and (7) depend on the weighting factér
reach of interest; the proposed method can be used to solvend the Courant number
this problem as well.

We begin with a reprise of the forward solution. The C=ciAt/Ax (8)
Muskingum-Cunge flood routing schem@unge 1969 is . . . .
obtaine?j by consgijdering pure K\?V propagaL'fio%, desc?ribed by The expansion of the grid functions in Eef) (n Taylor

Eq. (1) with D = 0. Discretising the KW equation only in ScHES around; =iAx, 1, =nAt to second order yields the
space, over a grid elementr = x; 1 —x;, and using the spa- CDE Eq. ©), when second derivatives appearing in _these_
tial weighting factom to position the temporal derivative in expansions are e;xpressaed as §ecoar;d spatlalazdeg;/ atives via
Ax, Fig. 2, yields the ordinary differential equation (method the KW equationg! +cx 3L =0, i.e., 5k = —Ckg%’ y‘z’ =

of lines) c,fgiqzz
X
09|+ -0+ L -a®]~0 @) g sg . 9%
X X

Then, settinglq /dt =~ (gn+1— q»)/ At and centring the spa-

tial difference iINAf = f,1 — 1, give Dy is a numerical diffusion coefficient that is linked to the

spatial discretisation:

o4 tnt1) —q(istn) (1_9)61(Xi+1,tn+1) —q(id1t)

AL AL Dy =c; Ax(0.5—0), or 6 =0.5(Dy /cr Ax). (20)
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SettingDy = D in Egs. (L0) relates to the grid Peclet num-  troublesome oscillations that a recovered inflow can contain,
ber, Eq. (1), as follows: not computational efficiency. Indeed, this measure largely

eliminates unphysical tail oscillations of the source signal.
P=crAx/D, (11)

-1
0 =0.5—(D/ckAx)=0.5—P"" (12) 3 Grid Design: Tests with perfect measurements

.Thus, the explicit Eq.8) (with Eqs.7—8) solves a C,DE We investigate optimal grid design through reverse-time
with second-order accuracy, provided that expressing thefests Withe; =1 and D = 1, V = 30 (loading) and space

mixed and temporal second derivatives via the spatial ong,,; tine scales 600 and 300, respectively (consistent units),

Is sm:jffi_cienltlly acchjlra]Ee (n(re]ar-_KVﬁ mod<|a_). 'kl;lhis schem_e is Lfm'as used bykaggs and Kabal@d994 1998. The solution for
conditionally stable for physically realisable cases, 1.e., 1ory e pulse of conterit released at, outside the domain

D >0 (0 <0.5);6=05,C=1 give exact KW motion. The . Kreft and Zuber1978 S kiewicz 200
leading term of the remainder in E@)(s (Cunge 1969: 's (Kreft and Zuber1978 Szymkiewicz 2
Vx [(x —x,) —ckt]?
)= —m8M8— -
13) 901) (4nln3)05€Xp< ADt )

The test grids covered the range<@ < 1.2, 0<6(P) <
0.5. Volume conservation and form fidelity were deemed
paramount for judging a solution; therefore the ranking of

R Ax?. C?2 1 2 33

PR i Pre

From Eq. 6), we develop the explicit reverse routing
scheme fog (x;,1,):

(16)

q(iAx,nAt) =b1q(( + DAx,(n+1)Ar)+ the recovered inflow signals was based on the bias error mea-
) ) sure k4, Eq. (L7), (in all tests, mass was conserved with
b2q(iAx, (n+1) A1) +b3q((i+1)Ax,nAt) (14) gy <0.002, or 02 %) and on the shape criterionEg. (L8):

Theb;’s are obviously related to th¢sof Eq. {) and writ- Em = |cumulative volume difference between
ten as follows:

_C4+2(1-6) ,  —C+20  C-2(1-0)

1= ib2= ;b3 =
C+2 C+2 C+2 r = (root— mean- squared- error of recovered

For 05> 6 >0, Eq 0.5) yiE|dS: b1>1, and 1> br>0 II’IﬂOW)/(O' of analytic mﬂOV\b (18)
for C <26, henceC <1; b3 <0, but less so a€ — 1 and
6 — 0.5. Negative coefficients cause spurious oscillationsThe tests confirm the anticipated result tGaptima # 1; in-
and should be avoided if possible, or be kept small. deed, propagation is less KW-like és-> 0 andCoqptimal de-

