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Abstract. Statistical analysis of natural hazards needs par-
ticular attention, as most of these phenomena are rare events.
This study shows that the ordinary rare event logistic regres-
sion, as it is now commonly used in geomorphologic stud-
ies, does not always lead to a robust detection of controlling
factors, as the results can be strongly sample-dependent. In
this paper, we introduce some concepts of Monte Carlo sim-
ulations in rare event logistic regression. This technique, so-
called rare event logistic regression with replications, com-
bines the strength of probabilistic and statistical methods,
and allows overcoming some of the limitations of previous
developments through robust variable selection. This tech-
nique was here developed for the analyses of landslide con-
trolling factors, but the concept is widely applicable for sta-
tistical analyses of natural hazards.

1 Introduction

Natural hazards and risks are increasing, especially in de-
veloping countries (Alćantara-Ayala et al., 2006). Land-
slides are particularly affecting human occupation and socio-
economic development in mountainous areas of developing
countries. Given the current population growth with increas-
ing occupation of steep uplands, landslide risks are expected
to increase in the future. Understanding the causal and con-
trolling factors of landsliding is therefore important. It is
known that extreme rainfalls, rapid snowmelt or seismic ac-
tivities are the primary triggers of landslides (Brunetti et al.,
2010; Tatard et al., 2010). Prediction of the timing of future
landslide occurrence is rare, as landslide records often do not

contain detailed information on the date of occurrence (Baum
and Godt, 2010; Larsen and Torres-Sánchez, 1998).

Prediction of the areas that are particularly sensitive to
landsliding through the development of stochastic or process-
based susceptibility models has been the goal of exten-
sive research (Brenning, 2005; Dai et al., 2002; Guzzetti
et al., 2006; Komac, 2006). Various techniques have been
used in the past to analyse landslide controlling factors (see
overviews of Dai et al., 2002; Guzzetti et al., 1999; Huabin
et al., 2005). Process-based susceptibility models often fo-
cus on the rheological parameters of the sliding mass, while
stochastic models are mainly based on the biophysical site
conditions. Frequently used stochastic techniques are dis-
criminant analysis and regression techniques (Atkinson et
al., 1998; Guzzetti et al., 2006). Logistic regression is par-
ticularly interesting for landsliding susceptibility analysis as
it models the relationship between a dichotomous variable
(presence/absence of landslide) and a set of independent bio-
physical site variables (controlling factors). This technique
allows evaluating the probability of landslide occurrence and
its significance, and has been widely used for landslide sus-
ceptibility mapping (e.g. Atkinson and Massari, 1998; Ay-
alew and Yamagishi, 2005; Dai and Lee, 2002, 2003; Dai et
al., 2001; Vanacker et al., 2003).

Logistic regression techniques have to be adapted to the
specificities of landslide analysis, as landslides (like many
other natural hazards) can be considered to be rare events
(Demoulin and Chung, 2007). Rare events have occurrence
frequencies that are low (Maalouf and Trafalis, 2011), with
the number of events in the dataset dozens to thousands
times smaller than the number of non-events. King and
Zeng (2001a, b) have shown that rare events are difficult
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Fig. 1.Time series (1973–2010) of landslide occurrence and land cover in the Llavircay catchment (southern Ecuadorian Andes).

to predict as the standard application of logistic regression
techniques can sharply underestimate the probability for rare
events. Rare-event logistic regression was proposed by King
and Zeng (2001a, b) to correct this bias by (i) an endogenous
stratified sampling of the dataset, (ii) a prior correction of the
intercept and (iii) a correction of the probabilities to include
the estimation uncertainty.

In this paper, we first evaluate the use of probabilistic ap-
proaches to detect landslide controlling factors. Then, we
build some concepts from probabilistic theory into rare event
logistic regression analysis. This technique, called rare event
logistic regression with replications allows overcoming some
of the limitations of previous developments, and offers a ro-
bust variable selection. We apply this technique here for the
analyses of landslide controlling factors, but the concept is
widely applicable for statistical analyses of natural hazards.

2 Landslide occurrence in Llavircay, as a case study

The Llavircay catchment was selected for the development
of the rare event logistic regression technique with repli-
cations. The study area of 24 km2 is located in the tropi-
cal Andes (Fig. 1), and is subjected to a warm and humid
tropical climate (Winckell et al., 1997). The mean annual
precipitation is about 1330 mm, the average temperature is
10◦C and the atmospheric humidity is high, 87 % on aver-
age (Acotecnic, 2006; INAMHI, 2008). The elevation varies
from 2017 m to 3736 m and slopes reach up to 55◦. With a
mean slope angle of 26◦, the topography can be considered

as very rough. About one third of the area has slope angles
that are above the mean angle of internal friction (estimated
at 30◦ according to Basabe, 1998). Landslides and creep are
abundantly present in the area. Inventories of mass move-
ments created from aerial photo interpretation and field cam-
paigns revealed 206 landslides (reactivation excluded) be-
tween 1973 and 2010. They are mainly earth slides (trans-
lational slides) and earth slumps (rotational slides) according
to the classification of Varnes (Summerfield, 1991).

