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Abstract. The paper presents the kinematics of rock insta-
bility of a high limestone promontory, where the Monem-
vasia historical site is situated, in Peloponnese in Southern
Greece. The instability phenomena poses a significant threat
to the town located at the base of the slope. Rockfall episodes
occurred in the past due to the relaxation of the high cliff,
whereas significant undermining of the castle frontiers has
been observed at the slope crest.

The predominant types of instability are of planar, wedge
and toppling failure of medium to large blocks. In order to
investigate the existing stability conditions and decide upon
the protection measures, stability and rockfall analyses were
carried out for numerous slope sections under different load-
ing conditions and protection measures were suggested.

A rock-fall risk rating system is proposed, which is based
on morphological and structural criteria of the rock mass and
on vulnerability and consequences. The rating system is ap-
plied for individual sections along the slope and a risk map
was produced, which depicted areas having different degree
of risk against rockfall occurrences.

1 Introduction

The impact of rockfalls on archaeological sites and histor-
ical monuments in the Greek territory is significant, since
most of the landscapes are mountainous and the sites are usu-
ally found near or on steep rock slopes. Geotechnical prob-
lems related to slope instability and the protection of histor-
ical sites in Greece have been addressed by several authors
(Marinos and Koukis, 1988) and recently, among others, by
Marinos et al. (2002) and Marinos and Rondoyanni (2005).
The hazard of rockfalls is obviously higher in areas with in-
tense seismic activity, where earthquakes are the principal
triggering factor (Marinos and Tsiambaos, 2002).

The main scope of the paper is the presentation of a new
rock-fall risk rating system, which is based on morphologi-
cal and structural criteria of the rock mass and on vulnera-
bility and consequences. This system is applied for the risk
assessment of the rock slopes on the Monemvasia historical
site. The archaeological site of Monemvasia in South Pelo-
ponnese, consists of a historic city situated at the foot of a
60 m limestone rock cliff and an ancient and a medieval city
as well as the castle at the slope crest (Figs. 1 and 2). The
site is a typical example with high impact of rockfalls. The
city at the foot is inhabited and attracts many visitors under a
high risk.

The structural conditions of the slope are mainly charac-
terised by the relaxation of the face of the slope due to its
high inclination, the spacing of discontinuities allowing the
formation of large blocks prone to fall and the lack of per-
sistency of the discontinuity planes, which results in insta-
bilities only in specific parts of the slope. Fortunately there
are a lack of weak zones, which could result in large shear
failures.

The identification of similar comparable conditions re-
sulted in the division of the slope in 5 areas, presented in
Fig. 1. Additionally, cross-sections were drawn in specific
locations in order to assist in the stability analysis (denoted
as A to Z and shown in Fig. 11). A general assessment of the
rockfall hazard was presented by Marinos et al. (2009).

Rockfalls existed long before the development of the city
in the ancient time, as evidenced by the foundation of several
ancient structures on large fallen blocks of rock as well as
the abundance of rock fragments on the slope foot. In the
recent years a number of severe rockfall events have occurred
(Fig. 3a).
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Fig. 1. (a)Panoramic view of the rock promontory,(b) close view of Monemvasia historical site.
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Fig. 2. Photo of a section of the high rock slope and the Monemva-
sia historical site (Section C in Fig. 11).

2 Engineering geological conditions

2.1 General

The geological formations encountered in the area consist
of Jurassic bedded, dolomitic limestones and Cretaceous un-
stratified massive limestones. The rock slope overhanging
the historical city consists of the Cretaceous limestone. Two
major fault zones, with E-W and NE-SW strike, intersect the
formation, respectively, forming the horst of the promontory.

2.2 Rockmass conditions

The limestone rock mass is moderately jointed, intersected
by numerous major vertical fractures, which ultimately form
the local face of the cliff. The limestone is karstified in places
and solution voids of large dimensions are formed, under-
mining the rock slope.

