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Abstract. A combined regional drought analysis and fore-
cast is elaborated and applied to the Aison River Basin
(Greece). The historical frequency, duration and severity
were estimated using the standardized precipitation index
(SPI) computed on variable time scales, while short-term
drought forecast was investigated by means of 3-D loglin-
ear models. A quasi-association model with homogenous
diagonal effect was proposed to fit the observed frequen-
cies of class transitions of the SPI values computed on the
12-month time scale. Then, an adapted submodel was se-
lected for each data set through the backward elimination
method. The analysis and forecast of the drought class tran-
sition probabilities were based on the odds of the expected
frequencies, estimated by these submodels, and the respec-
tive confidence intervals of these odds. The parsimonious
forecast models fitted adequately the observed data. Results
gave a comprehensive insight on drought behavior, highlight-
ing a dominant drought period (1988–1991) with extreme
drought events and revealing, in most cases, smooth drought
class transitions. The proposed approach can be an efficient
tool in regional water resources management and short-term
drought warning, especially in irrigated districts.

1 Introduction

Drought is an extreme recurrent climatic event characterized
by lower than normal precipitation. Although it occurs in all
climatic zones, its characteristics vary significantly from one
region to another. Drought conditions can have critical envi-
ronmental and economical impacts, especially in high water
demanding areas with intensive agricultural activity. Various
definitions of drought have been used, reflecting differences
in regions, needs, and disciplinary approaches. Dracup et
al. (1980) associate drought with precipitation (meteorolog-
ical), streamflow (hydrological), soil moisture (agricultural)

or any combination of these parameters. A more extended
classification is provided by Wilhite and Glantz (1985),
where four approaches are proposed: meteorological, hy-
drological, agricultural and socio-economic. The first three
approaches deal with techniques to measure drought as a
physical phenomenon, while the last one relates drought and
socio-economic impacts that occured when demand for eco-
nomic goods exceeds supply, as a result of a weather-related
shortfall in water (Mishra and Singh, 2010).

In order to monitor and quantify drought, several in-
dices have been proposed. Drought indices are compos-
ite numerical figures incorporating mainly values of hydro-
meteorological indicators. A drought index usually measures
the departure from the local normal condition in a mois-
ture variable based on its historical distribution (Dai, 2011).
Precipitation based drought indices are the first indicators
of droughts, since hydrological drought emerges a consid-
erable time after a meteorological drought has been estab-
lished (Wilhite and Buchanan-Smith, 2005), due to the effect
of storage. Paulo and Pereira (2006), in their comparative
work on meteorological drought indices, note that drought
characterization by means of Standardized Precipitation In-
dex (SPI) and Palmer Drought Severity Index (PDSI) pro-
duce more coherent information than theory of runs, but SPI
is easier to apply in real cases since it requires less data
(namely only precipitation data) than PDSI. The SPI has the
advantage of statistical consistency and the ability to reflect
both short-term and long-term drought impacts (Guttman,
1998; Hayes et al., 1999). Another advantage of the SPI
is that it is independent of time period, location and cli-
mate. Therefore, SPI values are more suited to be used as
drought triggers in risk management and decision analysis
(i.e. thresholds that determine when drought management
actions should begin and end) and can be tailored to time
periods of users’ interest (Edossa et al., 2010).
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Figure 1. Aison River basin – Pieria (Greece) 3 

4 Fig. 1. Aison River Basin – Pieria (Greece).

As drought management is increasingly adopting a risk-
based approach (Sene, 2010), many countries are implement-
ing drought monitoring, forecasting and early warning sys-
tems. Towards this direction, general guidelines to develop a
drought management plan in compliance with the European
Water Framework Directive 2000/60 objectives are also pro-
posed by the European Group on drought and water scarcity
(Rossi, 2009). In this context, the stochastic properties of the
SPI time series can be used for predicting the likelihood and
potential severity of future droughts, thus assisting in drought
management. Forecasting techniques based on SPI include
Markov chains, loglinear models (Paulo et al., 2005), neural
networks (Mishra et al., 2007), renewal processes (Mishra et
al., 2008), ensemble forecasting (Hwang and Carbone, 2009)
and other stochastic techniques (Cancelliere et al., 2007).

Aiming to uncover drought behaviour in an agricultural
region, namely the Aison River Basin in Northern Greece,
a combined regional drought analysis and forecast is elab-
orated and applied. The historical frequency, duration and
severity of meteorological drought were estimated using
the SPI computed on variable time scales, while short-term
drought forecast was investigated by means of loglinear mod-
els. The adopted methodology is applied at distinct sites (lo-
cations of meteorological stations) as well as for the whole
study area, in order to support drought management deci-
sions at both farm and basin scale.

2 Study area and data

Aison River Basin is located in Northern Greece and cov-
ers an extent of approximately 730 km2 (Fig. 1). The Aison
River drains the water of the central part of the prefecture of

Table 1. Location of the stations considered for drought analysis.

Katerini Lofos Moschopotamos Vrondou

Latitude 22◦30′ 22◦23′ 22◦19′ 22◦26′

Longitude 40◦16′ 40◦13′ 40◦20′ 40◦12′

Elevation (m) 31 250 516 182

Table 2. Summary statistics of the annual precipitation time series
(mm).