Land cover change (1963–2010) was documented using
four sets of archived aerial photographs for the time period
1963–1995, complemented with a field survey in 2010. Be-
cause of significant differences in quality and scale, between
and within the aerial photographs, the land cover classifica-
tion was performed manually using a WILD stereoscope. Six
land cover classes were identified: (i) dense forest; (ii) de-
graded forest, as a result of selective logging (Sierra and
Stallings, 1998); (iii) bushes, as a result of natural regener-
ation or so called matoral in Ecuador; (iv) pasture with spo-
radic trees; (v) pasture; and (vi) subpáramo and ṕaramo cor-
responding to the natural shrub and grassland found at high
altitudes in the Andes (Luteyn, 1999). More details on the
land cover classification are given in Vanacker et al. (2000).
Based on the time series of land cover data from 1963–
2010, land cover change trajectories were created (Fig. 1).
Land cover changed rapidly in this area, with half of the pri-
mary forest disappearing since 1963. In 2010, about half of
the catchment was covered by trees, a quarter by páramo,
subṕaramo and bushes, and a quarter of the area is covered
by pastures.
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3 Materials and methods

3.1 Database creation

Potential anthropogenic and biophysical explanatory vari-
ables of landslide occurrence have been selected based on lit-
erature and data availability. The following explanatory vari-
ables were included in the analyses: slope, distance to water-
course, distance to path, curvature and different trajectories
of land cover change. The first three variables are quantita-
tive, while the two last ones are qualitative variables com-
posed of respectively three and five classes (Table 1). All
our data are spaced in maps in a grid-cell mapping unit, as
it is very common nowadays with GIS utilisation (Guzzetti
et al., 1999). The GIS grid-data has been transformed into
a matrix format: an attribute table in which the lines corre-
spond with the 20 m resolution pixels of the catchment and
the columns with the 11 potential explanatory variables. A
similar attribute table was made for the landslide invento-
ries. In order to avoid auto-correlation, we represented every
landslide by one grid-cell (pixel) located in the centre of the
shear plane. For the logistic regressions, one matrix was es-
tablished including the matrix of GIS grid-data and spatial in-
formation on the observed landslide occurrence in the catch-
ment. For all grid-cells, the value of a dichotomous depen-
dent variable landslide indicates the presence (landslide= 1)
or absence (landslide= 0) of a landslide. The matrices were
imported in R software for the probabilistic and statistical
analyses.

3.2 Probabilistic approach based on Monte Carlo
methods

Probabilistic approaches are useful in landslide analyses, as
they allow determining the probabilities of sliding for differ-
ent biophysical and anthropogenic site conditions. The ba-
sic principle that is behind these analyses is the hypothesis
that landslides have specific site characteristics that differ
from the overall environmental setting of the area. A sta-
tistical nonparametric test that is commonly used to com-
pare differences between groups is the Wilcoxon rank-sum
test also called Mann-Whitney U test (Crawley, 2005). Such
test works with ordinal data and with groups of more or
less similar size. In our case, some explanatory variables,
such as land cover trajectories, are nominal. Moreover, the
group “event” (presence of landslide) is much smaller than
the group “non-event” (absence of landslide). A compari-
son of the two groups based on their distribution is thus not
appropriate. So we apply a probabilistic approach based on
Monte Carlo methods (Sawilowsky, 2003; Vanacker et al.,
2001).

The main idea is to test if significant associations exist be-
tween explanatory variables and the location of landslides by
comparing our landslide sample to a bundle of randomly se-
lected samples in the study area.

Fig. 2.Plot of the exceedance probability against theoretical ranked
randomly sampled values with a confidence interval of 95.

The probability of having a sample with a given distribu-
tion of observations over each class of a qualitative variable
(or with a median value for a quantitative value) is given
by its exceedance probability. So, if we randomly selected
enough samples to approximate the reality in the catchment
(according to Monte Carlo methods, Sawilowsky, 2003), a
plot of their exceedance probability against any potential
explanatory variable will give a curve that represents the
distribution of randomly selected samples in the study area
(Fig. 2). Thus, for every variable, the exceedance probability
of the landslide sample can be derived from the plot and be
compared with a given significance level. If the exceedence
probability lies outside the probabilities for the confidence
interval, we can conclude that the distribution of landslides
over this explanatory variable is not random (Vanacker et al.,
2001).