The rock mass on the slope is intersected by three to five
major discontinuity sets, as presented in the Schmidt stereo-
graphic projection in Fig. 4. These are steep in general (dip

angle is greater than 60◦) and two of them are parallel to
the slope plane, thus, they form the rock slope face in some
places. The distance of the discontinuity planes varies sig-
nificantly depending on the degree of fracturing of the rock.
The spacing of the discontinuities is relatively large (more
than 1 m); hence the sizes of the rock blocks are large to very
large. In places, mainly due to stress relief the size of the rock
blocks is smaller, especially on the upper part and the crest of
the slope, where the wall of the upper ancient city is founded.
The distance of the discontinuity planes was measured along
10 vertical scanlines of the slope face and it was determined
to range between 2.5 and 10 m, although locally the distance
can be lower than 2.5 m. The discontinuity planes are rough
(JRC ranges between 4 and 12 with a mean value of 6), while
the joint wall compressive strength is high (JCS is equal to
70 MPa). The discontinuity planes have generally no infill-
ing material. The basic angle of friction along the disconti-
nuities was calculated equal toφ = 38◦ for a stress range up
to 2 MPa.

2.3 Size of unstable rock blocks

In order to assess the hazard against rockfalls, a detailed en-
gineering geological mapping of the entire rock face was car-
ried out. The scope of this mapping was to mark the main
discontinuity planes on the slope and delineate the potentially
unstable rock blocks, thus, allowing for a close approxima-
tion of their volume. An example of this procedure is shown
in Fig. 5. The rock slope was divided in 5 distinct areas (as
shown in Fig. 1) that possess (a) different slope geometry,
(b) different impact type of rockfall on human activities, and
(c) different engineering geological characteristics (e.g., size
of potentially unstable blocks).

Based on this procedure, it was found that the most fre-
quent rock volume of potentially unstable blocks lies be-
tween 0.5 and 1.0 m3, but with a relative frequency of 22 %
(out of a total number of delineated blocks equal to 343).
The results of this statistical analysis are shown in the fre-
quency chart in Fig. 6. Additionally, there is a large number
of blocks with a volume ranging from 1.0 to 1.5 m3 and 1.5–
2.0 m3 (14 % and 13 %, respectively). The rockfall barriers,
further discussed, were designed to sustain blocks up to a
volume of 2.0 m3, which practically means 70 % of the po-
tentially unstable blocks.

2.4 Rockfall history

A number of rockfall episodes have occurred in the past.
The following evidence exists: (a) Numerous blocks (vol-
ume greater than 4 m3) exist in the access road to the castle;
(b) in section C, two recent rockfall episodes have occurred,
in 2003 and in 2010 with a volume between 1 and 2 m3,
which ended on a house wall in the slope base. Individual
fallen blocks exist elsewhere in the perimeter of the castle.
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Fig. 3. (a)View of fallen rock blocks in area of section D(b) overhanging blocks in area of section Z. Range of volumes: 1.5 to 5 m3.
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Fig. 4. Stereographic projection of main discontinuity sets and slope faces. Slope faces are denoted in red.

Fig. 5. Potentially unstable blocks in area 4 and 5 are shown in yellow.

Fig. 6. Frequency chart of volume of potentially unstable rock
blocks on the slope.

3 Rockfall analysis

3.1 General

The rock slope stability analyses were based on the prevail-
ing mode of instability of each potential rock failure. The
principal failure type is rockfall due to a sort of toppling, but
some planar or wedge failures may also exist (Fig. 3b). The
rock blocks were delineated by the engineering geological
mapping and their geometry and mass was determined. Due
to the inaccessible nature of the slope, the assessment of the
above characteristics was based on the geodetic mapping of
the rock cliff. These characteristics were grouped in five (5)
areas and specific sections (A to H) were formed for separate
analysis (Fig. 11).

