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Abstract. This work proposes an advancement in analytical
modelling of landslide tsunamis propagating along a plane
beach. It is divided into two parts. In the first one, the an-
alytical two-horizontal-dimension model ofSammarco and
Renzi (2008) for tsunamis generated by a Gaussian-shaped
landslide on a plane beach is revised and extended to realistic
landslide shapes. The influence of finiteness and shape of the
slide on the propagating waves is investigated and discussed.
In the second part, a new model of landslide tsunamis prop-
agating along a semi-plane beach is devised to analyse the
role of the continental platform in attenuating the wave am-
plitude along the shoreline. With these parameters taken into
account, the fit with available experimental data is enhanced
and the model completed.

1 Introduction

The recent Sendai tsunami in Japan has shown how destruc-
tive such an event is for coastal communities (seeLi et al.,
2011). Catastrophic tsunamis can be generated by a num-
ber of natural events like earthquakes and submerged or sub-
aerial landslides. While excellent advancements have been
made in understanding earthquake tsunamis, knowledge of
the generation and propagation of landslide tsunamis is in-
stead still fragmentary (seeLiu et al., 2005). The most chal-
lenging issue is that landslide tsunamis are not generated in-
stantaneously as earthquake tsunamis, but strongly depend
on the time history of the seafloor deformation. As a con-
sequence, these events cannot be investigated by transferring
to the free-surface a “hot start” initial condition due to the
ground movement (seeSammarco and Renzi, 2008). Indeed,
at the state of the art, the main gap in modelling landslide
tsunamis seems to be the scarcity of analytical models that
take into account the prolonged interaction between land-

slide and water (seeLynett and Liu, 2005). The model of
Sammarco and Renzi(2008) on landslide tsunamis propa-
gating along a plane beach (SR model in the following) con-
tributed to fill this gap with a specific insight on the coupled
dynamics of landslide motion and wave field generation. By
solving the 2-D horizontal wave field,Sammarco and Renzi
(2008) investigated the general behaviour of the system and
showed that after a short time following the landslide gener-
ation, the wave motion is made by transient edge waves trav-
elling along the shoreline, the offshore motion being practi-
cally absent. The wave field shows a strong dispersive be-
haviour, with longer waves travelling faster and the highest
crests shifted towards the middle of the wave train. Despite
being one of the few three-dimensional models available in
the literature, the SR model might be further improved by
removing some of its limiting assumptions. First, the au-
thors modelled the landslide as a double Gaussian-shaped,
rigid body, starting its motion from a fixed position (corre-
sponding to a half-submerged slide) and moving along the in-
cline with given velocity (about 1 m s−1). Therefore, the SR
model, yet providing a good description of the tsunami gen-
eration and propagation mechanisms, does not describe the
influence of the slide initial position and velocity on the gen-
erated wave field. Furthermore, the double Gaussian slide,
with its infinite length, is not completely representative of
a real landslide shape of finite length. Second, the indef-
inite plane beach ofSammarco and Renzi(2008) extends
to infinite depth, thus, being not representative of realistic
bathymetries, where the sloping beach eventually connects
to a flat continental platform. To overcome these drawbacks,
in the present work we extend the SR model to investigate
the influence of the landslide shape and physical parame-
ters and of the continental platform on tsunamis propagating
along a plane beach. Contemporaneously, a statistical analy-
sis based on the extended SR model is being carried out by
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Fig. 1. The fluid domain in physical coordinates;η andσ are re-
spectively the slide maximum vertical thickness and characteristic
horizontal length, depending on the shape of the landslide.

Sarri et al.(2012).

In Sect. 2 the analytical two-horizontal dimension (2HD)
model is deduced for a general shape and law of motion
of the slide. Then the model is applied to investigate the
parametric dependence of the generated wave field on the
slide starting position and moving speed along the incline.
Also, the influence of the shape is investigated by consider-
ing a double parabolic landslide of finite length with arbitrary
speed and initial position. Comparison is made between the
two models to show how the slide finiteness influences the
generated wave field. In Sect. 3 an analytical 2HD model is
developed to investigate the influence of the continental plat-
form on landslide tsunamis propagating along a semi-plane
beach. In both sections results are discussed and the free-
surface elevation time series are calculated, showing excel-
lent agreement with available experimental data.

2 Influence of the landslide shape and
physical parameters

2.1 Position of the problem

Referring to Fig.1, let us consider a plane beach with con-
stant slopes and define a Cartesian reference system of coor-
dinates(O′,x′,y′,z′), with they′-axis along the mean shore-
line, thez′ axis pointing vertically upwards and water in the
regionx′ > 0. We assume that the landslide originates in a
neighbourhood of the origin O′ and that it is symmetric with
respect to they′-axis; the induced wave field is also sym-
metric in y′, hence, we shall solve the equation of motion
in y′ > 0 only. Now, letη andσ be, respectively, the maxi-
mum vertical height and the characteristic horizontal length
of the landslide. Let us further assume that the slope is mild,
i.e. s � 1, and that the slide is thin, withη/σ � 1. Un-
der these assumptions, we can employ the linear long-wave

equation for forced waves on a uniformly sloping beach to
describe the physics of the problem (Liu et al., 2003):

∂2ζ ′

∂t ′2
−g∇ ·

(
h′

∇ζ ′
)
=

∂2f ′

∂t ′2
. (1)

In the latter,∇(·) =
[
∂(·)/∂x′,∂(·)/∂y′

]
is the nabla operator,

andζ ′(x′,y′,t ′) the free-surface elevation;g is the accelera-
tion due to gravity;t ′ denotes time andd ′

= h′
−f ′(x′,y′,t ′)

the bottom depth, measured with respect to the mean water
level z′

= 0. In the previous expressionh′
= sx′ is the undis-

turbed bottom depth, whilef ′(x′,y′,t ′) is a time-dependent
perturbation of the seafloor, which represents the landslide
moving on the beach (see Fig.1). Upon introduction of the
following non-dimensional variables

(x,y) = (x′,y′)/σ, t =
√

gs/σ t ′, (ζ,f ) =
(
ζ ′,f ′

)
/η, (2)

Equation (1) becomes

xζxx +ζx +xζyy = ζt t −ft t , (3)

where the subscripts denote differentiation with respect to
the relevant variable. The free-surface elevationζ(x,y,t)

must be bounded at the shorelinex = 0 and asx → ∞. Fi-
nally, we require null initial free-surface elevation and ve-
locity, i.e. ζ(x,y,0) = 0 andζt (x,y,0) = 0. The complete
analytical solution of this boundary-value problem for the
free-surface elevationζ(x,y,t) has been obtained bySam-
marco and Renzi(2008) for a generic bottom perturbation
f (x,y,t). Here, we shall retrace the core passages of their
analysis. Application of the cosine Fourier transform pair
alongy

ζ̂ (x,k,t) =

∫
∞

0
ζ(x,y,t)coskydy, ζ =

2

π

∫
∞

0
ζ̂ coskydk (4)

and the method of variation of parameters to the forced
Eq. (3) yield

ζ(x,y,t) =
2

π

∞∑
n=0

∫
∞

0
e−kxLn(2kx)Tn(k,t)cosky dk (5)

for the free-surface elevation. In the latter expression,Ln are
the Laguerre polynomials of zero-th order and degreen ∈ N,
corresponding to the free spatial oscillations (eigensolutions)
of the plane beach (seeMei et al., 2005). TheTns in Eq. (5)
are given by

Tn(k,t)=
2k

ωn

∫
∞

0
e−kαLn(2kα)In(α,k,t)dα, (6)

with

In(α,k,t) =

∫ t

0
f̂ττ (α,k,τ )sin[ωn(t −τ)]dτ , (7)

where

ωn =

√
k(2n+1) (8)
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Fig. 2. Vertical cross sections of the double Gaussian landslide
(solid line) and the double parabolic slide (dashed lines) in physical
variables in the(x′,z′) plane (upper panel) and in the(y′,z′) plane
(lower panel). Hereσg = σp, ηg = ηp and vertical dimensions are
exaggerated for easiness of reading.

Fig. 3. Ellipsoidal slide used in the experiments ofDi Risio et al.
(2009). The initial position of the centroid isx′

0; X′ represents the
landslide release distance, whileU ′ is the slide velocity along the
incline.

are the motion eigenfrequencies in the transformed space.
Each of theωn is associated with then-th modal Laguerre
eigenfunctionLn. Finally in Eq. (7) f̂ττ is the second-order
time derivative of the Fourier transform of the bottom pertur-
bationf (x,y,τ ). Clearly, theIn in Eq. (7) and henceforth
the free-surface elevationζ in Eq. (5) can be evaluated only
after having determined the shape of the slide and its law of
motion by imposing an analytical form to the forcing termf .