The first stage is to create the exceedance probability curve
of the explanatory variable analysed. For a given yearY and
an explanatory variableX, a simulation is composed ofk
samples ofN randomly selected points.k is the number of
samples needed to obtain a stable empirical probability dis-
tribution of the population, and equals 1000 according to our
sensibility analysis for the Llavircay case-study (Fig. 3).N

is the number of landslides observed in yearY . Samples are
considered to be independent, as each sample contains less
than 0.002 % of the entire population. Note that the explana-
tory variableX can be quantitative (e.g. slope) or qualitative
(e.g. land cover trajectory). Code was written for R software
to automate the procedure for simulations, and consists of
the following steps: (1) import the matrix with the anthro-
pogenic and biophysical explanatory variables for all grid
cells in the catchment, (2) randomly select from this matrix
N points, (3) calculate the median value of the explanatory
variableX for the N points (if the variable is quantitative)
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Table 1. Set of anthropogenic and biophysical variables included in the probabilistic and statistical analyses.

Explanatory Range of % of total area
variables values (variation between 1973

and 1995 for trajectory)

Slope 0–55◦

Distance to path 0–2721 m
Distance to watercourse 0–1219 m

Plan curvature
concave 0 or 1 42 %
rectilinear 0 or 1 22 %
convexe 0 or 1 36 %

Land cover trajectory

no change (forest-ṕaramo) 0 or 1 −16 %
forest degradation 0 or 1 +3 %
conversion to pasture 0 or 1 +3 %
no change (pasture) 0 or 1 −4 %
others 0 or 1 +14 %

Fig. 3.According to the Monte Carlo principle, a sufficient number
of randomly selected samples are needed to approximate correctly
the true population (Llavircay catchment in this case). A simulation
with 1000 samples provides a stable empirical approximation.

or the frequency of each class (if the variable is qualitative),
(4) repeat steps 2 and 3,k times, (5) summarise in a table the
k median values (or class frequencies) obtained in step 3 and
rank them in an ascending order, (6) calculate the exceedance
probability of thek median values or class frequencies as fol-
lows:

P(X ≥ Xj ) = 1− FX(Xj ) =
(k − j)

(k + 1)
(1)

whereFX(Xj ) is the cumulative density function ofX, k

is the number of samples created for the simulation,Xj is
a given sample of the population, andj is the rank num-
ber after ordering the randomly selected samples, (7) plot

the exceedance probabilities calculated in step 6 against the
ranked sampled values calculated in step 5 (an example of
such a plot can be seen in Fig. 2).

The second stage is to see if landslides are randomly dis-
tributed over the explanatory variableX. We derive the ex-
ceedance probability of theN landslides observed in yearY

by transferring on the plot created in step 7 the median value
(or class frequency) of the landslide inventory for variableX.
We compare this exceedance probability with a given signifi-
cance level. As frequently used in literature, the critical value
(also called p-value) is here fixed at 5 %. If the exceedence
probability lies outside the probabilities for the confidence
interval, we can conclude that the distribution of landslides
over this explanatory variable is not random (Fig. 2). We can
thus assume that the explanatory variableX could be a con-
trolling factor of landslide occurrence. This procedure is re-
peated for every explanatory variableX and every yearY .

3.3 Ordinary rare event logistic regression

Logistic regression is commonly used to analyse the de-
pendency of a dichotomous variable, here landslide pres-
ence/absence, on a set of explanatory variables (Atkinson and
Massari, 1998; Vanacker et al., 2003). The ordinary logis-
tic model can be written as Eq. (2) (Kleinbaum and Klein,
2010):

pi =
1

1+ e−(α̂+
∑

β̂iXi )
(2)

wherepi denotes, in our case, the probability of an event
as a function ofm independent variablesX and i ranges
from 1 to m. The termsα̂ and β̂ are unknown parameters
that are estimated from the data by the maximum likelihood
method. This equation is often linearized by a logit trans-
formation, the natural logarithm of the odd which is the ra-
tio of the probability of events divided by the probability of
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non-events. The logit form of the model can be expressed as
Eq. (3) (Kleinbaum and Klein, 2010):

logitpi = ln
pi

1− pi

= α̂ +

∑
β̂iXi (3)

