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Abstract. Analytical formulas for the temperature depen-
dence of elastic constants of MgO combined with a thermo-
dynamic model, which interconnects bulk properties to point
defect parameters, can successfully reproduce the self diffu-
sion coefficients of periclase at temperatures representative
of the Earth’s mantle conditions.

Although the calculated diffusion coefficients are esti-
mated from a single measurement and cover a broad range
of values (i.e. five orders of magnitude), an almost excellent
agreement with the experimental ones is observed. The slight
discrepancy at the highest temperature lies at error margins.

1 Introduction

In a recent paper (Sarkar et al., 2009), the elastic constants
and the bulk modulus for ionic solids of cubic structure such
as NaCl, KCl, MgO, CaO have been evaluated at different
temperatures by means of analytical formulas based on Mur-
naghan’s equation of state (Murnaghan, 1944) and Tallon’s
(Tallon, 1980) models. Various equation of state for the ther-
mal dependence of elastic properties of solids are reported
in literature (Anderson, 1995) and experimental data for the
variation of these properties with temperature for a large
number of materials can be found in Anderson and Isaak’s
book (1995).

Among ionic solids, periclase (MgO) is of great geophys-
ical interest since it is a significant component of the lower
mantle. For a better understanding of the rheological prop-
erties of the Earth’s interior and of the kinetic mechanisms
of underlying solid-state transport, the diffusion equation of
MgO in the prevailing temperature conditions of the lower

mantle plays an important role. Diffusion controls many
dynamic processes in Earth such as mantle convection and
phase transition.

Scope of the present work is to show that a combination
from one side of the elastic data for MgO at any tempera-
ture, obtained by Sarkar (2009) through analytical formulas
(Tallon, 1995; Murnaghan, 1944) and from the other side of
a thermodynamical model that interconnects bulk properties
and defect parameters, leads to the estimation of diffusion co-
efficients of MgO at any temperature and especially at those
dominating in the lower mantle.

2 The thermodynamicalcB� model

This model interconnects the Gibbs energygi to the bulk ex-
pansivity and elastic data (Varotsos, 1976, 1977, 2007; Varot-
sos and Alexopoulos, 1977, 1978, 1979, 1980a, 1984c, 1986;
Varotsos et al., 1978) though the relation:

gi = ciB� (1)

where “i” denotes the different process mechanism, (forma-
tion, migration and activation),ci is a dimensionless constant
which can be considered as independent of temperature and
pressure,B is the isothermal bulk modulus,� is the mean
atomic volume per atom. It has various successful applica-
tions in many cases such as in alkali and silver halides (Varot-
sos and Alexopoulos, 1978, 1979, 1986), in alkali halide
mixed crystals (Varotsos and Alexopoulos, 1980b; Varotsos,
1980), but also in seismic electric signals (SES) emitted prior
to large earthquakes (Varotsos and Alexopoulos, 1984a, b;
Varotsos et al., 1986) from crystalline materials included in
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Table 1.The values a,�, B, calculated (Dcalc) and experimental (Dexper) diffusion coefficients along with their errors for the temperature
range (1820–2500) K and forc(1820) = 0.7243.

T a � B Dcalc Dexper
K 10−8 cm 10−24cm3 GPa cm2 s−1 cm2 s−1

1820 4.399 10.641 116.1 1.00+1.91
−0.57× 10−17 1.00+0.58

−0.37× 10−17

1900 4.409 10.713 114.1 6.44+11.2
−4.11× 10−17 5.01+2.93

−1.85× 10−17

1950 4.416 10.764 112.2 2.27+3.76
−1.41× 10−16 1.26+0.73

−0.47× 10−16

2000 4.422 10.808 111.0 6.34+9.96
−3.88× 10−16 3.98+2.32

−1.47× 10−16

2100 4.435 10.904 108.2 4.69+6.61
−2.75× 10−15 2.51+1.07

−0.93× 10−15

2350 4.468 11.149 101.0 3.64+4.09
−1.93× 10−13 1.00+0.58

−0.37× 10−13

2500 4.488 11.299 96.0 3.95+3.87
−1.96× 10−12 1.00+0.58

−0.37× 10−12

the rocks of the pre focal area when the increasing tectonic
stress reaches a critical value (Varotsos and Lazaridou, 1991;
Varotsos et al., 2002, 2003a, b, 2006a, b).