Katerini Lofos Moschopotamos Vrondou

Count 34 34 34 34
Average 629.81 831.08 770.89 844.88
Median 624.65 803.4 714.85 815.1
Std. deviation 198.95 218.59 198.42 254.23
Minimum 321.4 411.6 387.8 404.1
Maximum 1341.67 1219.61 1339.0 1389.8
Range 1020.27 808.01 951.2 985.7
Areal prec. coef. 0.24 0.48 0.18 0.10

Pieria and constitutes the greatest receiver of surface water.
The primary economic activity in this area is agriculture, re-
sulting in high irrigation needs. As drought affects the farm-
ers’ choice of irrigation systems (Schuck et al., 2005), an in-
vestigation of the regional drought conditions is considered
as a prerequisite for adopting more technically efficient irri-
gation systems, especially during low precipitation periods.
In this study, precipitation measurements from four existing
stations have been used: Katerini, Lofos, Moschopotamos
and Vrondou. Their coordinates and elevations are presented
in Table 1, while their locations are displayed in Fig. 1.

The stations have a common period of monthly data last-
ing 34 yr, from 1974 to 2007. Basic summary statistics for
the annual time series are presented in Table 2. The areal
precipitation is calculated in a GIS environment through a
modified Thiessen method where polygons are created ac-
cording to both distance and elevation minimization. These
polygons provide weight coefficients (Table 2) that show the
influence of every individual station on the Aison Basin re-
lated to distance and elevation criteria.

The data required for drought assessment by general in-
dices are usually monthly data. The length of the time inter-
val is region- and case-specific. Different timescales are de-
signed to reflect the impacts of precipitation deficits on dif-
ferent water resources. Regions like the Mediterranean are
likely to experience multi-year as well as seasonal droughts
(Hisdal and Tallaksen, 2000). Thus, SPI values computed
from 3-, 6-, 9-, 12-, and 24-months aggregated rainfall ob-
servations are used for drought assessment in the study area.
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Table 3. Drought classification by SPI value.

SPI value Category SPI value Category

2.00 or more Extremely wet 0 to−0.99 Near normal (Mild drought)
1.50 to 1.99 Severely wet −1.00 to−1.49 Moderate drought
1.00 to 1.49 Moderately wet −1.50 to−1.99 Severe drought
0 to 0.99 Near normal (Mildly wet) −2 or less Extreme drought

3 Methods

The Standardized Precipitation Index (SPI), developed by
McKee et al. (1993), quantifies precipitation deficit for mul-
tiple timescales. The SPI relies on a long-term precipitation
record for a desired region, “ideally a continuous period of
at least 30 yr” (McKee et al., 1993). Moreover, a 30-yr pe-
riod is practically considered an adequately large data sample
for which reliable estimates can be determined (Arguez and
Vose, 2011). Monthly precipitation values accumulated for
the time scale of interest are fitted to a probability distribu-
tion, which is then transformed to the standard normal ran-
dom variablez with mean as zero and variance as one. The
z score is the value of the SPI. Positive SPI values indicate
greater than mean precipitation, while negative values indi-
cate less than mean precipitation. Because the SPI is stan-
dardized, wetter and drier climates can be represented in the
same way. Wet periods can also be monitored using SPI.

The classification system shown in Table 3 (McKee et
al., 1993) is used to define the strength of the precipitation
anomaly. The SPI value of−1 is commonly used as thresh-
old for drought event definition (Cancelliere et al., 2005).
The duration of the drought event is defined by its beginning
and end, while its severity is the accumulated SPI values for
the duration of the event and its intensity is measured as the
drought severity divided by the drought duration.

Computation of the SPI involves fitting a gamma probabil-
ity distribution to a given frequency distribution of precipita-
tion totals for a station. The gamma distribution is considered
to fit well to monthly precipitation time series and was orig-
inally used in the development of the SPI method. However,
other distributions can also be used if they better fit a partic-
ular time series (Guttman, 1999). An extended description
of the method used for the SPI computation can be found in
Edwards and McKee (1997).

Two-dimensional (2-D) and three-dimensional (3-D) log-
linear models have been successfully used to model the ex-
pected frequencies of class transitions of SPI values and
served as a tool for short-term forecasting of drought. Paulo
et al. (2005) used 2-D loglinear models to fit drought class
transitions matrices constructed for several sites in south-
ern Portugal. Based on SPI values, four drought classes
were considered: non drought (SPI≥ 0), mild drought
(−1< SPI< 0), moderate drought (−1.5< SPI≤ −1) and
severe or extreme drought (SPI≤ −1.5). The computed

odds and respective confidence intervals were used to predict
drought class transitions one month ahead, given the drought
class of a certain month. The 2-D quasi-association model
sufficiently fitted five of the data series used, while the 2-D
quasi-symmetry model was selected for two series.

Moreira et al. (2008) extended the work of Paulo et
al. (2005) using the same drought classification and 3-D log-
linear models to predict drought class transitions one month
ahead, given the drought class for the last two months,
which also allows for extending the prediction to two months
ahead. The quasi-association model adequately fitted their
data (14 sites in southern Portugal).

In the present work, a 3-D loglinear models approach was
used to investigate drought class transitions in the Aison
River Basin, based on the SPI values computed on a 12-
month time scale. Since in our study the SPI value of−1 was
the threshold for the definition of drought, the four drought
classes used were non drought (SPI> −1), moderate drought
(−1.5< SPI≤ −1.0), severe drought (−2< SPI≤ −1.5) and
extreme drought (SPI≤ −2).