The surveying and mapping of the high rock cliff was
based on a new geodetic methodology (existing geode-
tic surveying method and its combination by the use of
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Fig. 7. Range of restitution coefficients,Rn andRt for limestone
based on laboratory tests (Saroglou et al., 2010).

Fig. 8. Back analysis of known rockfall event, which occurred in
section C in 2010.

modern reflector-less total stations), which resulted in a
three-dimensional Digital Terrestrial Model (DTM) of the
ground surface (Lambrou and Pantazis, 2006). The method-
ology is mainly based on the capability of the total station
to automatically sweep the surface by means of the scanning
mode, which takes automatic measurements at defined inter-
vals predetermined by the user window. The advantage is
that the coordinates x, y, z of an adequate number of points
can be quickly determined. The result of the methodology is
the creation of 3-D Digital Terrestrial Model (DTM) of the
surface by an accuracy of about±2 cm.

The height of the potential rockfall source is a minimum
of 20 m above the base of the cliff, while in a few places

Fig. 9. Rockfall analysis at section C, in Fig. 11.

Table 1. Rockfall parameters of limestone slope face.

Method Rn mean value Rt mean value

Back analysis 0.46 0.83
Laboratory test 0.48 0.77
Total mean value 0.47 0.80

it reaches 50 m. The size of the unstable blocks, which are
more likely to fall, is between 1.5 m3 and about 4 m3, except
the area between Sections A and B (Fig. 10) as well as sec-
tion E where the size can be up to 30 m3. In the area shown
in Fig. 4, the potentially unstable blocks have very large di-
mensions.

3.2 Restitution coefficients of limestone

In order to model the trajectory of the falling rocks and de-
sign the rockfall barriers, it was necessary to calculate effi-
ciently the normal and tangential coefficients of restitution
(Rn and Rt, respectively) of the limestone. For this pur-
pose, rebound tests of rock spheres on a limestone plate were
performed in the laboratory for a range of slope inclination.
Based on the test results, the range of the values of the coeffi-
cients of restitution were determined, as presented in Fig. 7.
The normal coefficient of restitution,Rn, ranges between 0.3
and 0.7, while the tangential coefficient,Rt, between 0.60
and 0.95 (Saroglou et al., 2010).

The mean value ofRn for the whole range of slope inclina-
tions is equal to 0.48, while forRt equal to 0.77. This range
agrees well with that proposed by Wu (1985) and Richards et
al. (2001), who notes that the values ofRn are significantly
lower than those proposed in literature or in rockfall analysis
software.

Additionally, back analysis of a known rockfall event was
performed in order to determine the coefficients of restitution
and the friction angle of the limestone face. The back anal-
ysis was performed in section C, where a rock block with a
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Fig. 10. Photo of a section of the slope having hanging blocks with very large dimensions.

Fig. 11. Risk zonation of rock slope based on proposed rockfall risk rating system.
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Table 2. Rockfall analysis results in different slope sections.

Section Elevation/height Location of rockfall Intensity of Barrier energy
Fig. 11 of block impact rockfall impact required for block

detachment (m) range 2–3 m3 (kJ)

A +98 (46) Access road to castle Low 1000–1150

B +103 (40) Castle wall Medium 1250–1850
+84 (21)

C +102 (40) Houses and High 1950–3000
pedestrian path

D +93 (32) Houses High 410–600 (on slope)

E +87 (29) Houses High 400–600 (on slope)

Z +98 (48) Houses High 2250–3400
+80 (30) 460–600 (on slope)

H +95 (42) Castle wall Low-Medium 420–650

volume of 1 m3 has fallen in 2010, whose trajectory (detach-
ment location and run-out distance) was known (as shown in
Fig. 8).

From the present analyses, it is evident that the values
of coefficients of restitution are close to those proposed by
Robotham et al. (1995) and Richards et al. (2001) for lime-
stone rocks.

The values of the coefficients of restitution, as determined
by the different methods, are presented in Table 1. From the
back analysis it was found that the rolling friction angle is
equal to 32◦.