If we introduce Eq. (1) into the following diffusion relation
given by Eq. (2) for a single operating mechanism,

D = f a2ν exp(−gact/kBT ) (2)

wheref is a numerical constant depending on the diffusion
mechanism and the structure, a the lattice constant, andν is
the attempt frequency we get:

D = f a2νD exp(−cactB�/kBT ). (3)

We note that the Debye frequencyνD and the attempt fre-
quencyν are of the same order of magnitude, and thusνD
can be used as an approximation toν without considerable
changes in the values of diffusion coefficients.

The constantcact can be computed from Eq. (3) if for
a given temperatureTi the self diffusion coefficientDi is
known as:

cact = −
kTi

Bi�i

ln
Di

f a2
i νD

. (4)

Whencact is calculated, the diffusion coefficientsDi at any
temperatureT = Ti can be estimated from Eq. (3) if the ap-
propriate valuesBi and�i at each temperatureTi are known.

3 Data and analysis

Here, by using the values of elastic parameters obtained from
analytical relations that have been recently deduced (Sarkar
et al., 2009), we proceed to the estimation of the self diffu-
sion coefficients of MgO in temperatures prevailing in the
lower mantle (1800–2500) K, and for which experimental
data are available (Yang and Flynn, 1994). Thus, the values

of the bulk modulus B listed in Table 1 are the reported ones
by Sarkar et al. (2009) in their Fig. 7, which were derived
by means of the following analytical formulas on the basis
of Murnaghan’s equation of state and Tallon’s model. Pre-
cisely, Murnaghan’s first and second order approximations
for the temperature dependence of the elastic modulusCij

(Murnaghan, 1944) are given by Eqs. (5) and (6), respec-
tively, as

Cij (T ) = [1+ αD(T − TD)+

1/2α2
Dδij (T − TD)2

]
−δijCij0 (5)

Cij (T ) = [1+ αD(T − TD) + 1/2α2
Dδij (T − TD)2

+ 1/3α3
Dδ2

ij (T − TD)3
]
−δijCij0]

−δijCij0 (6)

where αD is the volume thermal expansion coefficient at
initial temperatureTD close to Debye temperature andδij

= −
1

αCij
(
∂Cij

∂T
)

∣∣∣
P

the Anderson Gruneisen parameter asso-

ciated with the elastic modulusCij , while Tallon’s equiva-
lent first and second order approximations (Tallon, 1995) are
given by Eqs. (7) and (8), respectively,

Cij (T ) = (7)

exp{ − δij [αD(T − TD)) + 1/2α2
Dδij (T − TD)2

]}Cij0

and

Cij (T ) = exp{ − δij [αD(T − TD) + 1/2α2
Dδij (T − TD)2 (8)

+ 1/3α3
Dδ2

ij (T − TD)3
]}Cij0.

In the case of MgO and for the parameter valuesTD =

900 K, δD
T = 4.86, αD = 4.42× 10−5 K−1, δ11 = 5.38 and

δ44 = 2.49, Eqs. (6) and (8) lead to the values of bulk modu-
lus (Fig. 7 of Sarkar et al., 2009) which are also presented in
Tables 1 and 2. We remind thatB = (C11+ 2C12)/3.
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Table 2.The values a,�, B, calculated (Dcalc) and experimental (Dexper) diffusion coefficients along with their errors for the temperature
range (1820–2500) K and forcmean

act = 0.7422.