Fig. 4. Experimental relationship between the mean underwater ve-
locity U ′ and the release distanceX′ obtained byDi Risio et al.
(2009) for an ellipsoidal landslide. Diamonds show experimental
measurements, the bold line the relevant linear regression Eq. (37).
Note thatU ′

≈ 1 m s−1 for X′
= 0.

2.2 Landslide shape

Sammarco and Renzi(2008) solved the forced plane-beach
problem of Eq. (3) by considering a translating Gaussian
seafloor movement, whose kinematic description was given
by

f (x,y,t) = exp[−(x − t)2
]exp[−(σ/λ y)2

], (9)

being λ the characteristic width of the slide at the shore-
line. Expression Eq. (9) represents a double Gaussian-shaped
slide moving in the offshore direction at uniform speedu = 1,
whose centroid occupies the positionx = 0 for t = 0, i.e. at
rest. The results provided by the authors are in satisfactory
agreement with available experimental data (seeDi Risio et
al., 2009) for a similar condition of the SR model. How-
ever, at a deeper insight, both numerical and experimental
results (e.g.Liu et al., 2005; Lynett and Liu, 2005; Di Risio
et al., 2009) have shown that the generation and propagation
of landslide tsunamis along a sloping beach are sensibly in-
fluenced by the shape, the initial position and the speed of the
slide. Hence, the expression of the forcing termf (x,y,t) in
Eq. (9), yet describing satisfactorily the general behaviour of
the system, needs some improvements to be applied to more
advanced tsunami forecasting models. In order to investigate
the physics not reproduced by the Gaussian slide of the SR
model, in this section we shall extend our analysis to two
different and more complete landslide shape functions.

First, we retain the double Gaussian shape, but allow
for representation of the landslide initial position and mean
speed by defining the forcing term as

fg(x,y,t) = exp
[
−
(
x −xg −ugt

)2]
sg(y), (10)

where

sg(y) = exp
[
−
(
cgy

)2] (11)
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is the lateral spreading function andcg = σg/λg is the lat-
eral spreading factor, the subscriptg denoting quantities rel-
evant to the double Gaussian slide. Equations (10) and (11)
represent a double Gaussian-shaped slide moving as a rigid
body in the offshore direction, with its centroid initially at
x = xg,and with uniform speedu = ug alongx. At any timet

the centroid is at(x,y)= (xg +ug t,0), where the slide thick-
ness is maximum, i.e.fg = 1 in nondimensional variables. In
the following, a landslide for whichxg < 0 (xg > 0) will be
referred to as subaerial (submerged), according to the initial
position of its centroid. Second, we investigate the influence
of the landslide shape and finiteness on the generated wave
field by considering a finite-length double parabolic slide,
whose shape and motion are described by

fp(x,y,t) = (x −xp −up t +1)(xp +up t +1−x)sp(y)

× H(x −xp −up t +1)H(xp +up t +1−x)

× H
(
1/cp −y

)
. (12)

In the latter,

sp(y) = (1−cp y)(1+cp y) (13)

is the lateral spreading function andcp = σp/λp the lateral
spreading factor, the subscriptp denoting quantities relevant
to the double parabolic slide. In Eq. (12) the Heaviside step
functionH is introduced to cut the slide into a finite length
alongx andy; only the half-spacey > 0 is considered due
to the symmetry of the problem abouty = 0. Equations (12)
and (13) represent a landslide with a finite rectangular foot-
print and parabolic vertical cross sections about thex andy

axes; againxp is the centroid initial position andup the mean
downfall speed of the slide alongx. In the following, the so-
lution of the forced equation of motion Eq. (3) will be found
in terms of the free-surface elevation Eq. (5), and the relevant
wave field discussed, for each of the two proposed forcing
functions. The vertical cross sections of both the slides are
represented in Fig.2 for easiness of comparison. For the sake
of clarity, all the quantities defined above will be referred to
with a g subscript for the Gaussian slide and ap subscript
for the double parabolic slide.

2.3 Solution

With the landslide forcing functions defined by Eqs. (10) and
(12) for the double Gaussian and the double parabolic land-
slide respectively, the integral functionIn Eq. (7) and then
the free-surface elevationζ Eq. (5) can now be determined
for each of the two slides. For the Gaussian-shaped land-
slide, substitution of Eq. (10) into Eq. (7) and integration by
parts yield

Ig,n = ωnŝg(k)
{[

ωnag,n −e−(α−xg)
2]

cosωnt

−

[
2ug

(
α−xg

)
ωn

e−(α−xg)
2
+ωnbg,n

]
sinωnt

+ e−(α−xg−ug t)
2}

, (14)

where ŝg(k) =
√

π/(2cg) e−k2/(4c2
g) is the cosine Fourier

transform of the spreading functionsg(y) Eq. (11) and

ag,n = ag,n(α,k,t) =

√
π

2ug

e−ω2
n/4u2

g

×=

{
eiωn(α−xg)/ug

[
erf

(
α−xg + i

ωn

2ug

)
− erf

(
α−xg −ugt + i

ωn

2ug

)]}
, (15)

while

bg,n = bg,n(α,k,t) =

√
π

2ug

e−ω2
n/4u2

g

×<

{
eiωn(α−xg)/ug

[
erf

(
α−xg + i

ωn

2ug

)
− erf

(
α−xg −ugt + i

ωn

2ug

)]}
. (16)

In Eqs. (15) and (16) i is the imaginary unit, while<{} and
={} indicate, respectively, the real and imaginary part of{}.
Substituting Eq. (14) into Eq. (6) for Tg,n and then the latter
into Eq. (5), we finally obtain the analytical form of the free-
surface elevation for the Gaussian landslide:

ζg(x,y,t) =
2

π

∞∑
n=0

∫
∞

0
e−kxLn(2kx)

2k

ωn

×

×

∫
∞

0
e−kαLn(2kα)ωnŝg(k)

×

{[
ωnag,n −e−(α−xg)

2]
cosωnt+

−

[
2ug

(
α−xg

)
ωn

e−(α−xg)
2
+ωnbg,n

]
sinωnt

+ e−(α−xg−ug t)
2}

dα cosky dk. (17)

To get a physical interpretation of Eq. (17), let us now define
the integral transformLn of a given functionu(α,k,t) as

Ln [u](k,t)=
2k

ωn

∫
∞

0
e−kαLn(2kα)u(α,k,t)dα, (18)

so that Eq. (6) can be easily rewritten asTn =Ln [In]. Hence,
by applying the transformLn to Eq. (14), we can formally
rewrite Eq. (17) asζg = ζ o

g +ζ e
g , where

ζ o
g =

2

π

∞∑
n=0

∫
∞

0
e−kxLn(2kx)

[
Ag,n cosωnt

+ Bg,n sinωnt
]
cosky dk, (19)

with

Ag,n = Ag,n(k,t) = ωnŝgLn
[
ωnag,n(α,k,t)

− e−(α−xg)
2]

, (20)
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Fig. 5. Free-surface time series at(a) (x′,y′) = (0,3.10 m) and(b) (x′,y′) = (0,4.07 m). The blue dashed line shows the experimental data.
The solid line (−) represents the theoretical values for the double Gaussian slide, while the dash-dotted line (−·) refers to the double parabolic
slide. For both scenarios, the free-surface elevation is evaluated with the stationary-phase approximation formula and then transformed into
dimensional form.

