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Abstract. The winds associated with extra-tropical cy-
clones are amongst the costliest natural perils in Europe.
Re/insurance companies typically have insured exposure at
multiple locations and hence the losses they incur from any
individual storm crucially depend on that storm’s spatial
structure. Motivated by this, this study investigates the spa-
tial structure of the most extreme windstorms in Europe. The
data consists of a carefully constructed set of 135 of the most
damaging storms in the period 1972–2010. Extreme value
copulas are applied to this data to investigate the spatial de-
pendencies of gusts.

The copula method is used to investigate three aspects of
windstorms. First, spatial maps of expected hazard dam-
age between large cities and their surrounding areas are pre-
sented. Second, we demonstrate a practical application of the
copula method to benchmark catalogues of artificial storms
for use in the re/insurance sector. Third, the copula-based
method is used to investigate the sensitivity of spatially ag-
gregated damage to climate variability. The copula method
allows changes to be expressed in terms of storm frequency,
local intensity, and storm spatial structure and gives a more
detailed view of how climate variability may affect multi-
location risk in Europe.

1 Introduction

The winds of the most severe extra-tropical cyclones in Eu-
rope can cause both loss of life and significant economic
damage. For example,Swiss Re(2010) reports about a hun-
dred people either dead or missing in both storm Daria on
25 January 1990 and storm Lothar on 26 December 1999
and several storms in the past 40 yr have caused insured
losses in excess of 10 billion US dollars (based on Munich

Re’s NATHAN database trended to 2008 values byBarredo,
2010). Barredo(2010) andKlawa and Ulbrich(2003) show
evidence that this storm severity is combined with a fre-
quency to produce large average annual losses. These sig-
nificant impacts from European windstorms generate much
interest in risk management.

Probabilistic risk assessment is generally based on the con-
volution of hazard, vulnerability, and economic or insured
exposure (Petak and Atkisson, 1982). Applications of risk
management require information on extreme events to an-
swer questions such as: (1) what construction codes are re-
quired to protect against winds of return period (RP) of 50 yr?
and (2) what are the capital requirements in re/insurance for
robustness to 200 yr return period events? Empirical esti-
mates of such risks are rather inaccurate due to the brevity
of the record of reliable observations (30 or 40 yr at most),
and alternative methods are needed to answer the above ques-
tions.

Catastrophe models – generally trade secret vendor prod-
ucts – provide their users with a stochastic set of events that
expands the scope of the historical catalogue by including
synthetic events that are likely to happen in a defined time-
frame. Good agreement between the stochastic catalogue and
the historical record distribution of the peril – and perhaps its
climate trends – are a necessary condition for confidence in
the model’s ability to extrapolate to longer return periods.

Independent tests of the hazard component of a catastro-
phe model are usually conducted before damage assessment.
Such independent tests of model components increase con-
fidence in the fidelity of the whole model. The features of
the stochastic catalogue of storms that need to be assessed
depends on how the model is used. Some sectors, such as
construction, are concerned with hazard extremes at spe-
cific locations. Friederichs et al.(2009) is an example of
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model validation based on the univariate distribution of wind
speeds. However, in the re/insurance sector, both a com-
pany’s exposure and actual damages occur at multiple loca-
tions and hence the spatial structure of individual storms is
also relevant.

Insurance decisions are very sensitive to assumptions
about the spatial dependence structure of claims data, and a
faulty assumption of independence could lead to mis-pricing
of policies (e.g.Wang, 1998; Cebrian et al., 2003). Loss es-
timation tools need to consider various sources of spatial de-
pendence. For instance, models of vulnerabilities of build-
ings might exhibit a form of dependence structure arising
from common building practices in a certain geographical
area, while wind-speeds exhibit dependencies because of the
spatial structures of storms.

Della-Marta et al.(2008) employed a scalar index of the
integral of storm intensity over the whole spatial domain to
address this need to capture both the local intensity and the
spatial characteristics of a windstorm. However, scalar mea-
sures cannot differentiate all the storm characteristics rele-
vant to insurance pricing, in at least two respects. First, ex-
tensive damage in recent history has been caused both by
extra-tropical storms with a large footprint of relatively low
damage ratios (e.g. Kyrill in January 2007 or Jeanette in Oc-
tober 2002), and by storms with smaller areas of intense lo-
cal damage (e.g. Anatol in December 1999 or 87J in Octo-
ber 1987). Scalar measures of storm intensity cannot capture
these different combinations of spatial scale and local inten-
sity. Second, whilst the most intense storms generally travel
in the west-to-east direction, there have been notable excep-
tions, such as 87J and Wiebke in February/March 1990, and
a scalar measure of storm intensity cannot resolve these dif-
ferences in storm path. Condensing information into a scalar
measure inevitably fails to capture the full spatial details of
storm intensity. The pricing of risk in the re/insurance sec-
tor would benefit from a more detailed picture of the spatial
structure of European windstorm damage.

The aim of our current work is to explore the spatial char-
acteristics of historical storms in detail, using multivariate
estimation of extreme gusts. The results of such an analysis
can provide a useful point of comparison with output from
stochastic models of storms. Section2 contains a descrip-
tion of the windstorm data and events used as the basis of
our work. The method of multivariate estimation of extreme
gusts is presented in Sect.3. Results from this method are
presented in Sect.4, together with an analysis of sensitivity
of joint damaging hazard to climate variability. A compari-
son of results from this multivariate method with those from
an alternative method are presented. Finally, a summary is
provided in Sect.5.

Fig. 1. Analysis domain is formed by 15 European countries. Each
countries is further divided in regions known as CRESTA (www.
cresta.org) defined with respect to the distribution of population and
buildings. CRESTAs generally correspond to 2 digit postal codes.