Given observations of the discharge (or of the stage, to bevziates more from 1. According to EqL), R decreases as
converted to flow via a rating curve) at the cross-section at) (P) increases, indicating improved accuracy with stronger
x=0L, qout(t) =q(L,0<t < T) (outflow) and the condition KW behaviour. The dots of optim& vs. 6(P) pairs shown
q(L,t > T) = gpase the inflow (source signabi,(¢z) can be, in Fig. 3 form a soft upper limit ofC, while the 6-values
in principle, recovered by sequential application of Egl)(  should not be less than 0.25; results fod < 0.25 are quasi-
on the outflow data. As shown in Fig. 1, the reverse computastable (oscillations are contained only f6r> 2), but poor.
tion marches from=7, x=Ltor=0, x =0. Yet, Eq. (4) The optimalC[6 (P)]-curve confirms approximately the lim-
is inherently unstable to disturbancesfor 0.5. Priortode-  iting condition onb,, C < 20, only up tod ~ 1/3; in the
vising stabilising mechanisms, however, we study the sensirange ¥4 <6 < 1/3 the optimalC[6(P)]-curve is steeper;
tivity of reverse integration, because suitable grid parametersf course, at the KW-point holds exacty =1, 6 =0.5
in Eq. (14) help error control. In theory, grid design min- (P — o0). As a rule of thumb for good grid design, one may
imises the leading remainder terfthat is responsible for use the best-fit relatio@ = 19.2792 + 17.579 — 3.04 in the
numerical dispersion (phase errors, not attenuati&nyan- range 025<6 <0.45 @ =0.45— P=20).
ishes atC =1 for all 6, but this theoretically optimal condi- More or less strict grid design is required depending on
tion does not hold strictly, for the scheme is based on the apthe scale of the problem and on the content of the pu&e (
proximate conversion af?q/d:2 andd2q/dxdr to 3%g/9x2  aggs and Kaba)d 998, because the information of the field
via the KW equation. The numerical tests@finge(1969 data that is useable for signal recovery diminishes as diffu-
reveal a similar behaviour for the forward solution. sion/dispersion progresses.

Obviously, the duration of the inflow hydrograph is shorter Next, we test these grid design rules on similar prob-
than that of the outflow hydrograph (see space-time domaiems, but with wave parameteig =1ms?! and D =
in Fig. 1). Exploiting this fact, we carry out the reverse cal- 1000 nfs~%, which correspond to a channel of rectangu-
culations only inside the domain delimited by the KW char- lar cross-section of widthB ~ 61 m slopeS, ~ 4 x 1074
acteristics passing through the endpoints of the outflow hy-and Manning'sn = 0.04, so that at a mean uniform flow
drograph. The aim of this restriction is control of spurious, g, = 50n? s~ the depth isy, ~ 1.36m. We generate the

recovered and analytic inflgyv a7

(15)
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Fig. 3. Grid design for reverse routing test problem: the dark dots
indicate optimal design; the stippled area +++ indicates grids satis- 3o -
fying the modest shape accuracy criterioa 0.3.

—#- Reverse Calculation

60 1

i (0/5)

required data by releasing a Dirac pulse of volume= 10 1
5x 10° m3 outside the domain at=x, = —200km,7 =0,
which has the advantage of yielding an analytical solution ;|
— Eqg. L6) — without convolution. These data are an inflow

wave (source signal at=0), Eq. (L9), and nominally perfect 0 , . .

field measurements at= L =200 km, i.e., 200 km down- 20 40 60 80 100 120

stream, Eq.20): Time ()

Vx —Xo —ckt)?
q0,1)= mexp[— %] (19)  Fig. 4. Single-peak inflow hydrograph recovered through reverse

0 routing from perfect outflow data at= 200 km with grids: C =

g(L,1)= 4 p[ L —xp) —cxt] ] (20) 0.75,6 = 0.35 (near-optimal) and’ = 0.8, 6 = 0.4 (non-optimal);

(47 Dt3) 4Dt the analytical inflow is also shown for comparison.