3.3 Results of analysis

The analysis was performed using the software RocFall of
Rocscience Inc (1998). The coefficients of normal and tan-
gential restitution for the limestone were determined as pre-
sented earlier. The initial velocity of the falls was taken equal
to 0.48 m s−1 due to seismic triggering (based on the accel-
eration coefficient of the area according to the Greek Earth-
quake Resistant Regulations, 2004). An example of the anal-
ysis in Section C is shown in Fig. 9. It is evident that the
installation of a barrier in locations with an adequate catch-
ment area can protect the structures and human activities at
the foot slope.

It should be noted that the width of the zone, just be-
hind the barrier, is very decisive for the impact energy since
this portion of the slope provides considerable damping and,
therefore, loss in energy. In some locations, such as in the
area between sections D and E, there is no space behind the
barrier resulting in enhanced impact energy. In such cases,
the rockfall barriers in the analysis were installed on the slope
face in order to arrest potential falling blocks before their tra-
jectory impacts the houses at the slope foot.

Since the volume of the rocks varies, an analysis was car-
ried out for a range of rock block volumes 2 m3 and 3 m3

and for a range of block detachment heights (between 20 and
50 m). The total kinetic energy, which is produced by the
falling rock blocks, as calculated at the different sections of
the slope, does not exceed 2500 kJ and only in some loca-
tions, as in sections C and Z, with blocks having a volume
greater than 2 m3 resulted in total kinetic energies greater
than 2500 kJ. The results of the rockfall analysis for differ-
ent sections of the slope are presented in Table 2, together
with the maximum impact energy at the location of the bar-
rier under consideration and the impact effect of rockfalls for
each section.

4 Slope stabilization

The necessary support measures can be divided into two cat-
egories: (a) those which apply an external force on the rock
face e.g., tensioned rock anchors and/or patterned rock bolts,
and (b) those which offer protection once the rockfall oc-
curs, mainly rockfall barriers. Other support measures, such
as grouting of rock joints with associated drainage, construc-
tion of buttresses in overhanging areas and removal of un-
stable blocks are not always applicable or very difficult to
construct on high rock cliffs.

The application of tensioned anchors or pattern bolting
in the locations where large individual blocks exist (or spot
bolting for smaller ones) at the slope crest is adequate. The
application of sprayed concrete is not acceptable due to the
archaeological restrictions of the area. The same is true for
the installation of steel nets in a number of locations.

As mentioned earlier, the scale of some potential failures
is such, that no stabilization measures can minimize or with-
draw the risk of a potential rockfall after their application.
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Table 3. Categories of parameters defining the risk and weight of each category.

Category of Description Weight of category
parameters in the total risk score of category

A Geometry of slope and release area position, 25 %
slope roughness, presence of vegetation

B Geology and rockmass conditions 25 %

C Potential triggering factors (rainfall, seismicity), 10%
condition of drainage

D Consequences and associated factors, 40 %
rockfall history

Even high-energy rockfall barriers would prove insufficient,
as in the case of the rock block shown in Fig. 10 detached
from the cliff. A possible support solution, in this case,
would be to install tensioned wire-rope cables around the
rock block to resist its movement.

5 Rockfall risk assessment

5.1 General

The assessment of rockfall risks along roads and on other
human activities is of great importance (Budetta, 2004). In
order to assess rockfall risk, a number of rating systems have
been developed.

Just to mention, Pierson et al. (1990) have developed
the Rockfall Hazard Rating System (RHRS), which is most
widely accepted. A similar system is that proposed by
Pritchard et al. (2005), who developed a rating methodol-
ogy which is applied to predict rockfall risk along railways.
McMillan and Matheson (1997) have developed the Rock
Slope Hazard Index (RSHI) system for highway rock slope
inspection in Scotland. Santi et al. (2009) have proposed a
modification to the Colorado Rockfall Hazard Rating system,
developed initially from Andrew (1994) for highway slopes
in Colorado. Hungr and Evans (1999) have applied quantita-
tive risk analysis for determination of total risk on highway
and railways in British Columbia, which is based on data
on the magnitude and frequency distribution of the rockfall
hazards. Hungr et al. (2003) have proposed a new rockfall
hazard rating system for use along a railway line, again with
a Quantitative Risk Assessment (QRA) procedure.