2 Description of data

The overall process of obtaining and processing the basic
data for this study can be described as follows. The 3 s peak
gust data were obtained from various sources for the period
1972–2010, covering the 15 European countries shown in
Fig.1. These data were the basis for making storm footprints,
which are maps of local maximum gusts during a synoptic
storm. These storm footprints were created uniquely for a
total of 135 storm events in the study period. The study of
the spatial structure of European windstorms in later sections
was based on this set of 135 historical storms. The peak gust
data and the construction of storm footprints are described in
greater detail below.

2.1 Peak gust data

We now describe the various sources of peak gust data used
in this study. First, peak gust and 10-min wind speed data for
ten of the most significant European Wind Storms in the past
25 yr were purchased from MDA Federal Inc. These storms
are as follows: 87J, Daria, Vivian, Anatol, Lothar, Martin,
Erwin/Gudrun, Kyrill, Emma and Klaus. The data consist of
hourly maximum values for a 3 or 5 day window centered on
the storm. The observations were obtained directly from na-
tional meteorological services and include data from stations
not transmitted on the Global Telecommunications System
(GTS). There are between 500 and 1000 stations per storm,
and MDA applied detailed quality control procedures to the
data.

Second, a set of peak gusts was purchased from the UK
Met Office (UKMO). This contained 700 stations spread over
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the 15 European countries, and is the largest of the data-sets
used. Most station time-series span 1984 to 2009, though
some British stations extend back to the start of our study
period in 1972. The UKMO data set contains a total of more
than four million 3 s peak gust measurements, and over five
million measurements of the daily maximum 10 min wind
speed. The non-UK data are collected from the GTS and are
archived digitally with no QC procedures applied. However,
QC procedures have been applied to the UK station data.

Third, data was obtained from the Global Summary of
the Day (GSOD). GSOD is a freely available data set pro-
vided by the National Climate Data Center in the United
States and is described in the following webpage:http://
www7.ncdc.noaa.gov/CDO/GSOD-DESC.txt. This data set
contains time-series of daily peak gusts and 10-min wind
speeds for about 300 stations from 1973 onwards and 600
or more stations from about 1982 onwards. Quality control
procedures have been applied to all gust measurements, as
described on the web page. Whilst details of the QC proce-
dures are not specified, a comparison with independent and
high quality peak gust data from MDA at city locations for
some major storms confirmed the reliability of GSOD data.

Fourth, peak gust data were purchased for two of the most
recent European windstorms, Klaus (January 2009) and Xyn-
thia (February 2010). The data were purchased from private
commercial providers who source the data directly from na-
tional meteorological centers. The data for each storm con-
sists of hourly peak gust readings for several hundred sta-
tions, including many not transmitted on the GTS.

Fifth, country-specific measurements were obtained from
three national meteorological offices. Daily time-series of
winds for 44 German stations, most of which begin ear-
lier than 1970 and all of which continue to the present day,
are freely available from the Deutscher Wetterdienst (DWD)
web site. The Koninklijk Nederlands Meteorogisch Instituut
(KNMI) make data for 34 stations located in the Netherlands
available for free download from their web site. Most KNMI
daily time series begin more than 30 yr ago and all continue
to the present day. The daily maximum peak gusts and winds
at weather stations in Norway were retrieved from the Nor-
wegian National Meteorological Center (DNMI) web site. In
general, DNMI has about 40 stations with daily measure-
ments in the 1980s and increasing to 60 stations in the past
10 or 15 yr. Data for 10 major storms affecting Norway in the
past 30 yr were retrieved from the DNMI web site to supple-
ment the data from MDA, GSOD and UKMO in this country.

Finally, smaller data sets were purchased to expand the
peak gust data sets where possible. The top 100 gusts in
the period 1994 to 2009 at each of 50 stations in Sweden
were provided by Sveriges Meteorologiskaoch Hydrologiska
Institute (SMHI). MetNext, the commercial branch of Me-
teo France, provided data for 70 dispersed stations in France
from 1980 to 1984, 27 German, 1 Danish and 1 Luxembourg
station for 1971 to 1990, and 3 Irish stations from 1971 to

Fig. 2. Map of 3 s peak gusts [m s−1] at the variable resolution
grid (VRG) for storm Daria on 25 January 1990. Circles represent
the location of weather stations. Note that gusts at the VRG are
weighted towards areas with exposure, hence rougher surfaces than
station measurements which tend to be over open terrain, leading to
a 10 % reduction in gust strengths in general.

1984. These additional 102 stations improved data coverage
where it was considered necessary.

In addition to obtaining direct measurements of peak
gusts, some peak gusts were estimated from 10 min wind-
speeds. This approach was only used when we considered
that the uncertainties in local gust estimates due to low data
density were higher than the uncertainties due to estimating
from 10 min winds. The conversion from 10 min winds to
peak gusts was based on local site coefficients estimated from
satellite-derived land-use and land-cover data. The MDA
records of 10-min winds were used, although this data set had
almost complete gust records and 87J in north-west France
was the only notable exception. The UKMO 10 min winds
in Norway, Sweden and Poland were used to create pseudo-
gusts. GSOD 10-min winds and were used in data-sparse
areas of Europe in the 1970s and 1980s, for particular storms
(Capella, 24 November 1981, 19 January 1986, 2 November
1981, 14 November 1978, 8 February 1981, 13 January 1984
and 18 January 1983).

The ultimate combined data set consists of around 1500
stations spread across Europe with typical distance between
stations of around 50 to 100 km in the domain, with higher
station densities in more urbanized areas such as in Germany,
the UK, and France. The circles in Fig.2 denote the location
of station observations during storm Daria. This distribution
of weather stations is representative for the regions affected
by Daria. The regions outside the damage swath of Daria
would tend to have many more reporting stations during a
damaging storm than depicted in Fig.2.
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2.2 Storm footprint data set

Our overall strategy is to examine entire storm events to re-
veal the spatial structure of windstorms, rather than viewing
local station gust time-series independently of each other. We
define thestorm footprintas the collection of local maximum
gusts over the entire duration of a synoptic storm. The strong
correlation between peak gust and risk of damage ensures
the storm footprint is appropriate for risk assessment. The
creation of the set of 135 storm footprints is now described.