T a � B Dcalc Dexper
K 10−8 cm 10−24cm3 GPa cm2 s−1 cm2 s−1

1820 4.399 10.641 116.1 0.40+1.59
−0.27× 10−17 1.00+0.58

−0.37× 10−17

1900 4.409 10.713 114.1 2.79+5.10
−1.80× 10−17 5.01+2.93

−1.85× 10−17

1950 4.416 10.764 112.2 1.02+1.75
−0.65× 10−16 1.26+0.73

−0.47× 10−16

2000 4.422 10.808 111.0 2.91+4.76
−1.81× 10−16 3.98+2.32

−1.47× 10−16

2100 4.435 10.904 108.2 2.26+3.34
−1.36× 10−15 2.51+1.07

−0.93× 10−15

2350 4.468 11.149 101.0 1.95+2.28
−1.05× 10−13 1.00+0.58

−0.37× 10−13

2500 4.488 11.299 96.0 2.25+2.28
−1.15× 10−12 1.00+0.58

−0.37× 10−12

The lattice constant at ambient conditions is considered as
a0 = 4.20× 10−8 cm (Geneste et al., 2009), the atomic vol-
ume �0 = (a0/2)3

= 9.261× 10−24 cm3, the constantf =

0.78, while the Debye temperature2D = 927.4 K (Zhao et
al., 2007) and consequentlyνD = 19.315× 1012 s−1. The
linear thermal expansion coefficient forT = 300 K (i.e.
31.2× 10−6 K−1) is taken from Table 1 of Anderson and
Zou (1990). The values of a and� at different temperatures
in the range (1800–2500) K are listed in Tables 1 and 2.

For the estimation of the constantcact, we inserted in
Eq. (4) for the lower temperatureT = 1820 K the cor-
responding values (Table 1): a(1820) = 4.399× 10−8 cm,
�(1820) = 10.641× 10−24 cm3, B(1820) = 116.1 GPa (Sarkar
et al., 2009) andD(1820) = 1× 10−17 cm2 s−1 (Yang and
Flynn, 1994 in their Fig. 1) and we obtainedcact = 0.7243.
Alternatively, we can apply Eq. (4) for all temperatures and
associated data listed in Table 2 and get the mean value
of cmean

act = 0.7422. Sincecact is known, the diffusion coef-
ficients are calculated from Eq. (3) and the derived values
Dcalc along with their errors (resulting from the uncertain-
ties in the calculation ofB andcact) as well the experimental
onesDexp (Yang and Flynn, 1994 in their Fig. 1) are shown
in Table 1 forcact = 0.7243 and Table 2 forcmean

act = 0.7422.
Plots of logD versus 1/T , which were obtained either for
cact = 0.7243 or for the mean valuecmean

act = 0.7422, are pre-
sented in Fig. 1a and b, respectively. Our calculated diffusion
coefficientsDcalc reveal a very close accord with experimen-
tal onesDexp. The observed slight discrepancy at the highest
temperature lies within the errors limits when the mean value
cmean

act is considered (Table 2), while this difference in the case
of cact for the lower temperature (T = 1820) is slightly be-
yond the error range (see Table 1). We note thatDcalc span a
broad range of values (i.e. 5 orders of magnitude). Thus, the
possibility to estimate, from a single measurement, the dif-
fusion coefficients at different temperatures is of significant
importance. Direct measurements of diffusion parameters are
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Fig. 1. Temperature dependence of the self diffusion coefficient of
O in MgO. Red triangles denote the calculated data and blue dots the
experimental ones.(a) for cact= 0.7243 at the lowestT = 1820 K
and(b) for the mean valuecmean

act = 0.7422.

extremely difficult to obtain, especially at high temperatures
and pressures required to model Earth’s interior. However,
with the above mentioned analytical formulas and thecB�

thermodynamic model, which interrelates defect point pa-
rameters to bulk properties, the diffusion coefficients can be
successfully predicted at mantle’s temperature conditions.
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4 Conclusions

The self-diffusion coefficients of MgO at temperatures rep-
resentative of the Earth’s mantle conditions, can be success-
fully predicted from the combination of a thermodynamic
model which interconnects defect parameters to bulk proper-
ties and from analytical formulas through which elastic data
can be obtained.

Although the calculated diffusion coefficients are esti-
mated from a single measurement and cover a broad range
of values (i.e. five orders of magnitude), an almost excellent
agreement with the experimental ones is observed. The
slight discrepancy at the highest temperature lies at error
margins.
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