The aim of this analysis is knowing the drought class of
two consecutive months to predict the drought class for the
following month. For this purpose a 3-dimension contin-
gency table is constructed for each station and for the areal
time series. A 3-D contingency table has three categories
(A,B,C) representing the three consecutive months (t − 2,
t −1 andt , respectively). Each category has a level (i,j,k

for A,B,C, respectively). The level of a category (month)
represents its drought class (1= non drought, 2= moderate
drought, 3= severe drought and 4= extreme drought). Each
cell of the contingency table shows the observed counts of
the transitions between the levels of the three categories, as
displayed in Table 4. For example,O421 is the number of
the occurrences of the three consecutive months with drought
classes 4, 2 and 1, respectively.

The construction of the contingency table is based on the
assumption that the monthly SPI series are homogeneous
and disregards which months the 3-month sequence involves.
Loglinear models with Poisson sampling (Agresti, 2002) are
used to fit the observed frequenciesOijk and estimate the
corresponding expected frequencies Eijk.

Several models were tested, among them the quasi – as-
sociation model , which was found to be adequate for most
of the cases studied by Paulo et al. (2005) and Moreira et
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Table 4. Three-dimensional contingency table of observed drought class transitionsOijk .

i

1 2 3 4

j j j j

k 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 O111 O121 O131 O141 O211 O221 O231 O241 O311 O123 O331 O341 O411 O421 O431 O441
2 O112 O122 O132 O142 O212 O222 O232 O242 O312 O223 O332 O342 O412 O422 O432 O442
3 O113 O123 O133 O143 O213 O223 O233 O243 O313 O323 O333 O343 O413 O423 O433 O443
4 O114 O124 O134 O144 O214 O224 O234 O244 O314 O423 O334 O344 O414 O424 O434 O444

Table 5. Selected loglinear quasi-association submodels for all sites.

Site Selected submodel RD df p-value

Katerini logEijk = λ+λA
i

+λB
j

+λC
k

+βuivj +ηvjwk +δ4I (i = j = k) 35.774 51 0.948

Lofos
logEijk = λ+λA

i
+λB

j
+λC

k
+βuivj +αuiwk +ηvjwk +τuivjwk

+δ4I (i = j = k)
44.262 49 0.665

Moschopotamos logEijk = λ+λA
i

+λB
j

+λC
k

+βuivj +ηvjwk +τuivjwk +δ2I (i = k) 31.204 50 0.983

Vrondou
logEijk = λ+λA

i
+λB

j
+λC

k
+βuivj +αuiwk +ηvjwk +τuivjwk

+δ1I (i = j)+δ3I (j = k)
38.994 49 0.846

Aison basin
logEijk = λ+λA

i
+λB

j
+λC

k
+βuivj +αuiwk +ηvjwk +τuivjwk

+δ4I (i = j = k)
42.231 49 0.742

al. (2006, 2008). The general form of this model is given by
the following equation:

logEijk = λ+λA
i +λB

j +λC
k +βuivj +αuiwk

+ηvjwk +τuivjwk + +δ1iI (i = j)+δ2iI (i = k)

+δ3j I (j = k)+δ4iI (i = j = k)

(1)

whereEijk is the expected frequency;A, B andC are the cat-
egories corresponding to three consecutive monthst−2, t−1
andt , i,j andkε{1,2,3,4} : 1 → non drought, 2→ moder-
ate drought, 3→ severe drought, 4→ extreme drought.λ is
the constant term of the model;λA

i ,λB
j ,λC

k represent thei-th,
j -th, k-th levels for categoriesA,B,C, respectively;ui , vj ,
wk are thei-th, j -th, k-th level scores of categoriesA,B,C,
respectively, usually taken asui = i,vj = j,wk = k, β,α, η,
τ are linear association parameters;δ1i , δ2i , δ4i are param-
eters associated to the i-th diagonal element of categoryA;
δ3j is a parameter associated with thej -th diagonal element
of categoryB, andI is an indicator function defined as:

I (condition) =

{
1 if condition is true
0 if condition is false

(2)

This model comprises two components: (a) the linear-by-
linear association model consisting of the first eight terms
and (b) the rest four terms describing the effect of the di-
agonal elements of the 3-D contingency table. These four
terms reflect the persistency of drought in the same class for

consecutive months. The persistency of each drought class
is associated with a different parameter value. For example
having the first two months in drought class 1 (i = j = 1) is
associated with the parameterδ11, while having the first two
months in drought class 2 (i = j = 2) is associated with the
parameterδ12. As a result, a maximum of 16 parameters are
needed to account for drought class persistency.

Since the homogenous form of the second component of
the model is more suitable for ordered variables (Lawal,
2003), which is our case, the following simplified form of
the equation of the model (Eq. 1) is proposed:

logEijk = λ+λA
i +λB

j +λC
k +βuivj +αuiwk

+ηvjwk +τuivjwk + +δ1I (i = j)+δ2I (i = k)

+δ3I (j = k)+δ4I (i = j = k)

(3)

This model is the extension of the 2-D parsimonious quasi-
symmetry model in three dimensions (Agresti, 2002; Lawal,
2003). Drought classes are ordered variables and the model
(3) exploits this characteristic, resulting in a reduced number
of estimated parameters. In this model drought class persis-
tency is homogenized, i.e. having the first two months in the
same drought class is associated with parameterδ1, regard-
less of the actual drought class. Thus, in the proposed model,
a maximum of only 4 parameters is required to account for
drought class persistency.
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Table 6. Estimated parameter values.