The reverse scheme Eq<l4f—(15) performs generally
well with suitable grids. Figure 4 demonstrates the sensi-mc enerality. is Kash 1959 Venetis 196
tivity of the model to the choice of andd, showing inflow g Y. is Nash 2 S 9
signals recovered from the same outflow hydrograph usinga  ¢/Ax [ c(t—1)
= [ imex| |

near optimal and a non-optimal grid. T (1-0)2 N Ax(1—0)
However, depending on the grid, the recovered signal can
exhibit more or less pronounced spurious oscillations. It is 1% Q) (21)

the presence of negative coefficient(s) in Eigf) that causes
oscillations in signal reversal, just as oscillations appear, e.g., Evidently, the negative term in EqRY) is the root cause
for a» < 0, in the forward solution (scheme E8), causing of spurious oscillations fa# > 0; however, these oscillations
the outflow dip in Muskingum flood routing. But becauge ~ ¢an be masked numerically by usi@g= 26 in Egs. 6)—(7).
is notinherently negative, oscillations in the forward solution ~ Similarly, formal reverse solution of Eq4) for g; (1),
are suppressed effectively by select@@ndé such thatall ~ @gain forg; (0) = ¢i1(0) =0, gives
a; >0 (e.g.,.Bowen et al.1989. Indeed, this numerical arti- —ci/Ax (! (i —1)
fact is removed entirely fo# = 0 (time derivative positioned gi+1= T/ qz'+1(f)eX|O{ T }dr
atx;11). In the reverse solution, oscillations cannot be elim- 0 x( )
inated (at leasth2 < 0 or b3 < 0), yet can be contained (for _1__9%.“(,) (22)
perfect input data) by using an appropriate grid. 0

The spurious oscillations are explained by considering aReorienting the convolution integral in ER2) from T to
grid element as a linear Muskingum-reservoir with time con- < T (sign reversal conforms to a calculation that steps back
stantAx/c,. The output is obtained by convolving the sys- in time) yields the reverse response E28)(
tem response function (SRF) with the input. The forward
solution of Eq. 4), taking¢; (0) = g;+1(0) = 0 without loss

www.nat-hazards-earth-syst-sci.net/12/217/2012/ Nat. Hazards Earth Syst. Sci., 12, 227 2012
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100 4 (@)
ck/Ax /"<T c(t—1) B B
i =2 g 1(r)exp{——]dr | 0=035,C=0.75
" 0 2 T o Ax (1 - 9) 80 —4— Analytical Solution
1— 9 = -#--Reverse Calculation
—T%’H(I) (23) E 60 1
=
Alternatives to Eq. 14) can be derived from Eq2@) by 40 1
numerical evaluation of the integraNash 1959 Seus and
Rosl, 1972 Koussis 1975 Koussis 1980 Bowen et al. 20 1
1989, yet oscillations are expected again, since division by
6 indicates potential severe instability @és> 0. Indeed, our g ' '
20 40 60 80 100 120

initial tests of Egs. 14)—(15) for feasible grids showed that

. . . Time (h)
the accuracy in the recovery of inflow signals suffers greatly

for 6 < 0.25. Of course, the reverse KW solution (obtained 100 - ®)
for 9 =0.5,C=1) is exact, as in the forward routing.
Next, we test the scheme’s ability to recover more complex 80 - 25040, €080

—— Analytical Solution

signals, such as from two impuls&s=5x 10° m3 andV, =
2.5x 10°m? released, respectively, at; = —200 km and
at x,» =—275km, atr =0 (obtained by twice-superposing
Eq. 16); the observations are made again a 200 km. The 40
results of reverse routing are shown in Fig. 5.