Bg,n = Bg,n(k,t)= −ŝgLn
[
2ug

(
α−xg

)
e−(α−xg)

2

+ ω2
nbg,n(α,k,t)

]
, (21)

and

ζ e
g =

2

π

∞∑
n=0

∫
∞

0
e−kxLn(2kx)ωnŝg(k)

×Ln
[
e−(α−xg−ug t)2

]
cosky dk. (22)

The componentζ o
g Eq. (19) describes an oscillatory mo-

tion in time, depending on cosωnt and sinωnt . Note that at
large timest � 1, the second erf in Eqs. (15) and (16) ap-
proaches unity, and theag,n andbg,n do not depend on time
anymore. As a consequence,Ag,n Eq. (20) andBg,n Eq. (21)
approach limiting values that do not vary with time. The
componentζ e

g Eq. (22) fastly decays with time, depending on

exp
[
−(ugt)

2
]
. Hence, the landslide generates a wave field

made up by an oscillatory and an evanescent component, the
latter rapidly vanishing with time. Note that this result is
similar in form to the one already obtained bySammarco and
Renzi(2008) for the unit speed Gaussian slide of Eq. (9). In
fact, by lettingxg = 0 andug = 1, the previous results of the
authors are fully recovered. Similarly, by applying the same
passages as above to Eq. (12) and after some lengthy algebra,
the free-surface elevation relevant to the wave field generated
by the double parabolic landslide can be expressed as well as
ζp = ζ o

p +ζ e
p. In the latter expression, the first component is

given again by

ζ o
p =

2

π

+∞∑
n=0

∫
∞

0
e−kxLn(2kx)[Ap,n(k,t)cos(ωnt)

+Bp,n(k,t)sin(ωnt)]cos(ky)dk (23)

with

Ap,n(k,t)= ωns̄p(k)Ln
[

ωnap,n −(α−xp +1)

×(xp +1−α)H(α−xp +1)H(xp +1−α)
]
,

(24)

Bp,n(k,t)= −s̄p(k)Ln
[

ω2
nbp,n −2up(α−xp)

×H(α−xp +1)H(xp +1−α)
]
, (25)

which are the counterparts of theAg,n andBg,n for the Gaus-
sian slide in Eqs. (20) and (21), respectively. Furthermore, in
Eqs. (24)–(25) the term

s̄p(k) =

∫
∞

0
sp(y)H

(
1

cp

−y

)
cos(ky)dy

=
2cp

k3

[
cp sin

(
k

cp

)
−k cos

(
k

cp

)]
comes from the cosine Fourier transform of the forcing term
fp of Eq. (12), while theap,n andbp,n are given respectively
by

ap,n = ={g(α)}, bp,n = <{g(α)}, (26)

where

g(α) =

∫
∞

0
(α−xp −upτ +1)(xp +upτ +1−α)

×H(α−xp −upτ +1)H(xp +upτ +1−α)eiωnτ dτ.

Within this framework, theap,n and bp,n in Eq. (26) play
the same role as theag,n andbg,n for the Gaussian slide in
Eqs. (15) and (16), respectively. Note also thatζ o

p Eq. (23)
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Fig. 6. Snapshots of the free-surface profile in physical variables at times:(a) t ′ = 0 s,(b) t ′ = 0.2 s (corresponding tot = 0.5), (c) t ′ = 0.5 s
(t = 1.5) and(d) t ′ = 1.5 s (t = 4.5). The double Gaussian landslide of parameterscg = 2, x′

g = 0 m, u′
g = 1 m s−1 is taken as reference

model. The first six modes have been considered. All values are in metres.

Fig. 7. Influence of the centroid initial position on the wave field.
Figure shows the maximum free-surface elevation of the first wave
(dashed line - -) and of the second wave (solid line−) vs. x′

g at
a point on the shoreline (y′

= 3.10 m). Equation (39) is used to
relate the slide velocity to the centroid initial position. The double
Gaussian reference slide of parametersσg = 0.37 m,ηg = 0.045 m
andcg = 2 (see Sect.2.4) has been considered.

has the same formal expression asζ o
g Eq. (19), i.e. it de-

scribes an oscillatory component. Finally, the second term
of the decompositionζp = ζ o

p +ζ e
p is obtained as

ζ e
p =

2

π

+∞∑
n=0

∫
∞

0
e−kxLn(2kx)cos(ky)ωns̄p(k)

×Ln
[
(α−xp −upt +1)(xp +upt +1−α)

×H(α−xp −upt +1) ·H(xp +upt +1−α)
]
dk. (27)

Clearly, in the latter equation at larget , the two Heaviside
step functions will constrain the domain of integration ofLn

betweenα1 = xp +upt−1 andα2 = xp +upt+1. Approach-
ing large timesα2/α1 ' 1, the domain of integration ofLn in
Eq. (27) collapses into a single point and the integral rapidly
vanishes:ζ e

p still represents an evanescent term, being the
counterpart ofζ e

g Eq. (22) for the Gaussian slide. Hence, the
decomposition of the generated wave field into an oscillatory
and an evanescent component is a general result, independent
of the shape and finiteness of the slide. Computational as-
pects concerning the numerical evaluation ofζ o

g(p) andζ e
g(p)

are discussed in Appendix B. In the following we shall pro-
vide an estimate of the decay of the evanescent terms for both
the landslides.
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Fig. 8. Free-surface time series in physical variables at(a) (x′,y′) = (0,3.10 m) and(b) (x′,y′) = (0,4.07 m). The bold dashed line represents
the values ofζ ′

g for the infinite double Gaussian landslide, while the continuous line shows the values ofζ ′
p for the finite-length double

parabolic landslide, both evaluated with the stationary-phase approximation formula. The first five modes have been considered for the
double Gaussian slide, and the first seven modes for the double parabolic slide. The arrows show the double-crested waves in the perturbation
generated by the double parabolic slide.

2.3.1 Decay of the evanescent component

An estimate of the decay of the evanescent components can
be obtained with an asymptotic analysis at large time. Start-
ing from the Gaussian slide of Eq. (10), consider then-
th modal componentζ e

g,n of the evanescent term Eq. (22).
Whent is large, theLn transform can be approximated by

Ln
[
e−(α−xg−ug t)2

]
'

2k

ωn

e−k(xg+ug t)Ln(2k(xg +ugt))

×

∫
∞

0
e−(α−xg−ug t)2

dα '

2
√

πk

ωn

e−k(xg+ug t)Ln(2k(xg +ugt)). (28)

Hence, then-th component of the evanescent term Eq. (22)
becomes

ζ e
g,n '

2

cg

∫
∞

0
e−tv(k)gn(k)dk, (29)

where

v(k) = k

(
x +xg

t
+ug

)
,

and

gn(k) = ke
−k2/

(
4c2

g

)
Ln(2kx)Ln(2k(xg +ugt))cosky.

Expression Eq. (29) features an integral decaying with time.
We shall determine its rate of decay by using the method of
asymptotic analysis of integrals devised byCheng (2007).
The dominant contribution to Eq. (29) at larget is given by
the pointk, at whichv(k) is minimum, i.e.k = 0. In a neigh-
bourhood of the dominant point,gn can be Taylor expanded

asgn(k) ' k+O
(
k2
)
, k → 0. Substituting the expansion for

gn into Eq. (29) and then solving the integral, we finally get

ζ e
g,n '

2

cg(
x+xg

t
+ug)2t2

(30)

for the leading behaviour of the evanescent term modal com-
ponents at large time. According to Eq. (30), an observer
moving along thex direction at constant speedx/t sees
waves decaying all as anO(t−2). Also, the larger the ve-
locity of the slideug, the faster the decay in the offshore
direction of the evanescent waves. The same reasoning as
above can be repeated with no significant alterations also for
the double parabolic landslide of Eq. (12), so that the relevant
rate of decay is

ζ e
p,n '

32

9πcp(
x+xp

t
+up)2t2

, ∀y. (31)

Then the evanescent waves generated by the finite-length,
double parabolic landslide have the same rate of decay,
O(t−2), as those generated by the infinitely-long Gaussian
landslide. Hence, the behaviour in the near field soon after
the generation of the tsunami is not affected significantly by
the shape of the slide (as long as the thin slide hypothesis
is satisfied and the slide is smooth, seeLiu et al., 2005). We
next turn to the analysis of the oscillatory componentsζ o

g and
ζ o
p in the far field.

2.3.2 Behaviour for large times

At large times the contribution of evanescent terms to the to-
tal wave field can be neglected, so that the free-surface eleva-
tion ζ can be approximated in terms of the oscillatory modes
only. For the Gaussian-shaped landslide Eq. (10), the n-th
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modal component of the free-surface elevation Eq. (19) eval-
uated at the shorelinex = 0 reads then as

ζg,n(0,y,t) ' ζ o
g,n(0,y,t) =

2

π

∫
∞

0
[Ag,n(k,t)cos(ωnt)

+Bg,n(k,t)sin(ωnt)]cos(ky)dk. (32)

Note that the same formal expression is still valid for the dou-
ble parabolic landslide Eq. (12), provided the subscriptg is
replaced byp. Careful application of the method of station-
ary phase (seeSammarco and Renzi, 2008, for details) re-
veals that the integrand in Eq. (32) admits stationary points
at

k∗
n = (2n+1)