An algorithm identified the days on which peak gusts from
extra-tropical windstorms were potentially damaging. Extra-
tropical windstorms were identified by applying two main
constraints: first, the storms must occur between September
and May (thereby excluding local convective events in sum-
mer) and second, at least ten stations in the domain must suf-
fer gusts in excess of 20 m s−1. This windspeed corresponds
to a threshold above which damage to buildings is likely to
occur and ten stations ensure that small-scale events are ex-
cluded. This algorithm identified 2720 days with potentially
damaging winds in the European domain consisting of 15
countries in the last 38 yr.

A daily peak gust footprint was created for each of these
2720 days and put into Risk Management Solutions Euro-
pean Windstorm 2011 (RMS EUWS 2011) catastrophe loss
model. The creation of the daily peak gust footprint is de-
scribed inCusack(2012) and only brief details are now
given. The station peak gust data are quality controlled using
a variety of information to ensure the representativeness of
the station with respect to the surrounding area, then inter-
polated to a Variable Resolution Grid (VRG) with resolution
ranging from 1 to 10 km, using Barnes interpolation (Barnes,
1964) with modifications to suit the unique spatial character
of peak gusts.

The set of 135storm footprints were selected from the
super-set of (potentially damaging) 2720daily footprints by
selecting the dates of the topN damaging storms in each of
the 15 countries, whereN is about 20 to 25 for major coun-
tries such as France, Germany, and the UK, about 20 for sec-
ond tier countries including Austria, Benelux, and the Scan-
dinavian countries, and about 10 to 15 for smaller countries
subject to smaller windstorm damage such as the Czech Re-
public and Slovakia. Astormfootprint is distinct fromdaily
footprints. This is because a single cyclone may cause dam-
age on consecutive days as it traverses the domain. Each
footprint in the set of 135stormsused various sources of in-
formation to identify the peak gust of a storm, rather than
the daily peak gust, including: (i) daily peak gust time-series
at stations, (ii) NCEP re-analyses of surface pressure, (iii)
DWD operational analyses of surface pressure and (iv) re-
ports of damage in the public domain such as media, internet.
Figure2 contains an example of a storm footprint for Daria,
a major windstorm event in January 1990.

Finally, an additional aggregation from VRG to a coarser
resolution, known as CRESTA, was performed. CRESTA

zones are defined with respect to the distribution of popu-
lation and buildings and cover areas that, in most countries,
correspond to 2 digit postal codes. At this resolution 996
cells cover the entire domain of the 15 countries. Figure1
displays the shapes of these CRESTA cells. This coarser res-
olution is more similar to the weather station data (at about
50 km resolution) than the VRG with cell sizes of 1 to 10 km.

3 Model methodology

3.1 Extreme value copulas

We begin this section with a general overview of copulas,
then give a formal description of the extreme value copulas
that we have used to capture the spatial dependencies of Eu-
ropean windstorms.

Multivariate distributions of damaging wind at two or
more distinct locations can be thought of in terms of the
marginal distributions of winds and their mutual dependence.
The use of parametric models to define the marginals and
their dependence can be beneficial for data analysis since
(1) the parametric models usually condense the multivari-
ate information into a few parameters, (2) if extra evidence
indicates such models are good approximations of the pro-
cesses generating the data, then the parametric models could
be used for quality control of the data, and (3) these parame-
ters can provide information on all expected outcomes, rather
than the truncated view provided by finite-length datasets.

Multivariate distributions may consist of marginals with
large differences in magnitude which can complicate the
dependency structure between random variables. A pre-
processing step to convert the marginals to values from 0
to 1 using their respective cumulative distribution functions
creates uniform marginals for all random variables and stan-
dardizes the form of the dependence structure. A copula is
the multivariate distribution describing the dependence struc-
ture between such uniform marginals. Different classes of
copula functions have been found to suit particular types of
multivariate data. These copulas often have only one un-
known parameter, simplifying both the fitting and the inter-
pretation.

The first step in the copula-based method is to specify the
form of the marginal distributions. We adopt the standard
peak-over-threshold (POT) theoretical model and assume all
marginal distributions to be Generalized-Pareto Distributions
(Coles, 2001). The effect of using a subset of 135 storm
events in the full storm catalogue upon the fitting of the
marginal distributions was investigated. By construction, the
set of 135 historical storms is incomplete for gust levels with
a Return Period (RP) below 1 yr in the central part of the do-
main and 2 yr in rural and peripheral areas. In the context
of fitting a GPD marginal to locations, the set of 135 storms
acts as a threshold selection due to its truncation of the full
historical catalogue of storms. We determined the validity of
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the GPD fits based on 135 storms by assessing the indepen-
dence of shape and scale parameters upon the threshold pa-
rameter of the GPD (Coles, 2001; Della-Marta et al., 2008).
This was tested using the full catalogue of 2720 stormy days.
The minimum gust resolved by the 135 storms falls in a re-
gion of acceptable threshold values for determining shape
and scale parameters. Therefore, the choice of using a subset
of 135 storms had no adverse impacts on accuracy of fitting
marginal distributions, and contained the benefit of more in-
tense quality assurance of these more major storms.