Vandewater et al. (2005) have proposed a rockfall hazard
system for highways giving emphasis on the contribution of
geological factors.

Most of the existing systems use hazard and consequence
categories. These systems give a reasonable assessment of
the relative hazards due to rockfalls from cut slopes adjacent
to highways and railways. Thus, they include also the con-
ditions of the anthropgenic cuts and not just those of natural
slopes.

Some authors have proposed systems that are applicable
to natural slopes, but most are specific oriented. Bolin et
al. (2009) have proposed a new assessment system for rock-
fall risk (ASRFR) in the Wu Gorge area in China, which con-
siders seven factors for hazard and eight factors for conse-
quence.

Another approach for the calculation of risk is presented
by Corominas et al. (2005) while Guzzetti and Reichen-
bach (2004) have used a methodology based on rockfall haz-
ard maps produced by three-dimensional rockfall trajectories
to determine risk along a part of the transportation network
of Central Italy.

The Austrian Service for Torrent and Avalanche Control
(Tartarotti, 2011) proposed a simple risk classification sys-
tem which relies on four parameters, namely: (a) the proba-
bility of presence of an event, (b) vulnerability of structures,
(c) the probability of occurrence, and (d) the process and en-
ergy class of a rockfall.

5.2 Proposed rockfall risk rating system

The rockfall risk rating systems in literature are well docu-
mented, but are mostly devoted to reasonable assessment of
the relative hazards due to rockfalls from cut slopes adjacent
to highways and railways. In the present study, a rockfall risk
rating system is proposed which is mostly applicable to the
calculation of rockfall risk of natural and man-made slopes
and encompasses all those parameters, which are considered
important for this purpose. It defines twenty (20) rating pa-
rameters, grouped in four (4) major categories according to
the hazard and consequences, with a different weight in the
assessment of the total risk.

The weight for each category varies, depending on the im-
portance of the parameters involved. More specifically, cate-
gory A is given a weight of 25 % to the total risk score of a
slope, while B 25 %, C 10 % and D is given 40 %.

The first category of hazard, category A, involves parame-
ters, related to the geometry of the slope (angle, height, slope
roughness and vegetation) and the height of the rockfall re-
lease areas. Category B parameters refer to the geological
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Table 4. Parameters of all categories and rating of proposed rockfall rating system for natural rock slopes to define risk.
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Table 4. Continued.

Parameter 
Category/ 
parameter 

weight factor   
Rating 

Score 
(Multiply rating 
with weight 
factor of 
parameter) 

16.  Seismic hazard (acceleration 
coefficient α)  α < 0.16 0.16 < α < 0.24 0.24 < α < 0.36 α > 0.36 

  

Rating 

C/4 % 
10 30 60 100  

17.  Width of catchment zone (m) >20 10–20 5–10 2–5 No  

Rating 
D/10 % 

10 15 30 60 100  

18. Rockfall history Null to few Occasional Numerous Often Continuous 

Rating 
D/5 % 

10 15 30 60 100   

19. Slope accessibility All types of 
stabilization possible 

Most types of 
stabilization possible

A number of types of 
stabilization possible

Few types of 
stabilization 

possible 

Access very 
difficult 

Rating 

D/5 % 

10 15 30 60 100   

20. Potential result of impact and 
value of structures 

Negligible; no human 
structures and 

permanent activities 

Low; areas of little 
human activity  

Moderate human 
presence; low 

frequency of houses 

High; frequent 
human presence, 

numerous 
houses 

Very high, constant 
human presence, 
densely inhabited 

areas 

Rating 

D/20 % 

10 15 30 60 100   

Total Score (Maximum 100)  

 

 Table 5. Rockfall risk classes and indicative protection measures

Risk Class Total weighted Risk Indicative protection measures (the choice is site specific)
score 1–100

I < 20 Very Low Not necessary. May be sparse spot interventions.