(
t

2y

)2

, (33)

where the phase functionwn = ky/t − ωn of the products
cos(ωnt)cos(ky) and sin(ωnt)cos(ky) is null. Near the sta-
tionary points of Eq. (33), the latter trigonometric terms ex-
perience very slow variations withk, so that their phase
function can be expanded aboutk = k∗

n in a second-order
Taylor series:wn(k) ' wn(k

∗
n)+1/2ω̈n(k

∗
n)(k−k∗

n)2, where
ω̈n(k) = −

√
2n+1/(4k3/2) is the second derivative of then-

th mode eigenfrequency Eq. (8). Then by solving the integral
of Eq. (32) with this simplification and summing up all the
harmonics, the free-surface elevation at the shoreline can be
finally approximated for large times as

ζg(0,y,t) '

∞∑
n=0

ζ o
g,n(0,y,t) '

∞∑
n=0

√
2(

π t |ω̈n(k∗
n)|
)1/2

×

×

[
Ag,n(k

∗
n)cos

(
k∗
ny −ωnt +

π

4

)
+

− Bg,n(k
∗
n)sin

(
k∗
ny −ωnt +

π

4

)]
. (34)

Again, Eq. (34) has been written for the Gaussian-shaped
landslide Eq. (10), but it formally holds also for the dou-
ble parabolic slide Eq. (12) with a simple replacement of the
subscriptg with p. Hence, Eq. (34) describes an oscilla-
tory wave motion propagating along the shoreline. For an
observer moving along they direction at a constant speed
of y/t , k∗

n, Eq. (33) is constant and the oscillatory compo-
nent Eq. (34) decays with time asO(t−1/2), regardless of the
shape and boundedness of the slide. Note also that the decay
of the transient longshore waves is slower than the decay of
the evanescent perturbation moving offshore (O(t−2)).

By applying the same method but forx > 0, we obtain an
approximated expression of the free-surface elevation for all
(x,y) for large times:

ζg(x,y,t) ≈

+∞∑
n=0

e−k∗
nxLn(2k∗

nx)ζ o
g,n(0,y,t), (35)

where again the subscriptg is to be replaced withp to ob-
tain the relevant expression for the double parabolic slide.
Note the exponential decay inx of the free-surface elevation

Eq. (35): the wave field is now bounded along the coastline
and no perturbation is radiated offshore. Hence, no matter
the landslide shape and boundedness, at large times after the
impact, the energy released by the slide to the water stays
trapped along the shoreline. The wave field consists of a
system of transient, longshore-travelling edge waves, repre-
senting a potential threat for all the near-shore civilian in-
stallations. So far, many similarities seem to exist between
the wave fields generated by the two model slides. A deeper
insight will point out the differences, as shown in the next
section.

2.4 Discussion

2.4.1 Experimental comparison

First, we shall validate the theoretical results of the previous
section by comparison with the experimental data ofDi Ri-
sio et al.(2009). The experiments were performed at LIAM
(Laboratory of Maritime and Environmental Hydraulics of
L’Aquila, Italy) in a basin 5.40 m long by 10.80 m wide
and 0.8 m deep. In the experiments an ellipsoidal 0.8 m-
long (σ = 0.4 m) by 0.4m wide (λ = 0.2 m) block is dropped
down a steep slope,s = 0.3, as shown in Fig.3. The land-
slide maximum thickness is 0.05m, and its maximum cross-
sectional area is about 0.03m2. The release distance of the
ellipsoidal slide, i.e. the distance between the slide front and
the mean water level measured upwards along the incline, is
set toX′

= −0.2 m. In this configuration, the front part of the
landslide is submerged at the starting position, but the land-
slide centroid is outside the water. For the double Gaussian
landslide, the shape parametersσg = 0.37 m, ηg = 0.045 m
andcg = σg/λg = 2 are chosen so that the overall area be-
neath the relevant shape function approximates the experi-
mental landslide maximum cross-sectional area. Following
the same criterion for the double parabolic slide, the shape
parameters are chosen asσp = 0.44 m, ηp = 0.045 m and
cp = σp/λp = 2. Now let us set the centroid initial position
x′
g andx′

p for the double Gaussian and the double parabolic
slide, respectively, by referring to the laboratory setup of
Fig. 3. The centroid initial positionx′

0 for the experimen-
tal landslide can be obtained from the release distanceX′ by
means of the simple geometrical projection

x′

0 = −σ −X′cosα, (36)

whereα = arctans is the angle of the incline on the horizon-
tal plane andσ the half-length of the slide. By employing the
experimental valuesX′

= −0.2 m andσ = 0.4 m in Eq. (36),
we obtain the centroid initial positionx′

0 = −0.18 m. Now,
given the centroid initial position, the mean horizontal ve-
locity of the landslideu′

0 needs to be estimated. For this
purpose we consider again the experimental results ofDi
Risio et al. (2009). By measuring the mean velocity of
the slide along the inclineU ′ during the underwater motion
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for various release distancesX′ (see Fig.3), we obtain the
empirical linear relation

U ′
= 1.119+1.139X′, (37)

where the dimensional coefficients 1.119 m s−1 and
1.139 s−1 have been derived via the linear regression of the
experimental data, as shown in Fig.4. Let us now express
Eq. (37) in terms of the variablesu′

0 andx′

0. First assume
that U ′ coincides with the landslide average velocity along
the incline for all the stages of motion (i.e. subaerial plus
submerged); then the velocityu′

0 in the x′ direction can be
obtained from Eq. (37) with the simple geometrical projec-
tion

u′

0 = U ′cosα =
(
1.119+1.139X′

)
cosα, (38)

whereα = arctans is still the angle between the incline and
the horizontal (see again Fig.3). Finally, by substituting
Eqs. (36) into Eq. (38), the latter can be rewritten as

u′

0(x
′

0) = 1.119cosα−1.139(σ +x′

0). (39)

This is the sought relation between the landslide horizontal
velocity u′

0 and the centroid initial positionx′

0, valid for the
the experimental setup ofDi Risio et al.(2009). Here, we
shall take the same values as the experimental ones for the
slide initial position Eq. (36) and uniform speed Eq. (39),
for both the Gaussian-shaped and the double parabolic slide.
Hence, from the values of the centroid initial positionx′

g =

x′
p = x′

0 = −0.18 m, the values of the average speedu′
g =

u′
p = u′

0 = 0.845 m s−1 for both slides are derived directly
via Eq. (39). In Fig. 5 the time series of the free-surface el-
evation for the infinite Gaussian-shaped slide Eq. (10) are
plotted in physical variables at two different points along
the shorelinex′

= 0 and compared to the experimental data
of Di Risio et al. (2009). Figure 5a shows the time se-
ries aty′

= 3.10 m away from the point of generation; in
Fig. 5b is instead depicted the free-surface time series at
point y′

= 4.07 m from the origin. The main properties of
the generated wave field, i.e. the shape of the waves, the time
of arrival of crests and troughs and the maximum runup and
drawdown, are predicted very satisfactorily by the analytical
model. The agreement between analytical and experimental
results is good, up tot ′ = 8 s. After that, waves reflected by
the side walls in the experiment make the wave field not com-
parable with that given by the model. In Fig.5 comparison
is also made between the free-surface elevation for the finite
double parabolic slide Eq. (12) and the experimental results
of Di Risio et al.(2009) at the same points along the shore-
line as before. Again, the main physical properties of the
wave field are well-reproduced by the model, even if in this
case the wave amplitude seems to be slightly overestimated
for the larger waves. The excess of mass at the corners of
the double parabolic landslide, whose footprint is rectangu-
lar and not elliptical as in the experiments, is likely to be the
reason for this effect. After having shown a good agreement

between the theoretical and the experimental data, in the fol-
lowing sections we analyse the tsunami generation and prop-
agation mechanisms and the parametric dependence of the
wave field on the initial position and shape of the slide, en-
hancing the peculiarities of and the differences between each
of the two model slides considered so far.

2.4.2 Tsunami generation and propagation

The three-dimensional dynamics of tsunami generation and
propagation along the indefinite plane beach lying on they′

axis can be appreciated with the plots of Fig.6. Here, three-
dimensional snapshots of the free-surface elevation are pre-
sented at fixed times, starting from the beginning of the mo-
tion till the perturbation is fully generated and propagating
away from the source. The double Gaussian landslide with
parametersσg = 0.37 m,ηg = 0.045 m,cg = 2, x′

g = 0 m and

u′
g = 1 m s−1 is taken as a reference model. At the earli-

est times of motion, the landslide pushes water ahead, while
a depression generates just landwards of the slide (Fig.6a,
b). Hence, large free-surface gradients are created along the
shoreline, driving strong fluxes to converge towards the cen-
tre (Fig. 6c). As a result, the convergent flows eventually
collide at the origin to form a large elevation wave. Finally,
the rebound wave splits into two crests, which symmetrically
start to travel along the shoreline (Fig.6d) and the wave field
is fully developed. After having highlighted the dynamics of
tsunami generation, in the following sections we shall con-
sider the dependence of the generated wave field on the main
parameters of the problem, namely the initial position of the
slide and its shape.