Parameters Estimates

Katerini Lofos Moschopotamos Vrondou Aison R. Basin

λ −40.505 −72.850 74.572 −72.271 −59.503

λA
i

[i = 1] 11.372 19.456 −16.278 21.357 16.427
[i = 2] 7.958 14.038 −12.512 15.318 11.821
[i = 3] 4.537 7.434 −6.894 8.055 5.781
[i = 4] 0 0 0 0 0

λB
j

[j = 1] 19.781 32.935 −37.042 27.646 26.553

[j = 2] 14.694 24.852 −29.659 20.687 19.956
[j = 3] 8.618 13.489 −16.446 11.101 10.426
[j = 4] 0 0 0 0 0

λC
k

[k = 1] 11.372 19.456 −16.278 21.357 16.427
[k = 2] 7.958 14.038 −12.512 15.318 11.821
[k = 3] 4.537 7.434 −6.894 8.055 5.781
[k = 4] 0 0 0 0 0

β 1.294 2.726 −3.055 2.504 2.174

α 0.811 1.620 0.727

η 1.294 2.726 −3.055 2.504 2.174

τ −0.419 0.358 −0.536 −0.327

δ1 0.764

δ2 0.728

δ3 0.764

δ4 1.142 0.868 1.051

By default, due to the definition of the SPI and the relevant
classification system, moderate, severe and extreme droughts
(classes 2, 3, 4) comprise a relatively small portion of the SPI
time series (McKee et al., 1993). Although they exhibit a
similar trend for persistency with class 1, as it was observed
in our data series, the numbers of the relevant observed fre-
quencies are small. Hence, homogenizing drought class per-
sistency and reducing the number of estimated parameters
resulted in models that fitted the data better than model (1) in
all our cases. Thus, in this work, a quasi-association model
with homogenous diagonal effect was considered more ap-
propriate to describe the observed drought class transitions.

The goodness of fit of a loglinear model is tested by a chi-
square test performed on the value of the residual deviance
(RD) of the model:

RD= 2
∑

i

∑
j

∑
k

Oijk log

(
Oijk

Eijk

)
(4)

The residual deviance has an approximate chi-square distri-
bution with degrees of freedom equal to the number of the
cells of the contingency table minus the number of linearly
independent estimated model parameters. If the p-value of a
model exceeds a chosen level of significanceα (in our case
α = 0.05), then the null hypothesis that the model fits well to
the data is not rejected.

Model (3) fitted adequately all data series studied in the
present work. For each station, an alternative submodel
was selected, including only the most significant parame-
ters through the backward elimination method. The selected
submodels and the respective residual deviance, degrees of
freedom (df) and p-value of the submodel are presented in
Table 5. The parameters of the selected submodels were esti-
mated by the maximum likelihood method. Their values are
presented in Table 6. The software used for model fitting was
SPSS 17.

The analysis and forecast of the drought class transition
probabilities are based on the odds of the estimated expected
frequencies. Odds are ratios of expected frequencies, as de-
fined by the following equation:

�kl|ij =
Eijk

Eij l

, k 6= l (5)

Odds represent how more probable an event is to occur
instead of another. Equation (5) means that, given that a site
was in drought classi at montht −2 and in classj at month
t −1, it is �kl|ij times more probable that at montht , it will
be in classk than in classl.

The odds have asymptotic normal distribution; thus the
log transform of the odds, which equals logEijk–logEij l ,
converges to a normal distribution more rapidly. For the

www.nat-hazards-earth-syst-sci.net/12/1561/2012/ Nat. Hazards Earth Syst. Sci., 12, 1561–1572, 2012
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Table 7. Areal precipitation – drought analysis results for all time scales.

SPI Drought Periods (SPI< −1) Number and duration of periods

Duration min mean Wet Near Normal Moderate dr. Severe dr. Extreme dr.
(months) (SPI> 1.0) (−1.0< SPI< 1.0) (SPI< −1.0) (SPI< −1.5) (SPI< −2.0)

SPI1

number 51 51 86 51 21 5
min −2.742 1 −2.74 −2.74 1 1 1 1 1
mean −0.001 1.27 −1.53 −1.50 1.27 3.23 1.27 1.29 1.00
max 3.283 3 −1.02 −1.02 3 13 3 3 1

total 65 65 278 65 27 5

total % 15.93 68.14 15.93 6.62 1.23

SPI3

number 31 28 41 31 15 5
min −2.695 1 −2.70 −2.14 1 1 1 1 1
mean −0.010 2.03 −1.55 −1.42 2.32 1.00 2.03 1.60 1
max 2.999 7 −1.00 −1.04 4 1 7 4 1

total 63 65 278 63 24 5

total % 16.01 68.47 15.52 5.91 1.23

SPI6

number 22 24 45 22 11 5
min −2.529 1 −2.53 −1.90 1 1 1 1 1
mean −0.004 2.77 −1.53 −1.31 3.17 1.00 2.77 2.00 1.60
max 2.975 9 −1.00 −1.02 7 1 9 7 4