In the case of natural hazards, the total number of grid-
cells that are affected by an event (such as landslide occur-
rence) is often much smaller than the total number of grid-
cells in the study area. It is common that less than 1 % of
the study area is affected by a natural hazard event. King and
Zeng (2001a, b) have shown that ordinary logistic regression
strongly underestimates the probability of occurrence of rare
events. They developed for political sciences an adapted ver-
sion of the logistic regression technique, so-called “rare event
logistic regression”, that includes three corrections measures
for rare event data. They first recommended the utilisation of
a choice-based (or case-control) sampling design based on
endogenous stratified sampling (Ramalho, 2002). It consists
of taking all the events (1 s) and a random selection of the
non events (0 s). The proportion of events to non events is
often set at one to ten (Beguerı́a, 2006a). The use of choice-
based sampling designs might significantly bias the estima-
tion of the intercept term̂α. Therefore, a prior correction is
needed to avoid sampling bias (King and Zeng, 2001a). The
corrected intercept term,α0, is calculated based on the inter-
cept estimate,̂α, and the fraction of 1 s in the population,τ ,
and the fraction of 1 s in the sample,γ̄ as in Eq. (4):

α0 = α̂ − ln

[(
1− τ

τ

)(
γ̄

1− γ̄

)]
(4)

The second adaptation aims to correct for the underesti-
mation of the probabilities when using the corrected inter-
ceptα0 in Eq. (3). A correction factorCi is thus added to the
estimated probabilitỹpi (Eq. 5):

pi = p̃i + Ci (5)

For each observation,Ci can be calculated from Eq. (6)
(King and Zeng, 2001a; Van Den Eeckhaut et al., 2006):

Ci = (0.5− p̃i)p̃i(1− p̃i)X0V (β)X′

0 (6)

wherep̃i is the event probability estimated using the bias-
corrected coefficientα0, X0 is a 1× (m+1) vector of values
for each explanatory variable,X′

0 is the transpose ofX0 and
V (β) is the variance-covariance matrix.

The rare-event logistic regression was first applied in
landslide susceptibility analysis by Van Den Eeckhaut et
al. (2006). To our knowledge, this method has been ap-
plied in natural hazard analyses since then only by Bai et
al. (2011) and Vanwalleghem et al. (2008). We slightly mod-
ified the methodological description of Van Den Eeckhaut et
al. (2006) and automated the statistical procedure entirely in
R software. For the endogenous stratified sampling, a pro-
portion of 1:10 for the ratio of events to non events was

used following Beguerı́a (2006a). To avoid multi-collinearity
among the independant variables, we calculated the Variation
Inflation (VIF) and Tolerance (TOL) factors. All explanatory
variables with a VIF> 2 and TOL< 0.4 were excluded from
the stepwise logistic regression (Allison, 2001). From this se-
lection, only the explanatory variables that significantly ex-
plain the landslide distribution pattern (at a significance level
of 0.05) were included in the rare event logistic regression.
The “relogit” function from the R package Zelig (Imai et al.,
2009) was used to implement the rare event logistic regres-
sion.

3.4 Rare event logistic regression with replications

Rare event logistic regression with replications combines the
strength of probabilistic and statistical methods. It is based on
the statistical method of rare-event logistic regression (King
and Zeng, 2001a; Van Den Eeckhaut et al., 2006), but it in-
cludes probabilistic techniques to estimate the robustness of
the regression estimates (Beguerı́a, 2006a). The main idea is
to average the results of 50 replications of an ordinary rare
event logistic regression made with 50 different endogenous
stratified samples. A similar methodological step has been
used in Van Den Eeckhaut et al. (2009) for improving the
model reliability of a discriminant analysis. We could also
see a resemblance with the bootstrapping aggregation (bag-
ging) method (Breiman, 1996) even thought, in our case, we
do not resample with replacement using the obtained sample
of the population as a basis.

In our approach, we create new sub-samples of non-events
(0 s) using the entire population as a basis. In this study, we
select 50 sub-samples as a trade-off between model reliabil-
ity and computational time (Andresen, 2009). This conforms
to previous geomorphic studies (see for example Beguerı́a,
2006a; Davis and Keller, 1997; Van Den Eeckhaut et al.,
2009). In this case-study, for each of the 50 endogenous strat-
ified samples, 10N points of non-events (0 s) were randomly
selected from the population (matrix of grid-cells) and joined
to theN events. The procedure was automated in R software.

The first steps of this method are similar to the ordi-
nary rare event logistic regression technique described above;
and include the selection of explanatory variables based on
collinearity criteria and significance level. The ordinary rare
event logistic regression was repeated 50 times with the dif-
ferent samples. For the final results, only variables with a p-
value of 0.05 and present in at least 5 replications (10 %) are
kept (following Begueŕıa, 2006a). The final regression equa-
tion for landslide susceptibility is based on the explanatory
variables that are robustly detected, and the regression pa-
rameters estimates are calculated as the average from theq

parameter estimates from the repeated rare event logistic re-
gressions (q being the number of replications for which the
variables were significant).
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Table 2.Exceedance probabilities of the landslide inventories of 1973, 1983, 1995 and 2010 for the 11 potential explanatory variables. The
values that are significant at 5 % are highlighted in bold.