2.4.3 Parametric analysis: the slide initial position

Figure7 shows the behaviour of the maximum free-surface
elevation of the first (dashed line) and second (solid line)
incoming waves versus the centroid initial positionx′

g, at a
point along the shoreline (y′

= 3.10 m) for the reference dou-
ble Gaussian slide defined above. The induced waves reach
their maximum amplitude when the slide is fully subaerial
and the corresponding velocity (see Eq.39) is larger than
1 m s−1 (see Fig.4). Hence, the higher the slide initial po-
sition on the incline, the larger the amplitude of the induced
wave field at a point on the shoreline far from the slide. How-
ever, increased dissipations due to viscosity and vortices gen-
erated at the impact, not taken into account in this model,
would certainly reduce the amplitude of the generated waves
below the theoretical values. Moving the landslide towards
the origin both increasesx′

g and reducesu′
g. As a result, the

amplitudes of the generated waves decay quickly, due to the
reduced exchange of total energy between the slide and the
fluid (see again Fig.7). Let us now investigate the influence
of the shape of the slide on the generated wave field.
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Fig. 9. The fluid domain of the semi-plane beach in physical coor-
dinates. The dashed line divides the near fieldx′ < b′ from the far
field x′ > b′.

2.4.4 Parametric analysis: the shape of the slide

In Fig. 8 the free-surface time series for both the infi-
nite Gaussian-shaped slide Eq. (10) and the finite double
parabolic slide Eq. (12) are plotted at the same points, along
the shoreline, i.e.y′

= 3.10 m (Fig. 8a) andy′
= 4.07 m

(Fig. 8b) for the geometry of Sect.2.4.1. The general be-
haviour of both curves is very similar, with the largest wave
shifted towards the middle of the incoming wave group, a
typical feature of landslide generated tsunamis (seeLynett
and Liu, 2005; Sammarco and Renzi, 2008). This be-
haviour, independent of the shape and dimensions of the
slide, can be explained theoretically as follows (seeGonza-
lez et al., 1995, for a similar argument). Back to Sect. 2, the
phase velocity of the individual wave modes iscn = ωn/k =
√

(2n+1)/k, while the group velocity isCgn = dωn/dk =
√

(2n+1)/k/2, so thatCgn = cn/2. The difference be-
tween phase and group velocity explains the dispersive be-
haviour of the edge waves propagating along the beach at
large times, already noticed numerically byLynett and Liu
(2005) and Bellotti et al. (2008) and analytically bySam-
marco and Renzi(2008). When the landslide moves into
water, the initial disturbance of the free-surface evolves into
groups of edge waves, each group travelling at velocityCgn

along the shoreline. In turn, the single wave crests propa-
gate inside the group at a larger speedcn. Since the group
velocity is the velocity of the energy transport, we expect
the bulk of the energy released by the slide into the water to
travel at a lower speedCgn than that of the first generated
wave crestscn. This explains why, regardless of the geome-
try of the landslide, the larger waves, which are also the most
energetic ones, are always shifted towards the middle of the
group. Note that the linear long wave theory, non-dispersive
over bottoms of constant depth, reproduces the dispersive
behaviour of the trapped waves over inclined bottoms. De-
spite a general similarity between the wave fields generated
by the Gaussian-shaped slide and the double parabolic slide,
some differences can be pointed out. The Gaussian-shaped

Fig. 10. Branch cuts in the complex plane forβ(k,ω) Eq. (55).
The complex frequencyω ∈ �, which is the unshaded area corre-
sponding to the lower half-plane, real axis included. Anglesθ1 and
θ2 are measured counterclockwise from the real axis on the chosen
Riemann sheet Eq. (58).

slide has infinite length and width, which is a limit of the SR
model and the reason that motivated this work. Furthermore,
the Gaussian is smoother than the double paraboloid, having
no abrupt terminations at the sides (see Fig.2). These two
specificities can account for the dissimilarities between both
models (see again Fig.8), such as the difference in wave am-
plitudes and the accentuation of spiky, double-crested waves
occurring with the double parabolic slide. Mathematically,
this is a side effect of the wave Eq. (3), which propagates the
irregularities (i.e. the cuts) of the forcing function Eq. (12)
without smoothing them completely. Physically, these dou-
ble crested waves can be explained with the secondary iner-
tial rebound generated at the origin soon after the tail of the
slide enters water, as shown byLynett and Liu(2005) and
Sammarco and Renzi(2008). Hence, this effect is mostly
enhanced for landslides whose tail terminates abruptly, like
the double parabolic one, rather than for smooth infinite bod-
ies like the Gaussian slide. In conclusion, the finiteness of the
landslide is an important feature that cannot be neglected in
analytical models, aiming to reproduce accurately the shape
of the generated waves. Having investigated the effect of the
slide shape and finiteness, in the next section we move into
the analysis of the influence of the continental platform on
landslide-generated tsunamis.

3 Influence of the continental platform

3.1 Position of the problem

In Sect. 2 we have shown that, within the linear shallow-
water theory, the landslide-forced waves over an indefinite
incline rapidly decay in the offshore direction, while a tran-
sient system of longshore travelling edge waves propagates
away from the landslide. However, an infinite slope does
not fully represent a coastal area. To obtain a more realis-
tic model, in this section we investigate a different geometry,
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Fig. 11. Behaviour of the first eigenvaluesωn, n = 0,1,2,3, versus
b for k = 1. The bold line represents the upper limitω = k

√
b of the

domain Eq. (85).

where the slope extends to a finite length and further con-
nects to a continental platform of constant depth. The phys-
ical domain of the model is shown in Fig.9. Having set a
3-D system of coordinates(x′,y′,z′), water is in the region
x′ > 0. At a distanceb′ from the coastline, the slope ends and
connects to a flat bottom of constant depthh′

b′ . Due to the ge-
ometric discontinuity introduced by the flat-bottom zone, we
shall define the near field as the domainx′ < b′, whereb′ is
the horizontal length of the incline. As a consequence, we
shall also define the far field as the regionx′ > b′, where the
bottom depth is constanth′

= h′

b′ = sb′, s being the slope of
the incline. The system is assumed to be symmetric with re-
spect to they′ axis; also assume that the landslide motion
starts in a neighbourhood of the origin and that the landslide
shape is symmetric with respect toy′. Within the assump-
tion of linear shallow-water waves, the behaviour of the fluid
is still described by the forced long-wave Eq. (1), where the
bottom depthh′ is now defined as

h′(x′ < b′) = sx′, h′(x′
≥ b′) = h′

b′ = sb′, (40)

according to the geometry of Fig.9. By introducing the same
non-dimensional variables of Eq. (2), the equation of motion
Eq. (1) becomes

hζxx +hxζx +hζyy = ζt t −ft t . (41)

In Eq. (41) h = h′/σs is the non-dimensional bottom depth

h(x <b) = x, h(x ≥ b) = hb = b, (42)

where b = b′/σ is the non-dimensional horizontal beach
length. As already done in Sect. 2 for the plane beach, we re-
quire the free-surface elevation to be bounded at the shoreline
and asx → ∞ and also to be an even function of the shore-
line coordinatey. Finally, we require null initial free-surface
elevation and velocity, i.e.ζ(x,y,0) = 0, ζt (x,y,0) = 0.

3.2 Solution

By employing the cosine Fourier transform Eq. (4), the equa-
tion of motion Eq. (41) becomes

hζ̂xx +hx ζ̂x −k2hζ̂ = ζ̂t t − f̂t t (x,k,t). (43)

Recall from Sect. 2 that, for the simple plane-beach geom-
etry, the system eigenfunctions are the Laguerre polynomi-
als Ln, with the relevant eigenvaluesωn given by Eq. (8).
To determine the eigenfunctions and the eigenvalues of the
semi-plane beach geometry, we seek the solutionζ̂h of the
homogeneous equation associated with Eq. (43):

hζ̂xx +hx ζ̂x −k2hζ̂ − ζ̂t t = 0. (44)

By introducing the further transformations

ξ = 2kx, ζ̂ = e−ξ/2Z(ξ,k,t). (45)

Equation (44) becomes

4k2
[
hZξξ +(hξ −h)Zξ −

1

2
hξZ

]
−Zt t = 0. (46)

To solve Eq. (46) we shall assume the following separation
of variables forZ(ξ,k,t):

Z = <

{
X(ξ)e−iωt

}
(47)

whereX(ξ) is the unknown spatial part of the homogeneous
solution, andω a complex wave frequency. Note that the
complex frequencyω = ωr + iωi must have a null or negative
imaginary part,ωi ≤ 0 in order for Eq. (47) not to diverge
for large t , i.e. ω ∈ �, where� = {ω ∈ C : −π ≤ argω ≤ 0}

is the lower complex half plane, real axis included. With
the substitution dictated by Eq. (47), Eq. (46) can be finally
rewritten as

hXξξ +(hξ −h)Xξ −

(
hξ

2
−

ω2

4k2

)
X = 0. (48)

The latter is to be solved separately in the two fields; the two
solutions obtained will be matched afterwards at the common
boundary to assure continuity of pressure and fluxes.