The copula function, defined as the joint distribution
of two or more random variables based on their uniform
marginal distributions, is now described more formally. A
copulaC(u) = C(u1, . . . ,un) is an-dimensional joint distri-
bution defined on[0,1]

n with standard uniform marginals.
The mappingC : [0,1]

n
→ [0,1] is a n-dimensional copula

if C(u1, . . . ,un) is increasing in each componentui , the
marginals are uniform and the rectangle inequality holds
Nelsen(1999); Marshall(1996); Hutchinson and Lai(1990).

Sklar’s Theorem states that for any joint distribution func-
tion F for n variables, and respective marginal distributions,
there exists a copulaC:[0,1]

n
→ [0,1] such that:

F(x1, . . . ,xn) = C(F1(x1), . . . ,Fn(xn)) (1)

In other words, the probabilitiesF can be derived either di-
rectly from the joint distribution function or via the marginal
distributions and a copula. We are here interested in cop-
ula families that are suitable for representing the behavior of
multivariate maxima, i.e. Multivariate Extreme Value (MEV)
copulas.Galambos(1987) was the first to formalize the the-
ory of multivariate maxima as a copula theory. We encour-
age the interested reader to refer to chapter 7 ofMcNeil et al.
(2005) for a clear introduction to extreme value copulas.

One particular procedure for constructing extreme value
copulas was proposed byPickands(1981). In the bivariate
case, an extreme value distribution is written using the gen-
eral representation:

C(x,y) = exp(ln u1 + ln u2)A

(
ln u2

ln u1 + ln u2

)
, (2)

whereu1 = FX(x), u2 = FY (y) are the marginal distribu-
tions andA is the so-called Pickands dependence function.
Pickands representations are convex on[0,1]. The marginal
components are independent if and only ifA(w) = 1 for all
w = ln u2/(ln u1+ ln u2) ∈ [0,1]. The components are com-
pletely dependent ifA(w) = max(w,1−w) for all w ∈ [0,1].
Any convex differential function satisfying these conditions
can be used to construct extreme value (EV) copulas.

Given the censored nature of our dataset, we need to
model multivariate threshold exceedances. We assume that
the vectorsX1, . . . ,Xn have unknown joint distribution
F(x) = C(F1(x1), . . . ,Fn(xn)) for copulaC and marginals
F1, . . . ,Fn. We are interested in the upper tail ofF(x) above
a threshold vectorst = (t1, . . . , tn)

′. In the univariate case we

have that forxj >= tj and tj high enough, the tail of the
marginal distributionFj may be approximated by a General-
ized Pareto distribution (GPD,Coles, 2001):

Fj (xj ) ≈ F̃j (xj ) = 1− λj

(
1+ ξj

xj − tj

βj

)1/ξj

, (3)

whereλj = F̃j (tj ), ξj 6= 0 is the shape parameter, andβj is
the scale parameter.

A heuristic argument suggests that a similar approach
should be viable for multivariate threshold exceedances. It
has been demonstrated byReskin(1987) that for x ≥ t we
can use the approximation:

F(x) ≈ F̃ (x) = C0(F̃ (x1), . . . , F̃n(xn)), (4)

whereC has been replaced by its limiting EV copulaC0.
In other words, we can model the probabilitiesF using the
GPD models for the marginals, andC0 for the copula. In line
with many examples of this model found in the literature, we
use the Gumbel copula family as the limiting EV copulaC0
(Steinkohl et al., 2010; McNeil et al., 2005). The Pickands
function for the Gumbel copula is:

A(w) = (wr
+ (1− w)r)1/r (5)

wherer is the dependence parameter. The bi-variate Gumbel
EV-copula is then completely described by Eqs. (2) and (5).

3.2 Statistical model fitting

We usecensored likelihood(Ledford and Tawn, 1996) to fit
the copula and marginal distribution parameters. In the bi-
variate case, the overall likelihood is the product of 4 partial
likelihoods that account for both components being above
or below thresholds, or one component above and the other
below. We compute copulas for all pair combinations of
996 CRESTA cells where at least 10 data points are above
the threshold. The marginal distributions are assumed to be
GPD.

Goodness of Fit (GOF) tests for multivariate distributions
is an active field of research, and several methods have been
proposed.Scḧolzel and Friederichs(2008) provided a use-
ful summary of the ongoing research literature. Multidimen-
sional chi-square tests as given inFermanian(2005) are easy
to apply but require probability binning and there is no opti-
mal choice of bin width and number. More refined GOF tests
are based on the Probability Transform Integral and project
the multivariate problem into a univariate distribution allow-
ing standard chi-square tests to be applied. These methods
were initially proposed byBreymann et al.(2003) and fur-
ther refined byBerg and Bakken(2005).

A natural choice for our analysis is the goodness of fit test
proposed byGenest et al.(2011) for bivariate extreme-value
copulas. Under the assumption thatC is an extreme value
copula, we aim to test the null hypothesis thatA belongs to
a specific parametric class, in our case the Gumbel copula
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Fig. 3. Pickands functions and scatter plots of[3]s peak gust from historical reconstruction footprints for location pairs London-Amsterdam
and London-Paris.

family. The test is based on the Cramèr-von Mises statistic
that measures the distance between an estimate of the para-
metric Pickand dependence function and the non-parametric
Pickands estimators proposed byGenest and Segers(2009).
The test is estimated via a parametric bootstrap procedure
(Yan, 2007; Kojadinovic and Yan, 2007; R Development
Core Team, 2011). We retain all copulas for which the null
hypothesis can not be rejected with a confidence level of
95 %.

The Pickands functions for the pairs Amsterdam-London
and Paris-London, together with gust scatter-plots, are shown
in Fig. 3. The record of wind gusts at Amsterdam-London
shows a higher degree of dependence than London-Paris due
to the typical zonal direction of storm tracks. Correspond-
ingly, the Amsterdam-London Pickands function is closer
to the theoretical minimumA = max(w,1− w) for com-
plete dependence (dashed gray line) than the London-Paris
Pickands function.