II 21–40 Low In limited extent

III 41–60 Medium Light measures (such as bolts, nets, removal of unstable blocks,
simple light fences)

IV 61–80 High Combination of active (such as bolts, anchors) and passive (such
as nets, wire rope cables, buttress walls, fences removal of
unstable blocks) measures

V 81–100 Very High Critical state of stability, combination of generalized or/and
strong active and passive measures. Residual risk to be
accepted.

and rock mass conditions of the slope. These parameters
describe the condition of the rock discontinuities, the intact
rock strength, presence of karst and the block volume and
number of potential blocks. Category C parameters relate
to the potential triggering factors (rainfall, seismicity of the
area) and drainage conditions of groundwater on the rock sta-
bility. Category D parameters refer to the consequences –
impact on structures and associated elements, as well as the
accessibility of the slope. The categories and their weight in
the total risk score are presented in Table 3.

The proposed risk rating system has been developed on an
empirical basis, with the weight of categories and parameters
and the parameter rating, based on reasonable geoengineer-
ing judgment and reasonable facts. The proposed risk system
was designed with special emphasis on rating of natural rock
slopes, which pose a rockfall hazard on human structures and
activities, such as in the case of the historic city of Monem-
vasia.

Each parameter has an internal, exponential, increase of
rating, between 10 and 100, as one moves from favourite
to adverse conditions. The parameter is rated and then is
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Table 6. Application of proposed risk rating system for the Monemvasia historic site high limestone cliff (The value in parenthesis is the
unweighted rating for each parameter).

Area (Fig. 1b) 1 2 3 4 5

Section on slopes (Fig. 11) A B C D E Z H

Parameter

1 Slope angle 4.2 7.0 7.0 7.0 7.0 4.2 4.2
(60) (100) (100) (100) (100) (60) (60)

2 Slope height 2.4 2.4 2.4 2.4 1.2 2.4 2.4
(60) (60) (60) (60) (60) (60) (60)

3 Release area height 7.0 7.0 7.0 4.2 7.0 2.1 7.0
(100) (100) (100) (60) (100) (30) (100)

4 Slope roughness 1.8 1.8 3.0 3.0 3.0 3.0 3.0
(60) (60) (100) (100) (100) (100) (100)

5 Vegetation of slope 4.0 (100)
6 Roughness of joints/filling 1.8 (30)
of joints/opening of joints
7 Orientation of joints 1.5 (30)
8 Persistence of joints 1.2 (30)
9 Joint strength 1.0 (100)
10 Strength of intact rock 1.0 (100)

11 Block volume 4.0 4.0 4.0 4.0 2.4 4.0 1.2
(100) (100) (100) (100) (60) (100) (30)

12 Estimated number of blocks 0.6 1.2 0.6 0.6 0.6 1.2 0.6
(30) (60) (30) (30) (30) (60) (30)

13 Karstic features 0.6 0.6 0.6 2.0 1.2 2.0 1.2
(30) (30) (30) (100) (60) (100) (60)

14 Rainfall 0.9 (30)
15 Permeability 0.45 (15)
16 Seismicity 0.4 (100)

17 Catchment zone width 1.0 10 10 10 1.5 3.0 10
(10) (100) (100) (100) (15) (30) (100)

18 Rockfall history 1.5 (30)

19 Accessibility 3.0 5.0 5.0 5.0 3.0 3.0 1.5
(60) (100) (100) (100) (60) (60) (30)

20 Potential impact 3.0 20 20 20 12.0 12.0 3.0
(15) (100) (100) (100) (60) (60) (15)

Score on 10 to 100 scale 41.35 72.75 73.35 71.95 52.65 50.65 47.85

Risk Medium High High High Medium Medium Medium

multiplied by a respective weight factor. Finally, the total
risk score is calculated by summing the individual score of
each parameter. The parameters of each category, the weight
factor for each parameter and their rating are presented in
Table 4.