In the near fieldh = x or, in terms of the transformed vari-
ables of Eq. (45), h = ξ/2k. By using the latter expression,
the homogeneous form of the governing Eq. (48) becomes

ξXξξ +(1−ξ)Xξ −αX = 0, (49)

where

α = α(k,ω)= 1/2
(
1−ω2/k

)
. (50)

Equation (49) is the Kummer’s equation of parameterα,
whose general solution is a linear combination of the Kum-
mer functions of first and second kind (seeAbramowitz
and Stegun, 1972), respectivelyM and U , i.e. X(ξ,k) =
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Fig. 12. Time series of the free-surface elevation in physical variables at points:(a): (x′,y′) = (0.4,0) m, and (b): (x′,y′) = (0,0.8) m.
Solid lines (–) represent the time series for the semi-plane beach of horizontal lengthb = b′/σ = 1, while dashed lines (- -) are relevant to
the indefinite plane beach model.

Fig. 13.Time series of the free-surface elevation in physical variables at points:(a): (x′,y′) = (0.4,0) m and (b): (x′,y′) = (0,0.8) m. Solid
lines (–) represent the time series for the semi-plane beach of horizontal lengthb = 10, while dashed lines (- -) are relevant to the indefinite
plane-beach model. Note that forb � 1 the two models converge to the same results.

AM(ξ,α)+BU(ξ,α), whereA andB are integration con-
stants. Since the Kummer function of second kind has a log-
arithmic singularity at the origin, boundedness of the solution
at the shoreline requiresB = 0, i.e.

X(ξ,k) = AM(ξ,α), ξ < 2kb. (51)

Hence, the homogeneous solution of Eq. (46) in the near
field is simply Zh(ξ,k,t) = X(ξ,k)e−iωt

= AM(ξ,α)e−iωt ,
< having been omitted for brevity, and in terms of the origi-
nal variables of Eq. (45)

ζ̂h(x,k,t) = Ae−kxM(2kx,α)e−iωt , x < b. (52)

In the far fieldh = b, so that the homogeneous form of the
governing Eq. (48) becomes

Xξξ −Xξ +
ω2

4bk2
X = 0. (53)

This is also a linear ODE of the second order, whose general
solution is

X(ξ,k) = Ce(1−β)ξ/2
+De(1+β)ξ/2, (54)

with C andD integration constants and

β = β(k,ω) =
1

k
√

b

(
k
√

b−ω
)1/2(

k
√

b+ω
)1/2

, (55)

a complex parameter. The solution of the homogeneous
Eq. (44) in the far field is then obtained by substituting the
spatial componentX(ξ,k) into the general form Eq. (47):

ζ̂h(x,k,t) = Ce−βkx−iωt
+Deβkx−iωt , x > b, (56)

where usage of Eq. (45) has also been made to switch back
to the original variables. In Eq. (56) the complex parameter
β Eq. (55), is given by the product of two square roots of
complex variable and admits two branch points in the com-
plex domain�, respectively atω = ∓k

√
b, i.e. the zeros of

the square roots. As a consequence, we introduce two semi-
infinite branch cuts along the real axis of�, as shown in
Fig. 10(seeMei, 1997, for a similar example). To evaluateβ
correctly on the different edges of the cuts of Fig.10, let us
define

ω+k
√

b = r1e
iθ1 , k

√
b−ω = r2e

i(θ2−π), (57)

where the phase anglesθ1,2 are measured counterclockwise
from the positive real axis. To avoid multivaluedness of the
square roots in Eq. (55), let us first consider the Riemann
sheet defined byθ1 ∈ [−π,π), θ2 ∈ (0,2π ]. Then restrict the
range of variation ofθ1,2 by requiringω ∈ � (unshaded re-
gion of Fig.10, including the real axis), so that

θ1 ∈ [−π,0] , θ2 ∈ [π,2π ] . (58)
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Note that, according to Eq. (58), θ1 = −π describes the lower
edge of the left-hand cut on the negative real axis, while
θ2 = 2π describes the lower edge of the right-hand cut on
the positive real axis. Other values ofθ1,2 in the range de-
fined by Eq. (58) correspond to points in the lower complex
plane. Substituting Eq. (57) into Eq. (55), we obtain for the
complex parameter

β =

√
r1r2

bk2
ei(θ1+θ2−π)/2. (59)

Now, if the frequencyω is anywhere along the the lower
edge of the right-hand cut, thenθ1 = 0 andθ2 = 2π , so that
β = i |β| is imaginary with positive sign. A similar analysis
can be done also for the left-hand cut, whereβ = −i |β| on
the lower edge. In all these cases the corresponding free-
surface elevation in the far field Eq. (56) is an oscillating
function of the offshore coordinatex and physically repre-
sents incoming and outgoing progressive waves. Finally, if
ω is on the real axis between−k

√
b < ω < k

√
b, thenθ1 = 0

andθ2 = π , so that Eq. (59) givesβ =
√

r1r2/k
√

b, i.e. a pos-
itive real number. As a consequence, the second term of the
far field solution Eq. (56) would grow without boundaries as
x → ∞ unlessD = 0. With this position the homogeneous
solution in the far field Eq. (56) becomes

ζ̂h(x,k,t) = Ce−βkx−iωt , x > b, (60)

while the relevant spatial componentX Eq. (54) reduces to

X(ξ,k) = Ce(1−β)ξ/2, ξ > 2kb. (61)

3.2.1 Matching and eigenvalues

The solutions of the homogeneous Eq. (44) in the near field
and in the far field, Eqs. (52) and (60) respectively, must now
be matched at the common boundaryx = b. Continuity of
the free-surface elevationζ and the fluxes∂ζ/∂x yields, re-
spectively,

Ae−kbM(2kb,α) = Ce−βkb

Ae−kb [−kM(2kb,α)+Mx(2kb,α)] = −Cβke−βkb. (62)

This homogeneous system with unknownsA andC admits a
non-trivial solution(A,C) 6= (0,0) if and only if

1(k,ω) = Mx(2kb,α)+k(β −1)M(2kb,α) = 0, (63)

where1 ∈ C, k > 0 is a real parameter andα(ω) andβ(ω)

are given by Eqs. (50) and (55), respectively. Equation (63)
represents the eigenvalue condition of the matching sys-
tem Eq. (62); the complex valuesωn, for which Eq. (63)
is satisfied, are the sought eigenvalues. Numerical solu-
tion of Eq. (63) shows that, for a given value ofk, there
is an enumerable set of 2· [N(k,b)+1] real eigenvalues
±ω0,±ω1... ± ωn ... ± ωN on the chosen Riemann sheet,
such that−k

√
b < −ωN < ... < −ω0 < 0< ω0 < ... < ωN <

k
√

b, i.e. ±ωn ∈

(
−k

√
b,k

√
b
)
, n = 0,1,...,N(k,b) ∈ N.