total 61 76 266 61 22 8

total % 18.86 66.00 15.14 5.46 1.99

SPI9

number 15 21 41 15 8 3
min −2.568 1 −2.57 −1.93 1 1 1 1 1
mean −0.003 4.00 −1.54 −1.33 3.33 1.00 4.00 2.50 2.33
max 2.825 13 −1.00 −1.02 11 1 13 8 5

total 60 70 270 60 20 7

total % 17.50 67.50 15.00 5.00 1.75

SPI12

number 15 12 33 15 6 3
min −2.458 1 −2.46 −2.03 1 0 1 1 1
mean −0.001 4.27 −1.46 −1.28 5.00 0.97 4.27 3.17 3.67
max 2.824 13 −1.00 −1.00 12 1 13 11 8

total 64 60 273 64 19 11

total % 15.11 68.77 16.12 4.79 2.77

SPI24

number 8 7 39 8 6 4
min −2.369 1 −2.37 −1.80 1 0 1 1 1
mean 0.001 8.00 −1.67 −1.34 10.43 0.97 8.00 4.83 2.50
max 1.985 24 −1.00 −1.03 24 1 24 17 7

total 64 73 248 64 29 10

total % 18.96 64.42 16.62 7.53 2.60

Nat. Hazards Earth Syst. Sci., 12, 1561–1572, 2012 www.nat-hazards-earth-syst-sci.net/12/1561/2012/
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Table 8. Maximum values of drought characteristics for all stations and time scales.

max severity max intensity max duration

value month value period value period

SPI1

Katerini −2.41 Aug 1992 −2.11 Oct 1989 3 Nov 2006–Jan 2007
Lofos −2.30 May 2002 −2.17 May 2006 4 Jun 2000–Sep 2000
Moschopotamos −2.51 Sep 2001 −2.51 Sep 2001 3 Feb 1989–Apr 1989
Vrondou −2.61 Apr 1986 −2.61 Apr 1986 3 Jun 2000–Aug 2000
Aison Basin −2.74 Sep 2001 −2.74 Sep 2001 3 Jun 2000–Aug 2000

SPI3

Katerini −2.45 Jan 2007 −2.01 May 2000–Aug 2000 8 Oct 1989–May 1990
Lofos −2.93 Sep 2000 −2.87 Aug 2000–Sep 2000 7 Oct 1989–Apr 1990
Moschopotamos −3.05 Apr 1989 −2.54 Mar 1989–May 1989 6 Jan 1977–Jun 1977
Vrondou −2.51 Jan 2007 −1.85 Jun 1988–Sep 1988 8 Oct 1989–May 1990
Aison Basin −2.70 Jan 2007 −2.14 Jun 2005 7 Oct 1989–Apr 1990

SPI6

Katerini −2.78 Aug 2000 −2.13 Jun 2000–Sep 2000 9 Nov 1989–Jul 1990
Lofos −2.60 Jan 1990 −1.88 Nov 1989–Jul 1990 9 Nov 1989–Jul 1990
Moschopotamos −2.30 Oct 1984 −1.60 Feb 1977–Aug 1977 8 Dec 1989–Jul 1990
Vrondou −2.40 Sep 1988 −1.82 Nov 1989–Jul 1990 9 Nov 1989–Jul 1990
Aison Basin −2.53 Mar 1990 −1.90 Nov 1989–Jul 1990 9 Nov 1989–Jul 1990

SPI9

Katerini −2.73 Aug 1977 −1.88 Oct 1989–Sep 1990 12 Oct 1989–Sep 1990
Lofos −2.51 Apr 1990 −1.92 Aug 2000–Sep 2000 13 Sep 1989–Sep 1990
Moschopotamos −2.10 Jun 1990 −1.81 Apr 1977–Dec 1977 13 Sep 1989–Sep 1990
Vrondou −2.48 Apr 1990 −1.70 Aug 1989–Sep 1990 14 Aug 1989–Sep 1990
Aison Basin −2.57 Apr 1990 −1.93 Aug 2000–Sep 2000 13 Sep 1989–Sep 1990

SPI12

Katerini −2.47 Jul 1990 −2.07 Dec 1989–Nov 1990 12 Dec 1989–Nov 1990
Lofos −2.44 Mar 1990 −1.96 Nov 1989–Nov 1990 13 Nov 1989–Nov 1990
Moschopotamos −2.61 Nov 1977 −1.78 Nov 1989–Oct 1990 12 Nov 1989–Oct 1990
Vrondou −2.37 Mar 1990 −1.81 Oct 1989–Dec 1990 15 Oct 1989–Dec 1990
Aison Basin −2.46 Mar 1990 −2.03 Nov 1989–Nov 1990 13 Nov 1989–Nov 1990

SPI24

Katerini −2.47 Apr 1990 −1.58 Apr 1989–Dec 1991 33 Apr 1989–Dec 1991
Lofos −2.50 Nov 2001 −1.67 Sep 1989–Mar 1991 19 Sep 1989–Mar 1991
Moschopotamos −2.18 Aug 1978 −1.67 Jan 1998–Oct 1998 24 Mar 1989–Feb 1991
Vrondou −2.52 Apr 1990 −1.71 Oct 1988–Oct 1991 37 Oct 1988–Oct 1991
Aison Basin −2.37 Apr 1990 −1.80 Apr 1989–Mar 1991 24 Apr 1989–Mar 1991