Variable Classes
1973 1983 1995 2010

(n = 62) (n = 35) (n = 58) (n = 51)

Quantitative variables:
Slope <0.001 <0.001 <0.001 0.003
Distance to path >0.998 >0.998 >0.998 >0.998
Distance to watercourse 0.990 0.987 >0.998 >0.998

Qualitative variables :

Plan curvature
concave 0.346 0.155 0.458 0.058
rectilinear 0.952 0.712 0.670 0.953
convexe 0.050 0.506 0.221 0.348

Land cover trajectory

no change (forest-ṕaramo) >0.998 >0.998 >0.998 >0.998
forest degradation 0.436 0.949 0.997 0.998
conversion to pasture <0.001 <0.001 <0.001 <0.001
no change (pasture) 0.002 <0.001 0.031 <0.001
others 0.012 0.010 0.015 0.005

3.5 Validation of the landslide susceptibility analyses

By definition, model validation allows assessing the accu-
racy and prediction power of a predictive model. It also
allows comparing the performance of various models (Be-
gueŕıa, 2006b). Multivariate statistical models are frequently
used for landslide susceptibility analyses, and a classification
threshold or so-called cut-off value is often selected to clas-
sify the landslide susceptibility and assess hazards. The se-
lection of the cut-off value is not straightforward, and differ-
ent methodologies actually exist (Beguerı́a, 2006b; Greiner
et al., 2000). Receiver-operating characteristic plots (ROC
plots) are an alternative solution to evaluate the model per-
formance, as ROC plots contain information on the differ-
ent model accuracies for a range of possible threshold values
(Begueŕıa, 2006b). They are constructed based on two statis-
tical evaluation criteria that are not relying on the prevalence
of events (1 s) in the sample: (i) the sensitivity (true-positive
fraction) and (ii) the specificity (false-positive fraction) (Be-
gueŕıa, 2006b). The area-under-ROC (AUC) statistic allows
evaluating the model’s performance independently of a deter-
mined threshold value (Beguerı́a, 2006b) so it gives rapidly
an overall idea of the model goodness of fit.

4 Results and discussion

4.1 Probabilistic approach using Monte Carlo
simulations

The results for the Monte Carlo simulations are shown in Ta-
ble 2 that gives the exceedance probabilities for 4 landslide
inventories for the 11 explanatory variables. From Table 2,
it is clear that the spatial distribution of the landslides is not
random, and that systematic association with morphological

and anthropogenic factors occurs. Landslides are signifi-
cantly associated with steep slopes (exceedance probabil-
ity ≤ 0.003), and tend to cluster close to paths and water-
courses (Table 2). In Llavircay, plan curvature is not sig-
nificantly associated with the landslide pattern. Land cover
change trajectories significantly control the landslide pattern
(Table 2): landslides are significantly rare where tree cover is
present (such as the trajectories no change (forest – páramo)
and forest degradation), but are significantly overrepresented
in pastures (conversion to pasture or no change (pasture))
and area with strong inter-annual changes in vegetation cover
(others).

Even though the sample size is sometimes small (n = 35
for the 1983 landslide inventory), this probabilistic approach
is able to identify the explanatory variables that are signifi-
cantly associated with the landslide pattern. Besides, this ap-
proach is widely applicable as it does not require any a priori
distribution of the independent or dependent variables. The
major drawback of this univariate probabilistic approach is
the lack of information on the relative influence of the differ-
ent explanatory variables on the landslide pattern. Besides, it
is not possible to account for multi-collinearity, which makes
it difficult to use the results of the Monte Carlo simulations
directly as an input for landslide susceptibility maps.

4.2 Ordinary rare event logistic regression

All explanatory variables were included in the logistic regres-
sion, as no multi-collinearity was detected based on the VIF
and TOL values. Variables that are significant at 5 % were
included in the rare event logistic regression. Results can be
written in the form of Eq. (7) wherepi is the probability of
landslide occurrence, here based on the landslide inventory
of 1995 as an example (Table 3, Trial 1):

Nat. Hazards Earth Syst. Sci., 12, 1937–1947, 2012 www.nat-hazards-earth-syst-sci.net/12/1937/2012/
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Table 3. Rare event logistic regression with landslide sample of 1995 for three trials, each of them having a different sample of non event;
logistic coefficient (β); standard error onβ (S.E); Wald statistic; variable significance (Pr(> |z|)); Odd ratio; maximum value of explanatory
variable in dataset (MPV); measure of parameter importance (MPI).