3.3 Tail dependence

Scalar measures can be useful in providing a higher-level
and more intuitive view of pairwise dependence than the
Pickands function. There are various scalar measures of spa-
tial dependence, such as linear correlation, rank correlation
and the coefficient of tail dependence. Most meteorological
and climate data belong to non-Gaussian skewed or bounded
distributions (e.g. Scḧolzel and Friederichs, 2008; Wilks,
2005) and so linear correlation coefficients are inappropriate
(referred to as Fallacy 1 inMcNeil et al., 2005). Low lin-
ear correlation between the values at two locations of a non-
Gaussian meteorological variable should not be interpreted
as a proof of independence. Rank correlation and tail depen-
dence are more general copula-based measures suitable for
the parametrization of the non-elliptic multivariate distribu-
tions occurring in meteorology.

The tail dependence coefficient provides a scalar measure
of the dependence between two locations in the tail of a bi-
variate distribution. This index was developed byGeffroy
(1958) andSibuya(1960). Falk et al.(2000) provides an in

Nat. Hazards Earth Syst. Sci., 12, 1769–1782, 2012 www.nat-hazards-earth-syst-sci.net/12/1769/2012/



A. Bonazzi et al.: Spatial structure of European storms 1775

depth description of its properties.Steinkohl et al.(2010)
applied this measure to analyze the dependence structure of
wind speeds at various meteorological masts in Denmark.

The tail dependence coefficientχ is the conditional prob-
ability of one variable being extreme given that the other is
extreme:

χ = lim
t→∞

P(FX(X) > t |FY (Y ) > t) (6)

It can be shown thatχ is related to the Pickands represen-
tation A – defined for the Gumbel EV-Copula in Eq. (5) –
by:

χ = 2

(
1− A

(
1

2

))
χ is a probability ranging between 0 (independent copula)
and 1 (comonotonicity copula). As an aside, note that the co-
efficient of tail dependence of the Gaussian copula is always
0 regardless of the value of the correlation coefficient, hence,
the Gauss copula is asymptotically independent in both tails.

The estimatedχ values for the pairs Amsterdam-London
and Paris-London, shown in Fig.3, are 0.67 and 0.31, re-
spectively. In other words, if an extreme peak gust from
an extra-tropical cyclone is observed in London, there is a
probability of 0.67 that an extreme peak gust value will be
recorded in Amsterdam, and only a 0.31 probability that this
would happen in Paris. The spatial structure of tail depen-
dence is of obvious importance for re/insurance applications.
The greater the spatial extent of this dependence in the do-
main, the greater the aggregated damaging hazard from indi-
vidual storm events, which will tend to produce thicker tails
of storm risk distributions.

4 Results

The spatial structure of European windstorms is now ex-
plored in greater detail. Section 4.1 describes the spatial
structure of the tail dependence in the domain, with emphasis
on some of the major cities. Section 4.2 assesses the variabil-
ity of the windstorm tail dependence structure with a major
mode of climate variability in Europe often used to charac-
terize climate change. Finally, results from an alternative and
simpler method of charactertizing the gust dependence struc-
ture are compared to those from our copula method.

4.1 Spatial structure of tail dependence

The tail dependence coefficient (defined as the probability of
observing an extreme gust at one location, given that an ex-
treme gust is observed at the second location, see Eq.6), was
estimated for each combination of pairs of the 996 CRESTA
cells in the 15 countries in our domain. It was found that
tail dependence is generally a function of distance between
centroids of CRESTA cells, see Fig.4. The tail dependence
is consistently high up to a CRESTA separation distance of

Fig. 4. Tail dependenceχ as a function of distance between
CRESTA centroids and orientation. Zonal CRESTA pairs are de-
fined to have bearing angle between 90 and 120 degrees. Black
vertical line (shown atx = 30 km) shows mean CRESTA grid spac-
ing.

500km: the averageχ value is 0.49. This illustrates the im-
portance of capturing the right spatial correlation structure
for extra-tropical storms. On average over all pairs of lo-
cations, we find that any two locations within a radius of
500 km have probability 0.49 of experiencing extreme gusts
during the passage of a singe extra-tropical storm given that
one of the locations is hit. Figure5 shows four maps of
tail dependence coefficients centred in London, Copenhagen,
Paris and Berlin. These maps depict the probability of ob-
serving extreme gusts at any location in Europe given that
one of these four cities is hit;χ equals 1 at the location where
we centered the plot, and slowly decreases as the separa-
tion distance increases. These four cities have a dependence
structure preferentially orientated along the zonal direction
of the main storm track system.

The directional dependence of this spatial structure was
quantified by specifying a zonal subset of CRESTA pairs for
which the eastern CRESTA is situated between 60 and 120
degrees of the western CRESTA. It was found that the zonal
tail dependence extends further than in meridional tail de-
pendence, see Fig.4. At a CRESTA separation distance of
500–1000 km, the probabilityχ is 0.15 when averaged over
all copulas, and rises to 0.26 for pairs of CRESTAs in the
same latitude zone: the probability of joint extreme events
almost doubles in the zonal direction.

This spatial anisotropy of the tail dependence contributes
significantly to the behavior of joint wind gusts experienced
at specific locations. CRESTA cells were selected for each of
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Fig. 5. Maps of tail dependence coefficientsχ , centered in London(a), Copenhagen(b), Paris(c), and Berlin(d). Each map showsχ -values
between selected cities and all other CRESTAs in the domain.

22 major European cities; Amsterdam, Berlin, Copenhagen,
Hamburg, London, Munich, Paris, Bordeaux, Dublin, Ed-
inburgh, Frankfurt, Lyon, Manchester, Stockholm, Vienna,
Zurich, Oslo, Bratislava, Prague, Warsaw, Luxembourg and
Brussels. Figure6 is a visualization of the pairwise relations
using cities as vertices and tail-dependence as edge strength
with cut-off valueχ = 0.4.