Poisson sampling an estimator of the standard error is√
Var(log�kl|ij ). For the general form of the model applied

in this work (Eq. 3):

log�kl|ij = logEijk − logEij l =

= λC
k −λC

l +αui (wk −wl)+ηvj (wk −wl)

+τuivj (wk −wl)

+δ2I (i = k)−δ2I (i = l)+δ3I (j = k)−δ3I (j = l)

+δ4I (i = j = k)−δ4I (i = j = l)

(6)

Equation (6) was used for the calculation of the variance
of the logarithm of odds, since all the terms in the right hand
side of this equation are known and the variances and covari-
ances of the estimated parameters were computed as part of
the model fitting process.

The upper and lower bounds of the log-odds asymptotic
confidence interval with probability 1-a can be estimated as:

log�kl|ij±z1−α/2

√
Var(log�kl|ij ) (7)

wherez1−α/2 is the 1-α/2 quantile of a standard normal vari-
able.

The asymptotic confidence intervals for the odds are ob-
tained by exponentiating the corresponding asymptotic con-
fidence intervals of the logarithm of the odds. If a confidence
interval includes the unit, then the two events are considered
equally probable.
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Table 9. Observed and expected drought class transitions for the Aison River Basin.

observed i

1 2 3 4

j j j j

k 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 302 4 0 0 13 8 1 0 1 2 0 0 0 0 0 0
2 13 9 0 0 1 16 2 0 0 1 1 0 0 0 2 0
3 1 0 1 0 0 2 0 0 0 1 0 1 0 0 0 2
4 0 1 0 0 0 0 0 2 0 1 0 0 0 0 1 6

expected i

1 2 3 4

j j j j

k 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 299.71 7.96 0.03 0.00 13.72 6.61 0.17 0.00 0.43 1.31 0.21 0.01 0.02 0.33 0.34 0.14
2 13.72 6.61 0.17 0.00 2.68 16.87 0.69 0.03 0.12 1.25 0.67 0.15 0.01 0.35 0.84 0.84
3 0.43 1.31 0.21 0.01 0.12 1.25 0.67 0.15 0.01 0.29 1.44 0.36 0.00 0.08 0.49 1.16
4 0.02 0.33 0.34 0.14 0.01 0.35 0.84 0.84 0.00 0.08 0.49 1.16 0.00 0.03 0.37 5.98

4 Results and discussion

SPI values, based on the monthly precipitation time series,
for 1-, 3-, 6-, 9-, 12- and 24-month aggregation time scales
were used for drought analysis in the study area of Pieria.
The SPI value of−1 was selected as the critical value for
the definition of drought events. For the computation of the
SPI values, all precipitation time series were assumed to be
gamma distributed. The results of the drought analysis for
the Aison River Basin (areal precipitation) are presented in
Table 7.

Different aggregation time scales were used, as they re-
flect drought impacts on different types of water resources.
For all time scales, it can be seen in Table 7 that 30–45 %
of the total number of months with SPI< −1 belong to se-
vere or extreme drought classes. In most of the cases and
especially for small time scales, SPI values remained nega-
tive after the termination of a drought event, sometimes for
the whole period until the initiation of the next drought event.
Usually, on larger time scales the two events and the period
in between were considered as a continuous drought episode.
Consequently, longer aggregation time scales led to less but
more persisting drought events, as it is evident in the follow-
ing graphs of SPI3, SPI6, SPI12 and SPI24 for the Aison
River Basin in Fig. 2 (SPI9 graph is omitted due to space
limitations). This should be taken into account when SPI is
used as a drought indicator in the context of a drought mon-
itoring and early warning system, where certain SPI values
are selected as triggers for drought management. Although
the value of−1 is frequently used as the threshold defining
the initiation and termination of a drought event, it should
not be considered as the trigger for ending an issued warning
or a drought management action.

According to the applied drought event definition, the SPI
value can become negative without a drought necessarily oc-
curring. In Fig. 2, it can be noted that as the time scale
increases, the percent of the times that a negative SPI re-
sults in drought (SPI< −1) decreases. For example, 53 %
of the times the SPI3 goes below zero result in drought. This
percentage is 44 %, 41 % and 34 % for the SPI6, SPI12 and
SPI24, respectively.

Table 8 summarises for each drought characteristic its
maximum value and the period this value was recorded, for
all stations and aggregation time scales.

Among the identified drought periods at the local and re-
gional level, the period from October 1988 to July 1991
is pointed out as it includes almost all the drought events
with maximum duration (for all stations and all aggregation
time scales), and also most of the drought events with maxi-
mum intensity, especially in aggregation time scales equal or
greater than six months. During this period, almost the whole
Greek territory suffered from severe or extreme droughts (Li-
vada and Assimakopoulos, 2007). Similar drought condi-
tions were also observed in Italy (Rossi and Somma, 1995).
Other significant drought periods that were also identified
have an impact degree depending on the time scale and site
location. The drought period around the middle of the 1970s
was also reported by Loukas and Vasiliades (2004) in their
work concerning the region of Thessaly in Greece, which is
located southwest of the present study area.