β S.E Wald Pr(> |z|) Odd ratio MPV MPI

Trial 1

Intercept −7.708 0.557 −13.852 <0.001 0.000
Conversion to pasture 0.980 0.337 2.909 0.004 2.664 1.000 0.980
Distance to path −0.001 0.000 −2.775 0.006 0.999 2721 −2.721
Slope 0.045 0.016 2.717 0.007 1.046 55 2.475
Forest degradation −1.219 0.616 −1.979 0.048 0.296 1.000 −1.219

Trial 2

Intercept −7.914 0.603 −13.127 <0.001 0.000
Conversion to pasture 1.092 0.332 3.291 0.001 2.980 1.000 1.092
Distance to path −0.001 0.000 −2.723 0.006 0.999 2721 −2.721
Slope 0.046 0.018 2.590 0.010 1.047 55 2.530

Trial 3

Intercept −8.893 0.516 −17.248 <0.001 0.000
Conversion to pasture 1.984 0.371 5.347 <0.001 7.272 1.000 1.984
Others 1.396 0.388 3.600 <0.001 4.039 1.000 1.396
No change (pasture) 1.571 0.497 3.163 0.002 4.811 1.000 1.571
Slope 0.039 0.016 2.378 0.017 1.040 55 2.145

logit(pi) = −7.708

+ (0.980× conversion to pasture)

+ (0.045× slope)

− (0.001× distance to path)

− (1.219× forest degradation) (7)

Most of the shortcomings of the probabilistic methods can
be solved with the rare event logistic regression. This mul-
tivariate analysis can combine a wide range of explanatory
variables into one statistical analysis. The coefficients of the
logistic regression allow to predict a logit transformation of
event’s presence probability and to create susceptibility maps
(Van Den Eeckhaut et al., 2006; Vanwalleghem et al., 2008).
Moreover, it is possible to determine the most important con-
trolling factors by multiplying the maximum value of the
variable in the dataset (MPV) with its regression coefficient
(Vanwalleghem et al., 2008). This measure of parameter im-
portance (MPI) indicates that distance to path and slope are
the most important variables for predicting the landslide oc-
currence in 1995 (Table 3, Trial 1).

The major drawback of the rare event logistic regression
is the dependency of the results on the endogenous strati-
fied sampling. In Table 3, we give the outcome of the rare
event logistic regression for landslide prediction based on the
landslide inventory of 1995 for three different random sam-
ples of non-events (Table 3, Trials 1 to 3). When comparing
the regression coefficient estimates, their standard errors and

significance levels for the explanatory variables, we observe
clear differences between the three predictive models. This
example shows that ordinary rare event logistic regression
can be strongly sample-dependent, and does not always lead
to a stable detection of the controlling variables (Table 3).
This sample dependence was also highlighted by Demoulin
and Chung (2007).

4.3 Rare event logistic regression with replications

The predictive models for landslide occurrence based on the
landslide inventories of four different years are resumed in
Table 4. These results are obtained using the rare event logis-
tic regression technique with replications (here 50 replica-
tions). The column “count” indicates the percentage of repli-
cations in which the explanatory variable was significant;
and, thus, the number of values used for averaging the regres-
sion parameters (100 %= 50 replications). Table 4 clearly
shows that many explanatory factors do not appear in every
replication, although the fact that they are highly significant.
For example, the trajectory no change (pasture) is present in
only 18 % of the replications in 1995, although the variable
is significant at 0.01. In the case of an ordinary rare event
logistic regression, it would have been very likely that this
variable was not included in the final regression model.

All studied years confounded, six out of the eleven po-
tential explanatory variables were identified as being signifi-
cant: slope, distance to watercourse, distance to path, conver-
sion to pasture, no change (pasture) and the trajectory others
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Table 4. Summary of the rare event logistic regression with replications showing, for every year, percentage of replications in which the
variable entered (count), logistic coefficient (β) and its standard error (S.E), Wald statistic, variable significance (Pr(> |z|)), Odd ratio,
maximum value of explanatory variable in dataset (MPV) and measure of parameter importance (MPI).