All vertices are connected by at least one edge with the
exclusion of Oslo and Stockholm. Scandinavian cities lie on
the edges of the graph. The three major extra-tropical storms
in the historical record for Denmark, Sweden and Norway
are respectively Anatol, Erwin and Nyttarsdag which were
mostly confined to the Scandinavian region. Based on an
integral measure of storm intensity and area (see Eq.7) Nyt-

tarsdag has been the most intense hazard event in Norway
and is the 45th in Sweden and 53rd in the UK. Anatol ranks
as the first and second most intense storm in Denmark and
Sweden, the 10th in Poland and 32nd in the Netherlands. Er-
win has been the most intense storm in Sweden, the second
in Denmark and the 12th in the UK.

On the other hand, cities such as Amsterdam, Brussels,
Frankfurt and Hamburg, closer to the center of the domain,
are found in the core of the graph. Key drivers of this wide
region of highly inter-correlated vertices are storms in the
1990s. Storm Daria ranks as the first or second most intense
national event in the UK, Germany, Belgium, and Nether-
lands. Storm Vivian ranks in the top four most intense
national events in the UK, Germany, Denmark, Belgium,
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Fig. 6. The graph synthesizes the strongest tail dependences be-
tween European capitals. Each circle (vertex) represents a city and
connections are drawn for pair of cities whose tail dependence is
bigger than cut off valueχ = 0.4 . The graph can also be inter-
preted as a representation of the triangular matrix of tail dependence
coefficients between pairs of cities. Graph orientation is randomly
chosen.

Switzerland, Luxemburg, Ireland, and the Czech Republic.
London and Paris, withχ = 0.31, are not linked in the graph.
An in-depth analysis of the London-Paris dependence struc-
ture is presented in Sect. 4.2.

East European cities such as Warsaw, Vienna and Prague
are linked to German cities that lie in the middle of a large re-
gion of correlations, extending both eastward and westward
of these German cities.

4.2 Benchmarking catalogues of storms

As mentioned in the Introduction, a catastrophe model con-
tains a stochastic set of events that expands the time-frame of
the historical catalogue to thousands of years. Multi-variate
distributions are readily extracted from these stochastic cat-
alogues using empirical Cumulative Distribution Functions
(CDFs). There is a need to ensure that the synthetic storms of
a catastrophe model are rooted in historical, observed behav-
ior. We show here how the copula-based analysis of histori-
cal storms can be used to define benchmarks of storm spatial
structure, for validation of this important aspect of catastro-
phe models.

The maps of tail dependence coefficient provide condi-
tional probabilities of gust exceedance between one point and
all others in the model domain. Here we choose to view one
pair of locations, for many different gust exceedance values.

For benchmarking purposes, we define targets as univariate
functions of joint distributions of wind gust at two different
locations. Minimum, maximum and mean gust at any two lo-
cations are possible choices for the univariate function. The
maximum gust does not guarantee damage at both locations
and is therefore not appropriate. The mean gust is a poten-
tially misleading indicator of joint damage, given the expo-
nential nature of damage functions. For these reasons, we
concentrate on the minimum gust (MG).

The simplification of considering scalar functions allows
univariate extreme distributions to be fitted. The tail of a ran-
dom variable defined as the scalar function of multivariate
random variables can be generally approximated by a GPD
(Leadbetter and Rootzen, 1988). Hence two methods can be
used to estimate the distribution of true MG; (i) fit a univari-
ate GPD function; (ii) fit extreme value copulas.

Here we focus on the pairs London-Paris and Berlin-Paris
to provide an example of this methodology. London and
Paris experienced exceptional gusts (and corresponding dam-
age) during storms Daria (1990) and Lothar (1999), respec-
tively, with measurements showing gust wind speed well
above 35 m s−1 in city stations. However, there is no record
of gusts above 25 m s−1 at the two locations during the pas-
sage of a single windstorm: storms Daria and Lothar were
the most damaging storms in Europe for decades but neither
of the two storms was felt strongly in both Paris and London.
Based on our historical reconstructions of windstorm foot-
prints, the largest MG in London and Paris was recorded dur-
ing the passage of storm Vivian in 1990. Panel (a) of Fig.7
shows the exceedance probability of MG between Paris and
London for both methods, together with the marginal gust
distributions at each site. Whilst the univariate and copula
targets agree at return periods (RP) of 10 yr and shorter, they
diverge at longer RPs. The univariate GPD matches the ob-
served MG from RP10 to 40, whilst the copula-based es-
timate follows an exponential pattern that is similar to the
slope of the Paris marginal gust distribution. As a conse-
quence, the GPD-based estimate is 5 m s−1 lower than EV-
Copula target at RP200 (panel (a) of Fig.7).

On the other hand, MG targets for Berlin-Paris derived
from univariate GPD and EV-Copulas are substantially in
agreement (panel (b) of Fig.7). At RP200 both target MGs
are just below 26 m s−1. The exponentially-shaped marginal
distribution of gust in Paris does not translate into a fat-tailed
MG distribution because the Paris-Berlin tail dependence co-
efficient is 0.01, i.e. the two distributions are close to tail
independence.