The quasi-association model with homogenous diagonal
effects fitted properly the observed drought class transitions.
For each site, expected frequencies resulted from the appli-
cation of the submodel selected through the backward elimi-
nation method. As an example, the 3-D contingency tables of
the observed and expected frequencies of drought class tran-
sitions for the Aison River Basin are presented in Table 9.
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Fig. 2. SPI values of variable time scales for the Aison River Basin.

The odds of the expected frequencies and the respective
confidence intervals of these odds, which serve as a tool for
short-term drought forecasting, were computed for all sites.
In Table 10 odds and confidence intervals for the Aison River
basin data set are presented.

From a total of 96 odds for each site (all possible combina-
tions), the number of confidence intervals, not including the
unit, was 71 for Katerini, 70 for Lofos, 78 for Moschopota-
mos, 60 for Vrondou and 59 for the areal precipitation data
series. The results were quite satisfying, considering the fact
that due to the small number of the defined drought events,
many of the three month drought class combinations had an
observed frequency equal to zero. For the Aison River Basin
data set, for instance, zero observed frequencies were 38 out
of 64 (see Table 9).

Based on the computed odds and respective confidence in-
tervals, all possible combinations of drought classes for two
consecutive months (t −1, t) and the most probable drought
class for the following month (t+1), for each data series, are
presented in Table 11.

According to Table 11, smooth drought class transitions
appear to be more probable than transitions to classes two
or three levels more (or less) severe. Also, in most of the
cases the second month’s drought class is preserved in the
third month. These conclusions are in accordance with the
results of former studies (Paulo et al., 2005; Mishra et al.,
2007; Moreira et al., 2008) and with the fact that droughts
usually do not initiate or come to an end suddenly.

5 Concluding remarks

In the present work, the frequency, duration and severity
of meteorological drought in the Aison River Basin were
analysed using the SPI computed on variable time scales.
Monthly precipitation time series from four meteorological
stations operating in the study area and the areal precipitation
resulting from them composed the data sets for this analysis.

A number of drought events of different classes were de-
fined for all the time scales at the local (sites) and basin scale.
Most of them belonged to the moderate drought class, but
“extreme drought” events were also identified. Especially,
during the period from October 1988 to July 1991, the study
area suffered the longest-lasting and most severe drought.
Also, most of the months with maximum drought intensity
were observed in this time period.

Since SPI is a drought indicator independent of time and
space, the detected drought conditions for various sites and
time scales are comparable. Although in drought analysis the
SPI value of (−1) is frequently considered the critical value
for the termination of a drought event, drought management
actions should not end before SPI becomes positive, espe-
cially when the time scale of the SPI is small (i.e. SPI3 or
SPI6, which are often preferred when monitoring agricultural
and hydrological droughts).
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Table 10.Odds and respective confidence intervals for the Aison River Basin.