1973 (n = 62) Count (%) β S.E Wald Pr(> |z|) Odd ratio MPV MPI

intercept 100 −8.9566 0.6106 −14.6845 <0.001 0.0001
slope 100 0.0799 0.0177 4.5201 <0.001 1.0832 55 4.395
conversion to pasture 94 1.1671 0.3676 3.1619 0.008 3.2126 1 1.167
distance to path 78 −0.001 0.0004 −2.7355 0.010 0.999 2721 −2.721
no change (pasture) 32 1.049 0.384 2.7416 0.014 2.8549 1 1.049
Variables not included: distance to watercourse, concave, rectilinear, convexe, no change (forest-páramo),
forest conversion, others

1983 (n = 35) Count (%) β S.E Wald Pr(> |z|) Odd ratio MPV MPI

intercept 100 −9.8846 0.691 −15.3609 <0.001 0.0001
conversion to pasture 100 2.6599 0.5572 4.7722<0.001 14.2943 1 2.660
no change (pasture) 100 2.681 0.5857 4.5751<0.001 14.5992 1 2.681
others 100 2.198 0.6238 3.5246 0.001 9.0066 1 2.198
slope 54 0.0584 0.0249 2.3419 0.022 1.0601 55 3.212
Variables not included: distance to watercourse, distance to path, concave, rectilinear, convexe,
no change (forest-ṕaramo), forest conversion

1995 (n = 58) Count (%) β S.E Wald Pr(> |z|) Odd ratio MPV MPI

intercept 100 −8.0335 0.5496 −14.9889 <0.001 0.0003
slope 98 0.0448 0.0167 2.6899 0.012 1.0458 55 2.464
conversion to pasture 98 1.2547 0.3383 3.6678 0.004 3.5069 1 1.255
distance to path 76 −0.0011 0.0004 −2.8668 0.005 0.9989 2721 −2.994
others 20 1.2986 0.3841 3.3751 0.001 3.6643 1 1.299
no change (pasture) 18 1.5109 0.4893 3.0842 0.003 4.5306 1 1.511
Variables not included: distance to watercourse, concave, rectilinear, convexe, no change (forest-páramo),
forest conversion

2010 (n = 51) Count (%) β S.E Wald Pr(> |z|) Odd ratio MPV MPI

intercept 100 −8.0581 0.5931 −16.2145 <0.001 0.0003
conversion to pasture 100 2.929 0.5659 5.3274<0.001 18.7087 1 2.929
no change (pasture) 92 2.7379 0.6675 4.0646 0.003 15.4549 1 2.738
distance to watercourse 86−0.0046 0.0016 −2.8451 0.008 0.9954 1219 −5.608
others 52 2.7761 0.7691 3.6215 0.002 16.0571 1 2.776
distance to path 24 −0.0026 0.0008 −3.0668 0.015 0.9974 2721 −7.076
slope 22 0.0465 0.0196 2.366 0.023 1.0476 55 2.558
Variables not included: concave, rectilinear, convexe, no change (forest-páramo), forest conversion

(Table 4). Only three variables are systematically and sig-
nificantly associated with the landslide pattern for all years:
the two land cover trajectories that are directly linked with
pastures and the slope gradient. The variables distance to
path and the trajectory others are present 3 out of 4 times.
The variable distance to watercourse is only present in 2010.
The number of significant explanatory variables is increasing
with time, which might be due to the fact that the land cover
heterogeneity increases with time (Fig. 1). As both the num-
ber and the spatial repartition of landslides change with time
(Fig. 1), it is not abnormal to find changes in the explanatory
variables with time (Table 4).

An analysis of the influence of each explanatory vari-
able on the landslide probability, MPI (Vanwalleghem et al.,

2008), indicates that the relative importance of the different
controlling factors changes with time (Fig. 4). The most ob-
vious change is observed for the topographical factor slope.
For the early years 1973 and 1983, the slope gradient was de-
tected as the most important controlling factor for landslide
occurrence. In 2010, the slope gradient is only marginally
important for explaining the spatial distribution of landslides
within the catchment, while the anthropogenic variables such
as the land cover trajectories that are linked with human dis-
turbance are ranked higher in terms of variable influence
(Fig. 4). The fact that two explanatory variables (distance to
watercourse and path) have an exceptionally high variable in-
fluence in 2010 might be linked to data collection bias, as the
2010 landslide repertory is based on fieldwork (in contrast
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Fig. 4. Evolution of the most important controlling variables
through time. For the variables with * we took the absolute value
of measure parameter importance (MPI).

to the landslide inventories of 1973, 1983 and 1995 that are
based on aerial photographs). This might explain why more
landslides were observed in 2010 close to paths and water-
courses, which are the two most important accessibility cor-
ridors in this remote area.

4.4 Validation of the landslide susceptibility analyses

For model validation, various methodologies exist to select
the validation data (Chung and Fabbri, 2003). As the number
of landslides in our database is small, we decided not to split
our datasets in a calibration and validation set. Instead, we
used the landslide inventories from the closest time period to
evaluate the performance of the predictive models. As the
landslide controlling factors are slightly changing through
time, we hypothesise that the use of the landslide inventory

Fig. 5. ROC plot and AUC of validation datasets (n = 19 250) for
the different rare event logistic regressions (details of them in Ta-
bles 3 and 4 – 1995).

of the closest time period has only a minor influence on the
model evaluation.