When ω = ±ωn, the solution of the system Eq. (62) is
straightforward:

C = M(2kb,α)e(β−1)kb,

having set the arbitrary parameterA = 1. Now consider the
spatial eigenfunctions in the near and far field given respec-
tively by Eqs. (51) and (61), with ω = ωn:

Xn(ξ,k) = M(ξ,αn) if ξ < 2kb

Xn(ξ,k) = M(2kb,αn)e
(1−βn)(ξ/2−kb) if ξ ≥ 2kb, (64)

with n = 0,1,...,N(k,b), where the Kummer function

M(ξ,αn) =

∞∑
m=0

anm(ω)ξm, (65)

and anm = (αn)m/(m!)2, being (αn)m = αn(αn + 1)(αn +

2)...(αn +m−1) (see againAbramowitz and Stegun, 1972).
Finally, in Eq. (64)

αn = α(k,ωn) =
1

2
−

ω2
n

2k
, βn = β(k,ωn) =

√
1−

ω2
n

bk2
, (66)

and againξ = 2kx . Note that for a given modal ordern,
both the real eigenvalues±ωn correspond to the same real
parametersαn andβn Eq. (66), i.e. both±ωn are relevant to
the same spatial eigenfunction Eq. (64). Therefore, to ensure
uniqueness of the solution, we retain only the eigenmodes

associated to the positive eigenvaluesωn ∈

(
0,k

√
b
)
. Refer-

ring back to Eqs. (45) and (47), the solution of the homoge-
neous Eq. (48) can be written as the linear superposition of
all the(N +1) modes

ζ̂h(x,k,t) =

N(k)∑
n=0

e−kxXn(2kx)e−iωnt , (67)

where theXns are given by Eq. (64). To investigate the phys-
ical nature of the perturbation described by Eq. (67), let us
consider the spatial part:

η̂n(x,k,t) = e−kxXn(2kx) (68)

of the n-th modal component of the free-surface elevation
ζ̂h(x,k,t). Using Eq. (64) to express the eigenfunctionsXn,
Eq. (68) becomes

η̂n(x,k,t) = M(2kx,αn)e
−kx (69)

in the near fieldx <b and

η̂n(x,k,t) = M(2kb,αn)e
−kb(1−βn)e−βnkx, (70)

in the far fieldx ≥ b. Since the eigenvaluesωn are all real
and positive, withωn < k

√
b, the parameterβn Eq. (66) is a

positive real number too. As a consequence, all the spatial
componentŝηn of the free-surface elevation, proportional to
e−βnkx in the far field (see Eq.70), decay exponentially while
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moving in the offshore direction at a large distance from the
shore. Hence, all the natural eigenmodes of the semi-plane
beach are trapped along the shoreline and no wave propa-
gates to infinity, even if the presence of the flat-bottom re-
gion would suggest a propagating nature of the perturba-
tion. This somehow unexpected fact, i.e. that long waves
existing at a slope discontinuity are unable to propagate to-
wards larger distances, has been already pointed out also by
Longuet-Higgins(1967) andMei et al. (2005). Physically,
trapped waves can be excited linearly only by a localised
perturbation at the coastline, e.g. a landslide. Since such
a perturbation moves only a finite volume of water in a fi-
nite amount of time, the generated edge-wave spectrum in-
volves no radiation to infinity (Meyer, 1971). However, this
does not exclude that in cases where nonlinearity is domi-
nant, e.g. when the slide is thick, resonant amplification of
the offshore-going wave can occur, making it comparable to
the oscillations along the shoreline (Liu et al., 2003).

3.3 Wave field

After having investigated the homogeneous problem
Eq. (44), we now seek the solution of the forced equation
of motion Eq. (43). By using the transformations dictated by
Eq. (45), Eq. (43) becomes

4k2[hZξξ +
(
hξ −h

)
Zξ −1/2hξZ

]
−Zt t

= −e−ξ/2f̂t t (ξ/2,k,t). (71)

To solve the latter equation, we shall employ the method of
variation of parameters, assuming forZ(ξ,k,t) the following
expression:

Z(ξ,k,t) =

N(k)∑
n=0

Xn(ξ)Tn(k,t), (72)

whereXn Eq. (64) are the spatial eigenfunctions of the asso-
ciated homogeneous problem Eq. (48) andTn are unknown
functions to be determined. Now substitute the series ex-
pansion Eq. (72) into the governing Eq. (71) and exploit the
orthogonality property Eq. (A9) of the homogeneous eigen-
solutionsXn, thus, getting

Tn,tt +ω2
nTn =

1

χ2
n

∫
∞

0
e−ξXn(ξ)f̂t t (ξ/2,k,t)e−ξ/2dξ (73)

for the unknown functionsTn. In Eq. (73), ωn are still the
eigenvalues of the associated homogeneous problem andχn

Eq. (A8) is the square norm of the relevant eigenfunctions
Eq. (64); finally, f̂ is the cosine Fourier transform of the
landslide shape function. The solution of Eq. (73) is straight-
forward:

Tn(k,t) =
2k

ωnχ2
n

∫
∞

0
e−kρXn(2kρ)In(ρ,k,t)dρ, (74)

where ρ = ξ/2k and In(ρ,k,t) is the same expression as
Eq. (7) for the indefinite plane beach. Again,In can be de-
termined only once the landslide shape functionf is defined.

Finally, inverse transform of Eq. (72) together with the sub-
stitutions dictated by Eq. (45) yield the free-surface elevation

ζ(x,y,t) =
2

π

∫
∞

0

N(k)∑
n=0

Xn(2kx)Tn(k,t)coskydk, (75)

where theTn are given by Eq. (74) and Xn Eq. (64) are
the eigenfunctions of the associated homogeneous problem
Eq. (46). Further analysis can be done only after the forcing
functionf (x,y,t) is specified.

3.3.1 Tsunami generated by a double Gaussian-shaped
landslide

In this section we determine the analytical form of the free-
surface elevation Eq. (75) generated by a landslide whose
shape function is

f (x,y,t) = exp
[
−(x −x0−u0t)

2
]
s(y)H(b−x) (76)

where s(y) = e−(cy)2
is still the lateral spreading function

andc = σ/λ the landslide shape coefficient. Equation (76)
represents a double Gaussian-shaped landslide sliding along
the incline with uniform velocityu0 from the initial position
x0. With the position of Eq. (76) f is non-zero only in the
near fieldx < b, while in the far fieldx > b the direct in-
fluence of the forcing term on the generated perturbation is
assumed to be negligible, i.e.f ' 0. Since the effects of the
parametersx0 andu0 on the generated wave field have been
already investigated in Sect. 2, in this section we shall limit
our analysis to the casex0 = 0 andu0 = 1, describing a half-
submerged landslide moving with unit horizontal velocity.
This assumption simplifies the algebra, yet allows us to in-
vestigate the influence of the beach horizontal lengthb upon
the generated wave field. Substituting Eq. (76) with x0 = 0
andu0 = 1 into In(ρ,k,t), the latter becomes

In = ωnŝ(k)
{[

ωnan −e−ρ2
]
cosωnt

−

[
2ρ

ωn

e−ρ2
+ωnbn

]
sinωnt +e−ρ2

}
, (77)

with ρ < b, where ŝ(k) =
√

π/(2c)e−k2/4c2
is the cosine

Fourier transform of the spreading functions(y) and

an(ρ,k,t) =

√
π

2
e−ω2

n/4
=

{
eiωnρ

[
erf
(
ρ + i

ωn

2

)
− erf

(
ρ − t + i

ωn

2

)]}
, (78)

while

bn(ρ,k,t) =

√
π

2
e−ω2

n/4
<

{
eiωnρ

[
erf
(
ρ + i

ωn

2

)
−erf

(
ρ − t + i

ωn

2

)]}
. (79)

Substituting Eq. (77) into Tn Eq. (74) and then the latter into
Eq. (75), we finally obtain the analytical form of the free-
surface elevationζ(x,y,t). Let us now follow the same steps
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of Sect. 2 to investigate the physical meaning of Eq. (75).
First, define the integral transformMn of a given function
u(ρ,k,t):

Mn
[u](k,t) =

2k

ωnχ2
n

∫ b

0
e−kρM(2kρ,αn)u(ρ,k,t)dρ, (80)

whereM is still the Kummer function of first kind andαn

is given by Eq. (66). Then, by making use of Eq. (80),
rewrite Eq. (74) asTn =Mn [In] . Hence, by simply applying
the transformMn to Eq. (75), we can formally write again
ζ = ζ o

+ζ e, where

ζ o
=

2

π

∫
∞

0

N(k)∑
n=0

e−kxXn(2kx)[Ancosωnt

+Bnsinωnt ]coskydk, (81)

with

An = An(k,t) = ωnŝMn
[
ωnan(ρ,k,t)−e−ρ2

]
, (82)

Bn = Bn(k,t) = −ŝMn
[
2ρe−ρ2

+ω2
nbn(ρ,k,t)

]
, (83)

and

ζ e
=

2

π

∫
∞

0

N(k)∑
n=0

e−kxXn(2kx)ωnŝ

×Mn
[
e−(ρ−t)2

]
coskydk, (84)

Xn being the eigenfunctions of Eq. (64). Now, ζ o Eq. (81)
describes an oscillatory motion in time. The coefficientsAn

andBn are formally similar to those already found in Sect. 2
for the indefinite plane beach. The differences lie in three
aspects: (1) the usage of the Kummer transformMn in-
stead of the Laguerre one,Ln, (2) the presence of the eigen-
functionsXn instead of the Laguerre polynomials,Ln and
finally (3) the truncation of the sum to the orderN(k). ζ e is
an evanescent component decaying with time, its expression
being similar to the evanescent term of the indefinite plane
beach of Sect. 2. Again, the landslide generates a twofold
wave field made up by oscillatory and evanescent compo-
nents, the latter rapidly vanishing with time. Due to the an-
alytical similarity between the wave field of the semi-plane
beach and that of the indefinite plane beach, all the obser-
vations already made in Sect. 2 can be repeated also for the
current system. In the following we shall focus our atten-
tion on the influence of the main system parameter, i.e. the
non-dimensional horizontal length of the inclineb, on the
behaviour of the generated wave field.