London-Paris and Berlin-Paris have experienced compa-
rable MGs over the last 40 yr, but London-Paris observa-
tions show an higher degree of dependence than Paris-Berlin,
which is mainly driven by a cloud of medium-intensity
storms hitting Paris and London with similar intensities. In
fact rank correlations for London-Paris and Berlin-Paris are
0.36 and 0.03 respectively. The univariate GPD method can
not discriminate between these pairs of locations on the basis
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Fig. 7. Calibration targets for London-Paris(a) and Berlin-Paris(b). Gray lines and dots show marginal gust Exceedance Frequencies (EF
[yr−1]) and observed gust values at each location separately. Red dots show observed M(inumum) G(usts) exceeded at the two locations
during the passage of a single storm. Solid blue lines depict targets as derived from univariate GPD fiting on observed MGs (dashed blue
lines represent 95 % confidence level), while black solid lines show EV-Copula targets (95 % confidence level is shown in yellow). Note that
EV-Copula and univariate GPD targets differ for London-Paris and are in much closer agreement for Berlin-Paris.

of historical MG values and produce similar estimates of MG
at all RPs. The EV-Copula method factors in the strength of
tail dependence which results in clear separation of MG esti-
mates for RPs longer than 10 yr for London-Paris and Berlin-
Paris.

4.3 Sensitivity to climate variability

Stochastic catalogues of storms are usually based on the
longest possible historical climatology with no regard to
climate variability and possible future trends. In this sec-
tion, the sensitivity of aggregated damaging hazard to cli-
mate variability in Europe is addressed. The mechanisms of
change will be assigned to the components of the joint dis-
tribution, namely the storm frequency, marginals and storm
dependence structure.

The North Atlantic Oscillation (NAO) is the major mode
of inter-annual variability in the winter-time in the north
Atlantic basin (Wallace and Gutzler, 1981) and modulates
the atmosphere and surface climate characteristics in north-
ern and central Europe through variations in orientation and
strength of the Atlantic jet-stream (Kushnir, 2006). The NAO
has been found to modulate the variability of extreme storms
in the Atlantic and European sector via these changes to the
jet-stream, e.g.Cusack(2012). We therefore explore sensi-
tivity of joint damaging hazard to changes in the phase of the
NAO.

To identify a signal of NAO modulation on damaging wind
storms, we separated the 135 historical reconstructions into
two groups according to the phase of the monthly NAO index
published by NOAA (http://www.cpc.ncep.noaa.gov). This
assigns 20 yr to the positive NAO phase (NAO+) and 18 to
the negative NAO phase (NAO−). To counteract the unwel-
come effects of small sample sizes (and hence larger uncer-
tainties) caused by splitting the data into two groups, the
CRESTA level data have been aggregated into a regional
Storm Severity Index (SSI) defined as:

SSI=

(∑
(vi − v0)

3
· Ai∑

Ai

)1/3

(7)

wherevi is the wind gust at celli, Ai is the area of thei-th
CRESTA cell,v0 is a threshold set to 20 m s−1, and the sum-
mation is over all CRESTA cells in the studied region. The
SSI is a hazard-based index which correlates closely to ag-
gregated damages due to storms. It has constituted the basis
of the first European windstorm parametric index Cat Bond
undertaken by RMS and issued in 2000. There are other mea-
sures of storm intensity based solely on winds (e.g.Lamb,
1991; Klawa and Ulbrich, 2003; Leckebusch et al., 2008);
however, the index defined in Eq. (7) has been chosen for its
relevance to the re/insurance industry.

The SSI is defined for four regions with storm variabil-
ity governed by the NAO (Mailier et al., 2005): UK south
of 53◦ N (south-UK), France north of 48◦ N (north-FR),
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Fig. 8. SSI event Exceedance Frequency (EF) for the regions south-UK, west-DK and south-UK + west-DK. Dots/Triangles/Crosses are
observed values, while solid lines are estimates based on GPD (south-UK,west-DK) or EV Copula (south-UK + west-DK). Panel(d) depicts
the Pickands function for south-UK – west-DK copulas for the three cases considered; no extremal dependence is evident during the negative
NAO phase (NAO−), while a weak dependence structure emerges during the positive NAO phase (NAO+).

Germany north of 51◦ N (north-DE), and Denmark west of
14◦ E (west-DK). Bivariate EV-copulas are fit to pairs of re-
gions for both the NAO+ and NAO− subsets of data, and for
the entire record of historical wind storm events. We present
results in terms of expected frequency of events above thresh-
old and we refer to RP, in a rather loose sense, as the in-
verse of frequency. We estimate the RPs of the sum of SSI
over a pair of regions from random samples drawn from EV-
copulas; the SSI RPs for each region are derived from ran-
dom samples of marginal distributions.

Figure8 shows the RPs of SSI in region south-UK, west-
DK and for the sum of SSI in south-UK + west-DK for neg-
ative and positive NAO phases, and the full record. Extra-
tropical storms are more likely to happen during positive
phase of NAO− [64] % of events used in this analysis oc-
curred during NAO+ months – and we consistently estimate

higher SSI values at all return period for the NAO+ set. Fig-
ure 8 indicates that EV-copulas are good estimators of the
distribution of sum of SSI and can be used to estimate the
conditional probability of extremes.

Over the 6 combinations of pairs from 4 regions, only
two pairs (south-UK + west-DK, and south-UK + north-FR)
show a variation greater than 10 % (+18 and +10 %, respec-
tively) in the strength of tail dependence between NAO+ and
NAO−. Region (west-DK, south-UK) shows no extremal de-
pendence during negative NAO but a weak dependence struc-
ture emerges during its opposite phase, see Fig.8.
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Fig. 9. M(arginal), F(requency) and C(opula) contribution to south-
UK + west-DK SSI EEF changes due to NAO phase (+ positive/−

negative). M+/F+/C+ and M−/F−/C− have been fitted to data and
are identical to red lines in panel b and c of Fig.8, while M−/F+/C+,
M+/F−/C+ and M−/F−/C+ are synthetic Copulas constructed us-
ing NAO−components except one. Frequency distribution is the
single most important driver of SSI EEF change going from NAO−

to NAO+ up to RP 200 yr. For longer RPs the increase of tail de-
pendence observed during positive NAO phase plays a comparable
role.