In Fig. 5, we present the results of the evaluation of the
four predictive landslide susceptibility models based on the
landslide inventory of 1995. It includes the ordinary rare
event logistic regressions based on three different random
samples of non-events (see Table 3, Trials 1 to 3), and the
rare event logistic regression with replications (see Table 4,
year 1995). The AUC for all four models varies between 0.79
and 0.82 (Fig. 5), and we can consider that the predictive
models are moderately accurate according to the arbitrary
guideline of Swets (1988). As observed from the ordinary
rare event logistic regression, the model performance of the
three predictive models is sample-dependent (Fig. 5). The
ROC and AUC vary between the three replications of the or-
dinary rare event logistic regression. The performance of the
rare event logistic regression with replication is not signifi-
cantly better than the ordinary rare event logistic regression
models, but a conceptual improvement is made on the iden-
tification of the landsliding controlling factors.

5 Conclusions

Statistical analysis of natural hazards needs particular atten-
tion, as most of these phenomena are rare events. This speci-
ficity of natural hazards was only taken into account recently
by adapting the ordinary logistic regression techniques for
the analysis of rare events. This study shows that the ordi-
nary rare event logistic regression, as it is now commonly
used in geomorphologic studies, does not always lead to a
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robust detection of controlling variables as the results can be
strongly sample-dependent.

In this study, we developed a modified version of the rare
event logistic regression technique. Our so-called rare event
logistic regression with replications builds some concepts
from probabilistic theory into rare event logistic regression
analysis. It is based on the statistical method of rare-event lo-
gistic regression, but it includes Monte Carlo simulations to
estimate the robustness of the regression estimates. The use
of replications in the rare event logistic regressions allows
avoiding instability of the results due to sampling bias. Our
results demonstrate that rare event logistic regression with
replications has a similar modelling quality as the ordinary
rare event logistic regression techniques. It allows having a
more robust selection of factors that are significant for ex-
plaining the spatial variation in the occurrence of natural haz-
ards. This new technique was here developed for landslide
spatial pattern analyses, but the concept is widely applicable
for statistical analyses of natural hazards.
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Luteyn, J. L.: Ṕaramos : A checklist of plant diversity, geographical
distribution, and botanical literature, Memoirs of the New York
Botanical Garden, The New York Botanical Garden, Bronx, New
York, 1999.

Maalouf, M. and Trafalis, T. B.: Robust weighted kernel logistic re-
gression in imbalanced and rare events data, Comput. Stat. Data
An., 55, 168–183,doi:10.1016/j.csda.2010.06.014, 2011.

Ramalho, E. A.: Regression models for choice-based samples with
misclassification in the response variable, J. Econometrics, 106,
171–201,doi:10.1016/s0304-4076(01)00094-x, 2002.

Sawilowsky, S. S.: You think you’ve got trivials?, Journal of Modern
Applied Statistical Methods, 2, 218–225, 2003.

Sierra, R. and Stallings, J.: The Dynamics and Social Organiza-
tion of Tropical Deforestation in Northwest Ecuador, 1983–1995,
Hum. Ecol., 26, 135–161,doi:10.1023/a:1018753018631, 1998.

Summerfield, M. A.: Global geomorphology – An introduction to
the study of landforms, Pearson, Prentice Hall, England, 560 pp.,
1991.

Swets, J. A.: Measuring the Accuracy of Diagnostic Systems, Sci-
ence, 240, 1285–1293, 1988.

Tatard, L., Grasso, J. R., Helmstetter, A., and Garambois, S.: Char-
acterization and comparison of landslide triggering in different
tectonic and climatic settings, J. Geophys. Res.-Earth, 115, 18
pp.,doi:10.1029/2009JF001624, 2010.

Van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G.,
Verstraeten, G., and Vandekerckhove, L.: Prediction of landslide
susceptibility using rare events logistic regression: A case-study
in the Flemish Ardennes (Belgium), Geomorphology, 76, 392–
410,doi:10.1016/j.geomorph.2005.12.003, 2006.

Van Den Eeckhaut, M., Reichenbach, P., Guzzetti, F., Rossi, M.,
and Poesen, J.: Combined landslide inventory and susceptibility
assessment based on different mapping units: an example from
the Flemish Ardennes, Belgium, Nat. Hazards Earth Syst. Sci.,
9, 507–521,doi:10.5194/nhess-9-507-2009, 2009.

Vanacker, V., Govers, G., Tacuri, E., Poesen, J., Dercon, G., and
Cisneros, F.: Using sequential aerial photographs to detect land-
use changes in the Austro Ecuadoriano, Revue de Géographie
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