—®- Reverse Calculation

60 -

§in (M*/5)

4 Reverse routing with imperfect measurements

20 40 60 80 100 120
So far, the outflow data have been assumed perfect; howevel Time (h)

measurement errors make always field data inexact. For this
reason, the performance of the reverse scheme Bds—(
(15) is tested also with error-seeded data. The nominal disFig. 5. Double-peak inflow hydrograph recovered through reverse
crete field datajout(t) = g(L,1), corresponding to Eq2() routing from perfe_ctoutflow data at=50 km with gri(_js:C =0.75,
and depicted in Fig. 6a, are seeded with multiplicative ran-? = 0-35 (near-optimal) an@ = 0.8, 6 = 0.4 (non-optimal); the an-
dom error € = 10% error magnitude or error leved, = ith alytical inflow is also shown for comparison.
random deviate) to yield “measured” outflowgyy. () as
follows:
applied at = Ar and no filter at = 0. Figure 8 shows recov-

q1e(L,1) = Goute (t) = qout(r) (14 €&;) (24)  ered inflows, rescaled to proper mass. Despite the somewhat

This test highlights difficulties entailed in reverse routing. '2¢King peak sharpness of the recovered signals, these tests

As Fig. 6b shows, reverse integration after only a few Spa_indicate that this simple data conditioning retains much of

tial steps (number depends on grid resolution) amplified thethe physical information intact.

errors greatly, noise gradually dominating the computed hy- Next, we use the finite-duration square pulséetipauer
drograph. Hence, some sort of data conditioning is neede@t al. (2000 to demonstrate the recovery of a source signal
to control noise amplification and glean true from spuriousby reverse routing of profile field data, i.e., from observations
information. To this end, we alternated routing and filter- (here, of concentration) along the stream at a constant time.
ing. Nave three-point moving average gave erratic results,In their paperNeupauer et a(2000 seeded that field profile
from failure to control noise (perturbations persisted) to over-with multiplicative random erro¢ = 0.05= 5 % for compat-
damping. In contrast, the symmetric, second order, five-pointbility with the comparison of the methods of Tikhonov regu-
Savitzky-Golay low-pass filter [weights, =0.486,w_1 = larisation and of minimum relative entropy. Figure 9a shows
w1 = 0.343,w_» = wy = —0.086, Press et a)1996)], Fig. 7, the field profile generated for our test, also witk= 0.05.

The unit-size square pulse shown in Fig. 9b and c starts at
t =125 and ends at= 225, has masaf = 100 and the field
profile is observed along € x <300 atr =T = 300; the
transport parameters age=1 andD; = 1, all given in con-
produced well-timed and smooth, but slightly attenuated in-sistent units. Reverse-time integration results with Savitzky-
flow signals, with mass errorfe< 0.07; negative values were Golay filtering on a gridd =0.33, C = 1.16 are displayed
eliminated before and after filtering. A four-point filter was in Fig. 9b; the recovered source signal lras 0.25. Note

2
(qouti) = ) @jqouti+ (25)
=
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Fig. 6. (a)Field measurements of outflow hydrograph, “perfect”,
€ =0%, and seeded with errer= 10 %; (b) reverse-computed dis-
charge hydrograph after a few space steps.
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Fig. 7. Concept of reverse routing with filtering with the sym-
metric, second order, five-point Savitzky-Golay low-pass filter;
weights:wg = 0.486,w_1 = w1 =0.343,w_5 = wp = —0.086.
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Fig. 8. Reverse routing with low-pass filtering (symmetric, second
order, five-point Savitzky-Golay filter) of single-peak and double-
peak imperfect outflow hydrographs.

5 Reverse routing of imperfect data with optimisation

For yet sharper signal definition, we explore coupling reverse
routing with optimisation, choosing the general-purpose
code Solver bundled with the widely used MS Excel. Of
course, any of the numerous available optimisation codes
can be used instead of Solver; we stress that we used Solver
simply because of its ready availability. However, because
“Solver has a marked tendency to stop at a point that is not
a solution and declare that it has found a solutiadtCul-
lough and Wilson20032, we re-checked its solutions.