i j k l odds conf. interval bounds i j k l odds conf. interval bounds

Eijk /Eij l lower upper Eijk /Eij l lower upper

1 1 1 2 21.843 13.6082 35.0608 3 1 1 2 3.431 1.1074 10.6296
1 1 1 3 699.6305 162.5601 3011.0883 3 1 1 3 49.3921 4.8073 507.4746
1 1 1 4 17 295.3904 1007.7466 296 831.1036 3 1 1 4 548.7847 11.1006 27 130.3808
1 1 2 3 32.03 8.0463 127.5025 3 1 2 3 14.396 3.3576 61.7245
1 1 2 4 791.8061 49.8936 12 565.8703 3 1 2 4 159.9504 7.693 3325.6207
1 1 3 4 24.7208 3.9314 155.4448 3 1 3 4 11.1108 1.5215 81.1389
1 2 1 2 1.2048 0.66 2.1993 3 2 1 2 1.0421 0.4456 2.4375
1 2 1 3 6.0908 1.9585 18.9421 3 2 1 3 4.5569 1.0456 19.8602
1 2 1 4 23.7647 4.2363 133.3152 3 2 1 4 15.3789 1.6115 146.7635
1 2 2 3 5.0553 1.8922 13.5061 3 2 2 3 4.3727 1.5727 12.1577
1 2 2 4 19.7245 3.6134 107.669 3 2 2 4 14.7571 2.2302 97.6461
1 2 3 4 3.9017 0.9682 15.724 3 2 3 4 3.3748 0.7638 14.9122
1 3 1 2 0.1902 0.0532 0.6798 3 3 1 2 0.3165 0.1163 0.8617
1 3 1 3 0.1517 0.018 1.2813 3 3 1 3 0.1469 0.0394 0.5476
1 3 1 4 0.0934 0.006 1.4449 3 3 1 4 0.431 0.0887 2.0942
1 3 2 3 0.7979 0.251 2.536 3 3 2 3 0.4642 0.177 1.2174
1 3 2 4 0.4914 0.0782 3.0858 3 3 2 4 1.3615 0.4387 4.2256
1 3 3 4 0.6158 0.1599 2.3723 3 3 3 4 2.9332 0.7771 11.0706
1 4 1 2 0.03 0.0039 0.2329 3 4 1 2 0.0961 0.0224 0.4125
1 4 1 3 0.0038 0.0001 0.1405 3 4 1 3 0.0388 0.0036 0.4219
1 4 1 4 0.0004 0 0.0486 3 4 1 4 0.0121 0.0008 0.185
1 4 2 3 0.1259 0.0221 0.7165 3 4 2 3 0.4034 0.123 1.3233
1 4 2 4 0.0122 0.0006 0.2512 3 4 2 4 0.1256 0.0272 0.5808
1 4 3 4 0.0972 0.0171 0.5509 3 4 3 4 0.3114 0.1027 0.9436
2 1 1 2 5.1177 2.7017 9.6941 4 1 1 2 2.3002 0.4037 13.1047
2 1 1 3 109.894 21.9326 550.6281 4 1 1 3 22.1994 0.7184 686.0095
2 1 1 4 1821.2821 93.8622 35 339.754 4 1 1 4 165.3586 0.721 37 922.9151
2 1 2 3 21.4733 6.1224 75.3142 4 1 2 3 9.6512 1.4697 63.3758
2 1 2 4 355.8787 26.902 4707.8143 4 1 2 4 71.89 1.4457 3574.9489
2 1 3 4 16.5731 2.7489 99.9202 4 1 3 4 7.4488 0.7052 78.6756
2 2 1 2 0.3916 0.2079 0.7376 4 2 1 2 0.9692 0.2797 3.3587
2 2 1 3 5.2683 2.0726 13.3915 4 2 1 3 3.9416 0.405 38.358
2 2 1 4 19.1174 4.4829 81.5261 4 2 1 4 12.3714 0.3912 391.2549
2 2 2 3 13.4532 5.0469 35.8616 4 2 2 3 4.0667 1.0922 15.1424
2 2 2 4 48.8181 10.7707 221.2675 4 2 2 4 12.7643 0.9998 162.9563
2 2 3 4 3.6287 0.9275 14.1972 4 2 3 4 3.1387 0.5581 17.6532
2 3 1 2 0.2453 0.084 0.7165 4 3 1 2 0.4084 0.1375 1.2135
2 3 1 3 0.2526 0.0482 1.3248 4 3 1 3 0.6998 0.121 4.049
2 3 1 4 0.2007 0.0307 1.3101 4 3 1 4 0.9256 0.1126 7.6075
2 3 2 3 1.0294 0.3968 2.671 4 3 2 3 1.7136 0.6183 4.749
2 3 2 4 0.8179 0.2245 2.9803 4 3 2 4 2.2663 0.5127 10.0173
2 3 3 4 0.7945 0.2439 2.5884 4 3 3 4 1.3226 0.3834 4.5624
2 4 1 2 0.0537 0.0099 0.2923 4 4 1 2 0.1721 0.0426 0.6957
2 4 1 3 0.0121 0.0007 0.2132 4 4 1 3 0.1243 0.012 1.2919
2 4 1 4 0.0021 0.0001 0.078 4 4 1 4 0.0242 0.0019 0.309
2 4 2 3 0.2254 0.0562 0.9034 4 4 2 3 0.7221 0.2144 2.4314
2 4 2 4 0.0392 0.0046 0.3332 4 4 2 4 0.1406 0.0292 0.6775
2 4 3 4 0.174 0.045 0.6728 4 4 3 4 0.1948 0.0586 0.6473
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Table 11.Most probable drought class for montht+1, given the drought classes of the two previous months (t −1, t).

Katerini Lofos Moschopotamos Vrondou Aison R. Basin

t-1 t t+1 t+1 t+1 t+1 t+1

1 1 1 1 1 1 1
1 2 1 2, 1 2, 1 2, 1 2, 1
1 3 1, 2, 3, 4 2, 3, 4 3, 4 2, 3, 4 2, 3, 4
1 4 4, 3 4 4 4 4
2 1 1 1 1 1 1
2 2 2, 1 2 2, 1 2 2
2 3 1, 2, 3, 4 2, 3, 4 2, 3, 4 3 2, 3, 4
2 4 4, 3 4 4 4 4
3 1 1 1 1 1, 2 1
3 2 1 1, 2 1 2 1, 2
3 3 3 3 3 3 2, 3, 4
3 4 4, 3 4, 3 4, 3 4 4
4 1 1 1, 2 1 1, 2, 3, 4 1, 2
4 2 1 2, 3, 1 1 2, 3, 4 1, 2, 3, 4
4 3 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 3, 2 1, 2, 3, 4
4 4 4 4, 3 4, 3 1, 2, 3, 4 4

Short-term forecasting of droughts was based on the odds
of the expected frequencies of drought class transitions and
the respective confidence intervals. The 3-D loglinear quasi-
association model with homogenous diagonal effect pro-
posed in this study fitted adequately to the observed data sets.
The expected class transition frequencies for each data set
were successfully estimated by an adapted submodel selected
through the backward elimination model. The odds of the ex-
pected frequencies and their confidence intervals could reli-
ably predict the drought class transitions one or two months
ahead, given the drought classes of the last two months, in
most of the cases. The results of short-term forecasting ap-
proach showed that smooth drought severity class transitions
appear to be more probable than abrupt ones.

Based on the quality of the results, the proposed approach,
with a continuous update of precipitation records, could be
regarded as a useful tool for regional water resources man-
agers and irrigators for drought analysis and short-term warn-
ing at the farm and basin scale. Towards this direction, an up-
graded network of on-line meteorological stations has been
recently established in the Aison River Basin, supporting the
viability and any future extension of the proposed models as
well, as the reliability of results.
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