An experiment was run to analyze the changes in the sum
of SSIs in regions south-UK and west-DK according to NAO
phase.

We separated the parameters of the Gumbel EV-copula
distributions in 3 groups: the frequency for storm occurrence
(F), the scale and shape parameters of the marginal GPDs
(M) and the dependence parameter of the Pickands function
(C). For NAO+ phase we estimated parameters M+,F+ and
C+. Similarly for NAO− years we estimated parameters
M−, F− and C−.

Once the F, M and C parameters were known, the total sum
of SSI in the two regions could be estimated by sampling
from the joint distribution. In addition to positive and neg-
ative NAO Copulas – hereafter M+/F+/C+ and M−/F−/C−

– three Copulas were created, replacing one component of
M−/F−/C− with its positive counterpart. The synthetic
Copulas M+/F−/C−, M−/F+/C− and M−/F−/C+ were then
used to assess the relative importance of each NAO+ compo-
nent as shown in Fig.9.

The difference in sum of SSI due to changes in frequency
(3.35 events per year during NAO+, and 1.16 events per
year during NAO−, based on comparing M+/F−/C− with
M−/F−/C−) is the dominant contributor to total changes
in the sum of SSI between NAO+ and NAO− years up to

RP 200 yr. At longer RPs the 18 % increase in the strength
of tail dependence (based on comparing M−/F−/C+ with
M−/F−/C−) plays a similar role to the other characteristics
in determining the overall change.

This result suggests that a relatively minor change in the
dependence structure can be more important than a major
change in the frequency distribution in terms of joint damag-
ing hazard at long return periods. Damaging hazard changes
by small amounts at long return periods (low frequency)
therefore increases in frequency produce little change. On
the other hand, changes in the strength of dependency alter
the probability of co-occurrence of extreme gust and this can
have a large effect on aggregate damage at long return peri-
ods.

5 Summary

The potentially severe and widespread damage from Eu-
ropean windstorms stimulates interest in risk management.
Companies in the re/insurance sector usually carry risks at
multiple locations and hence the spatial structure, as well as
the local wind intensity, is required for accurate estimates of
damaging hazard caused by windstorms. Ideally, the esti-
mates of multi-location risk would be based on windstorm
events drawn from historical records. However, there are
specific needs for robust estimation of the characteristics of
extreme storms with return periods exceeding the observa-
tional record of such events. As a result, empirical methods
for defining extreme windstorm events are rather inaccurate,
and other approaches are required.

The emerging solution is based on General Circulation
Models (GCMs) and nested high-resolution regional mod-
els to generate catalogues of stochastic windstorms. Though
the GCMs are rooted in basic laws of dynamical motion and
physical processes, the simulated near-surface peak gusts
contain biases that require calibration and validation to en-
sure appropriate representation of extreme peril behavior.
The brevity of the historical record of storms is extended
by these stochastic catalogues of storms, using our under-
standing of atmospheric behavior integrated into the GCMs
together with calibration to historical data.

The calibration and validation of the GCM-produced
stochastic catalogues of storms is critical to the pricing of
risk. The local wind climatology can be modeled with fairly
standard statistical models such as peaks-over-threshold to
produce estimates of local gusts for return periods exceeding
the observation record. However, the spatial structure of the
storms requires careful assessment too. We have investigated
a simplified model of the spatial dependence structure of Eu-
ropean wind storms in this analysis. Near-surface 3 s peak
gust data were obtained from a variety of national meteoro-
logical centers and private data suppliers to form a history
of European wind of the past 40 yr. Spatial maps of wind-
storm peak gust footprints were reconstructed for 135 of the
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most important damaging events in the past four decades.
Extreme-value copulas, i.e. parametric models which cou-
ple univariate information, were fitted to the set of historical
events to provide information on the spatial dependence of
damaging wind storm activity in Europe.

The coupling between pairs of locations was assessed us-
ing the tail dependence coefficient. We find that within a
radius of 500 km there is about a 1 in 2 chance that any
pair of locations would simultaneously experience damaging
peak gusts (defined as gusts above 20 m s−1), conditional on
one location being hit by a damaging gust. Furthermore, the
tail dependence exhibits a distinct anisotropic structure with
stronger coupling in the zonal direction, which is consistent
with the dominant track of extra-tropical cyclones from west
to east. We present maps of observed tail dependence coeffi-
cients centered at different major cities, which may be used
to assess stochastic storm catalogues.

The joint distribution of gusts was condensed into a uni-
variate form by considering the minimum gust at a pair of
locations. Two estimates of the distribution of extreme val-
ues were made: the first using the copula method, and the
second by fitting the GPD directly on this scalar function.
Estimates of joint information at return periods greatly ex-
ceeding data periods are inherently uncertain, and the inclu-
sion of a different model based on directly fitting the GPD
to minimum gusts can provide indications of such uncertain-
ties. London-Paris offers an interesting case study. The de-
pendence structure of the extreme value copula implies sig-
nificantly stronger minimum gusts at return periods of 50 or
more years than direct GPD fitting.

Finally, we used extreme value copulas to analyze the
role of climate variability in the joint distribution of an
aggregate measure of storm intensity and area across Eu-
ropean countries. Inter-annual variability, described by the
North Atlantic Oscillation, modulates the main orientation
of the storm tracks and the frequency of storm events. We
found that the joint distribution of UK and Danish storms
is sensitive to the phase of the NAO. Years when the NAO
is in its positive phase correspond to significantly higher
event frequencies, which is the dominant cause of increased
risk at shorter return periods. However, at return periods
of 200 yr or more, the elevated tail dependence strength
between the marginal distributions of aggregated damaging
hazard contributes as much to the greater risk as the increase
in event frequencies.

Edited by: U. Ulbrich
Reviewed by: M. Haylock and another anonymous referee
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