The solution was optimised using as objective function

min(e?ax} (8224 (6w,

and the physically plausible constraints of non-negative
concentrations and of the volume (or mass) of iterated
hydro/polluto-graphs, or profiles, not exceeding the vol-
ume (or mass) of the data curve at the previous time
step. Y (A2)? = S {[A2(F/Fmay/Ax?];}? is the sum of

the squared second derivatives of a field cuFvédischarge

or concentration) normalised by the field curve’s maximum;

(26)

that data conditioning, via filtering, has enlarged the CourantZ((SN)2 = Z[(Fifi)/me]2 is the sum of normalised devi-

number range relative to that shown in Fig. 3.
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0.6 1
0.4
be referenced approximately. Arguing that routing reversal
. with Eq. (L4) over a single grid box yields a solution whose
- ) gross shape is close to the correct one (noise affecting only
0 50 100 250 300 the solution details), we reference deviations to the curve
Time (hydro/polluto-graph or profile) reversed with EG4J.

In reverse routing with Solver optimisation, the same ran-
_ ) _ _ _ dom error as before was added to the field datad=20.1 =
Fig. 9 .Re\./erse routing of a concentration prpflle segded with 5% 10 94 to the single- and double-peaked source signalg and
r_nuIUphcatwe random error:(a) error-contaminated field data gt 0.05 = 5% to the square pulse. All runs used field data sam-
time t = T = 300; (b) recovered square pulse by reverse-routing . . .
to the source, with low-pass filteringg) recovered square pulse by pled at vanou; resolutions irom the same data series. Recov-
reverse-routing to the source, with optimisation. ered source S|gna_ls are rgscaled tq correct mass elypors E
0.05. For the particular signals, grids 0.2% < 0.41, 0.55
<C< 15 witha in the range 4.0 « < 7.0 giver < 0.35.
Figure 10 shows signals optimised with= 7 for 6 = 0.4
weighting parameter. Deviations are normalised to emphaandC = 0.8. The best recovered double-peaked source sig-
sise the peak region. Minimisiny_(A2)? controls noise, nal hasr = 0.16 and was obtained with= 0.27,C = 0.75
for stability, via a suitabler that balances noise suppression anda =4.5.
and artificial smoothing. Spurious oscillations are thus elim- Results of the square-pulse reverse transport, with Solver
inated without loss of vital signal details. Throu@(SN)2, optimisation, shown in Fig. 9c, were computed with 0.37,
the optimisation seeks to match the shape of the iterated =0.95 ande =4.5. Reverse routing with optimisation
to a reference curve, but since the reference curve is unis again superior (= 0.20) to reverse routing with low-
known (the solution is being sought), the deviations mustpass filtering £ = 0.25), both methods achieving accuracy
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comparable to that of the Tikhonov regularisation and the
minimum relative entropy methodsléupauer et a12000).
Relative to low-pass filtering, optimisation also improves  ** 1
grid design flexibility (0.25< 6 < 0.41; for highest accuracy, 3500 1
6 > 1/3,C > 2/3 and mostly close t€ = 1; 4.5<« < 6.0),
however computing intensity increases greatly.

Based on tests with analytical solutions, our work proved
the ability of the direct reverse routing scheme Ej4)-£(15)
to recover known source signals, in conjunction with a pro-
cedure for noise control. In real applications, however, un-
known source signals must be recovered from data measure: /
in the field. Therefore, we amend the previously presented s { /
tools and synthesise the following methodology that is ap- ’ s .
propriate for real applications. From the measured field data, 0 120 240 360 480 600 720 840 960 1080 1200 1320
source signals are reverse-computed with optimisation for a Time (min)
series ofa-values (say, in the range 35« < 6.0). Then,
forward routing is executed (Eg6-7), using the recovered _ ) .
source signals as input and obtaining solutidf$x,¢; «). g'r%'eilén(?g\éirgség%l%mg of the sinusoidal inflow hydrograph of
These are compared to the observed field data on the ba- '
sis of an error measure, such as the root-mean-squared-error

(rmse), and the optimal is estimated from the minimum of (v, ~ 6.28m,Fo ~ 0.5). We considered the single sinusoid
the rmse F. (xzt;a)] curve. Finally, thg best esti.mate of the (aboveghasd With periodT = 27 /o = 10 h,gin (1) = 0 /2(1—
source signal is reverse-computed with the optimal cos2rwt), and generated the outflow hydrograph by forward
routing through 15 Muskingum-reservoirs{ = 6667 mp =
0.2374;At=900s,C=0.84). Figure 11 shows the remark-
ably accurate inflow recovery attained, even when the out-
flow signal was seeded with= 10% error. In the latter case,