Based on the rating method proposed, a slope with the
highest risk will have a total weighted score of 100 in a 10 to
100 scale. In order to classify the risk against rockfalls and
decide on protection measures, the proposed risk classifica-
tion of rock slopes has five categories, very low to very high
risk, as presented in Table 5.
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6 Rockfall risk assessment for Monemvasia rock slope

The Rockfall Risk Rating system was applied at selected lo-
cations along the rock cliff of Monemvasia, since the param-
eter rating differs for each slope area. The locations coincide
with the topographical sections (A to H, Fig. 11) as presented
previously. The application of this risk rating is shown in Ta-
ble 6.

The parameters that vary from one location to another are:
(a) the volume and number of rock blocks, (b) the spacing
and persistence of discontinuities, (c) the height of the re-
lease area, (d) the width of the available catchment zone, and
(e) the existence of structures or human activity at the un-
derlying area. The slope height and angle of Monemvasia
slopes do not vary significantly. As it can be seen from the
application of the risk system, 10 parameters out of 20 have
the same rating for the Monemvasia slope.

The result of the application is a risk zonation of the cliff
against rockfall occurrence, presented on the risk map shown
in Fig. 11. The map depicts the areas having a medium and
high risk due to either increased number of existing unstable
blocks or restricted area for their catchment or combination
of both.

The risk in section A and in the area between sections A
and B (area 1) is medium. This area has very restricted catch-
ment zone and the installation of barriers will be on the slope
foot. However, the impact on the derelict structures in this
area is relatively low, hence the risk is medium.

The slope foot area between sections B and E (area 2 and
3) presents high risk due to the numerous unstable blocks on
the cliff and the proximity of structures as well as human ac-
tivity (stairs to upper city). The area between sections E and
H (area 4 and 5) has medium risk, due to the wide catchment
zone at the base, which offers ideal conditions for installation
of barriers.

The proposed system has to be further developed and rat-
ified by back analysis for the optimum adjustment of the
weight of the big variety of parameters involved. This could
be the case of other rock slopes, where most of the parame-
ters may have a significant range, in order to assess the sen-
sitivity of each parameter in the determination of the total
risk.

7 Conclusions

The rock slope stability of the high limestone cliff overhang-
ing the historical site of Monemvasia promontory in Pelo-
ponnese in southern Greece was studied based mainly on
kinematic analysis of the unstable blocks and calculation
of their rockfall trajectories. In the case of blocks having
weights higher than 10 tn, the installation of high capacity
rockfall barriers cannot remove the hazard due to impact of
falling rocks on structures, either because the impact energy
is extremely high or the catchment zone is not sufficient for

optimized protection. Therefore, the application of active
support measures, such as bolts and wire rope nets will be
necessary.

In order to calculate the potential risk of the rockfalls, a
rating system for natural rock slopes was proposed and the
locations with maximum risk are defined. This system in-
volves 20 parameters, appropriately weighted, grouped in
categories according to the geometry of the slope, the ge-
ological conditions, the potential triggering mechanisms of
the rockfall and the consequences of the hazard. Support
measures suggestions associated with the proposed risk rat-
ing assessment. An application of the proposed system is
presented for the Monemvasia cliff. The proposed system
has to be further developed and ratified by back analysis for
the optimum adjustment of the weight of the big variety of
parameters involved.
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and Amiǵo J.: Quantitative assessment of the residual risk in a
rockfall protected area, Landslides, 2, 343–357, 2005.

Greek Earthquake Resistant Regulations: Earthquake Planning and
Protection Organisation, 2004.

Guzzetti, F. and Reichenbach, P.: Rockfall Hazard and Risk Assess-
ment Along a Transportation Corridor in the Nera Valley, Central
Italy, Environ. Manage., 34, 2, 191–208, 2004.

Hungr, O., Evans, S. G., and Hazzard, J.: Magnitude and frequency
of rockfalls and rock slides along the main transportation cor-
ridors of southwestern British Columbia, Can. Geotech. J., 36,
224–238, 1999.

Hungr, O., Fletcher, L., Jakob, M., MacKay, C., and Evans, S. G.:
A system of rockfall and rock slide Hazard Rating for a rail-
way, Proc. 3rd Canadian Conference on Geotechnique and Nat-
ural Hazards (Geohazards 2003), Canada, 2003.

Lambrou, E. and Pantazis, G.: A new geodetic methodology for
the accurate documentation and monitoring of inaccessible sur-
faces, Proc. of 12th FIG Symposium, Baden, Germany, Digital
proceedings Austria, 2006.

Marinos, P. and Koukis, G.: The Engineering Geology of Ancient
Works, Monuments and Historical Sites, Balkema, 4, Proc. of
Int. Symp. of Greek National Group of IAEG, 1998.

www.nat-hazards-earth-syst-sci.net/12/1823/2012/ Nat. Hazards Earth Syst. Sci., 12, 1823–1836, 2012

http://dx.doi.org/10.1007/s10346-009-0170-7
http://dx.doi.org/10.5194/nhess-4-71-2004


1836 H. Saroglou et al.: Rockfall hazard and risk assessment

Marinos, P. and Rondoyanni Th.: The archaeological site of Del-
phi, Greece: a site vulnerable to earthquakes, rockfalls and land-
slides, Proc. of the 1st General Assembly of the international
consortium on Landslides: Landslides-Risk analysis and sustain-
able disaster management (2001), edited by: Sassa, K., Springer,
Kyoto, ch. 31, 241–249, 2005.

Marinos, P. and Tsiambaos, G.: Earthquake triggering rockfalls af-
fecting historic monuments and a traditional settlement in Skyros
Island, Greece. Proc. of the International Symposium: Landslide
risk mitigation and protection of cultural and natural heritage,
Kyoto, Japan, 343–346, 2002.

Marinos, P., Kavvadas, M., Tsiambaos, G., and Saroglou, H.: Rock
slope stabilization in Mythimna castle, Lesvos island, Greece, 1st
European Conference on landslides, Balkema, edited by: Rybar
Stemberk & Wagner, Prague, 635–639, 2002.

Marinos, P., Tsiambaos, G., Saroglou, H., and Marinos, V.: Rock-
fall hazard and risk for a high promontory: Monemvasia histori-
cal site, Greece, Proc. of 1st World Landslide Forum Landslides
– Disaster Risk Reduction, edited by: Kyoji, S. and Canuti, P.,
Springer, XVIII, 59–62, ISBN 978-3-540-69966-8, 2009.

McMillan, P. and Matheson, G. D.: A two stage system for highway
rock slope assessment, Int. J. Rock. Mech. Min. Geomechanics
Abstr., 34, 3–4, 196, 1997.

Pritchard, M., Porter, M., Savigny, W., Bruce, I., Oboni, F., Keegan,
T., and Abbott, B.: CN rockfall hazard risk management system:
Experience, enhancements, and future direction. Landslide Risk
Management: Proc. of the Int. Conference on Landslide Risk
Management, Vancouver, Balkema, 2005.

Pierson, L. A., Davis, S. A., and Van Vickle, R.: Rockfall Hazard
Rating System Implementation Manual. Federal Highway Ad-
ministration Report FHWA-OR-EG-90-01. FHWA, U.S. Depart-
ment of Transportation, 1990.

Richards, L. R., Peng, B., and Bell, D. H.: Laboratory and field
evaluation of the normal coefficient of restitution for rocks, Proc.
of. Int. Symp. Rock Mechanics a Challenge for Society, 149–
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