Brue_r_l and Dooge{ZOO?_) stuc_Jied, by Fourier analysis, Fhe reverse routing was coupled with low-pass filtering (symmet-
sﬁablllty of reverse routlng_ with the de St. Venar_1t equatlo_ns_,ric, second order, eleven-point Savitzky-Golay filter, with
discretised via the four-point box scheme of Preissman, S'm"vveights: ©0=0.207, _1=1=0.196, w_» = wp=0.161,

lar to the one used b$zymkiewicz(1993 1996. They con- ® 3=©3=0.103, w_4 = wa=0.021, w_5=ws=—0.084:

sidered three inputs, a short-duration square pulse, a singlgreSS et al 1996 and 1% mass correction. The good perfor-
sinusoid and a train of 10 such sinusoids, with 1h and 10 rhwance of the method on a grid wighr 0.24 was verified in
periods of both the pulse and the sinusoid. The base flow Wag yditional tests witl < 0.25 (andC > 0 5') in which the si-

— —1 i —1.
gbase= 500 s~ and peak mflow 4500 s~ the chan- nusoidal inflow hydrograph was regained largely intact. The
nel had rectangular cross-sections of widith: 100m, slope i, 0256 flexibility in the choice of grid parameters is due

— 3 H ) —
g" B g.971x'1(T » Manning Sg - 0|'025’ ar;]d I]?ngth 20k0 km, to the large volume of the wave (an order of magnitude more
ut the routing was executed only over the first 100 km. Re'than in the previous tests), given the similar number of space

verse routing was unable to recover the high-frequency Nand time steps involved in the reverse routing. Generally, it

flow signals, the most severe of which was the single Sinu'appears that the overall high fidelity of the recovery bene-

SOi(.j of 1-h period;.the reverse calculatio_n either broke domeits from the simplicity of the reverse routing scheme, which
rapidly or yielded inflow hydrographs with peaks of 1500— endows it with numerical robustness

—1 . .
2500 ¥ In the.case of .the 1.O'h smu'smd and pulse, the ¢ 15-Muskingum-reservoirs outflow hydrograph is very
outcomes were quite good; the inflow signal was reCOVeredclose to that of the Kalinin-Miljukov model’'s 29 concen-

well, except dm 0r_1|:a (_smusmd) {:md dtw‘_) r:nter%a:cf (puLse) Of trated ¢ = 0) linear reservoirs (each representing a unit reach
concentrated oscillations associated with rapid flow c anges; '~ 3450m; ¢ = 0), the highest spatial resolution pos-

InterestinglyBruen and Doogéound that the stability of re- ible in storage routing witd > 0 (Kalinin and Miljukov,
verse routing increased the closer to the outflow section o 958 Koussis 2009 UsingAx_< Liw is possible, but then
the grid element the temporal derivatives were evaluated; this, _ implying the' physical abnormality that s’torage de-
is opposite from the behaviour of the reverse Muskingum bOXcIines while the inflow rises. Reversing the Kalinin-Miljukov

scheme, in whiclé — 0 promotes instgbility. . outflow using, by necessity, fewer storage elements than
The parameters of the corresponding linearised CDE (' 59 ynderstandably yields slightly less accurate inflows, be-

— 1 H
were evaluated frOT Eq2) a = 6.3251m S” by linear re- ¢4 ;56 the forward and reverse schemes are not compatible.
gression in 400 s < ¢ < 6000 n¥s~1, and from Eq. 8),

D =11073nts 1 at the uniform flow ratey, = 2500 n?s~1

4500 +

— ()= Q2 (1 —cos2nwit)
—Outflow

—0o-Outflow, & = 10%

3000 4 o Inflow recovered, £ = 0%

© Inflow recovered, € = 10%
2500 +

2000 -

Flow (m?/s)

1500 -

1000 -

6 The reverse routing example of Bruen and Dooge
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