3.4 Discussion: influence ofb

As a first step to investigate the influence of the beach non-
dimensional horizontal lengthb = b′/σ on the generated

wave field, let us consider the variation of the system eigen-
valuesωn with b. Recall that theωn are the positive solutions
of the eigenvalue condition Eq. (63), with

ωn ∈

(
0,k

√
b
)
, n= 0,...,N(k,b). (85)

Figure11 shows the behaviour of the first four eigenfre-
quenciesωn, n = 0,...,3, versusb for the fixed parameter
k = 1; the bold line represents the upper limitk

√
b. When

b is very small, i.e. the domain of Eq. (85) is very nar-
row, only the first eigenvalueω0 exists, corresponding to
the first trapped mode. All eigenfrequencies larger thanω0
would correspond to progressive waves, which cannot be ex-
cited by a transient local perturbation (see Sect.3.2) and
must be excluded. Increasingb, ω0 increases and quickly
reaches a limiting value, corresponding numerically to the
first eigenvalue of the indefinite plane beachω0(k = 1) = 1
(see Eq.8). For larger values ofb, the upper limit of the do-
main Eq. (85) increases as

√
b, thus, leaving room for higher-

order eigenvalues to appear. As a consequence, the sequence
of eigenvaluesω0,...,ωN , N = 1,2,... forms progressively,
all the ωn quickly converging to their relevant indefinite
plane-beach values. For very largeb all the eigenvalues of
the semi-plane beachωn eventually equate those of the in-
definite plane beach andN(k,b) grows to infinity, i.e.ωn →
√

k(2n+1) and N(k,b) → ∞. Now, in the limitb → ∞

the parameterαn becomesαn = 1/2− ω2
n/2k → −n, and

the relevant Kummer functionM(ξ,αn) Eq. (65) of the first
kind and ordern transforms into the Laguerre polynomial
Ln(ξ), i.e. M(ξ,αn) → M(ξ,−n) ≡ Ln(ξ) (seeAbramowitz
and Stegun, 1972). As a consequence, forb → ∞, the
eigenfunctions Eq. (64) are given byXn(ξ) → M(ξ,−n) =

Ln(ξ), ξ ∈ (0,∞), while the distinction between the near
field and the far field becomes meaningless, since the geom-
etry is that of an indefinite plane beach. Finally, note that the
square norm of the eigenfunctions Eq. (A8) becomes

χ2
n (k) →

∫
∞

0
e−ξL2

n(ξ)dξ = 1

asb → ∞, so that Eq. (80) can be rewritten as

Mn [u] →
2k

ωn

∫
∞

0
e−kρLn(2kρ)u(ρ,k,t)dρ ≡Ln [u] ,

whereLn is the Laguerre integral transform Eq. (18). As
a consequence, the asymptotic forms of the oscillatory and
the evanescent components of the free-surface elevation,
Eqs. (81) and (84), are, respectively,

ζ o(x,y,t) →
2

π

∞∑
n=0

∫
∞

0
e−kxLn(2kx)

×[Ancosωnt +Bnsinωnt ]cosky dk (86)

and

ζ e(x,y,t) →
2

π

∞∑
n=0

∫
∞

0
e−kxLn(2kx)

×ωnŝLn
[
e−(ρ−t)2

]
cosky dk, (87)
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asb → ∞, where theAns andBns are still given by Eqs. (82)
and (83), respectively, replacingMn with Ln. Now note
that the asymptotic forms of the free-surface componentsζ o

Eqs. (86) and ζ e (87) coincide with the analogous expres-
sions of the indefinite plane beach for the Gaussian slide,
Eqs. (19) and (22) respectively, providedx0 = 0 andu0 = 1.
Therefore, in the limitb → ∞, the semi-plane beach model
perfectly agrees with the indefinite plane beach model. Let
us now investigate the influence ofb = b′/σ on the gener-
ated wave field by analysing the tsunami propagating along
a semi-plane beach. Let us first consider smallb = O(1)

and compare the results to those obtained for the indefinite
plane beach. Ifb = O(1), thenb′

' σ , i.e. the character-
istic length of the landslide is comparable to the horizontal
length of the incline. As an example, this situation can oc-
cur for unstable rock cliffs falling into the ocean. To analyse
the wave field propagating in such a geometry, let us con-
sider the same Gaussian landslide of Sect. 2, with parameters
σ = 0.37 m,c = σ/λ = 2, x0 = 0, u0 = 1, sliding along an in-
cline of slopes = 1/3 and takeb′

= σ , i.e.b = b′/σ = 1 as a
limit case. The solid lines of Fig.12a, b show the time se-
ries of the free-surface elevationζ ′(x′,y′,t ′) in physical vari-
ables, at points, respectively,(x′,y′) = (0.4,0) m offshore,
and (x′,y′) = (0,0.8) m on the shoreline. In the same fig-
ure, the time series of the free-surface elevation obtained at
the same points, but for an indefinite plane beach, are re-
ported with dashed lines for comparison. First, note that
the maximum runup and drawdown of the generated wave
field are larger for the indefinite plane beach than the semi-
plane beach, i.e. the wave field generated in the semi-plane
beach is less energetic. This happens since for smallb only
the very first eigenmodes are excited and concur to gener-
ate the propagating wave field. Physically, having required
the forcing functionf to annihilate in the far field, deter-
mines the landslide mass to disappear suddenly as it reaches
the boundaryx = b. The reduced time of interaction be-
tween landslide and water for smallb is therefore respon-
sible for a strong decrease in the amount of the total energy
yielded by the landslide to the water, especially in the off-
shore direction (see Fig.12a). This determines the reduc-
tion in amplitude of the generated waves in the semi-plane
beach. However this does not imply loss of physical mean-
ing for this case: the landslide accumulates and stops at the
toe of the slope. Now let us consider the caseb � 1, or in
physical variablesb′

� σ , i.e. the characteristic length of
the slide is small if compared to the horizontal length of
the incline. Physically, this situation represents a landslide
involving only a small part of the beach. As an example,
here we consider the same slide of the previous subsection,
but increase the non-dimensional horizontal length of the in-
cline to the valueb = 10. Figs.13a, b represent the time
series of the free-surface elevation in non-dimensional vari-
ables both for the semi-plane beach (solid line) and the in-
definite beach (dashed line) at points(x′,y′) = (0.4,0) m and
(x′,y′) = (0,0.8) m, respectively. Note that forb = 10 the

semi-plane beach and the indefinite beach models agree al-
most completely, i.e. the influence of the flat bottom on the
generated wave field is negligible. In such cases, application
of the plane beach model is preferable, due to its easiness in
calculations and to the availability of a closed form for the
free-surface elevation at large times, obtained via the method
of the stationary phase.

4 Conclusions

This work consists of two sections. In the first one, the an-
alytical forced 2HD theory ofSammarco and Renzi(2008),
on tsunamis generated by a double Gaussian landslide of unit
speed and propagating along a plane beach, is extended to
slides of more complex shape and dynamics. The wave field
generated by an infinite double Gaussian slide of arbitrary
velocity and initial position is investigated and compared to
the wave field generated by a double parabolic slide of fi-
nite length, again having arbitrary velocity and initial posi-
tion. For both slides, the generated wave field consists of an
evanescent component travelling offshore, quickly decaying
with time, and a system of transient travelling edge waves
along the coastline. For a mild slope and a thin slide, the
source-related evanescent terms show the same rate of decay
O(t−2) for either slide, regardless of its shape. At large times
the offshore motion decays and only transient edge waves
travelling along the beach are present, their rate of decay
being O(t−1/2). These waves show a clear dispersive be-
haviour, with longer waves travelling faster, followed by a
tail of shorter waves. Larger waves are shifted towards the
middle of the group, due to the difference between phase
and group velocities of the transient wave trains. Dissim-
ilarities arise in the shape of the waves generated by the
two slides and propagating in the far field. The wave field
originating from the Gaussian slide is smooth and regular,
while the perturbation generated by the finite-length double
parabolic slide is characterised by the occurrence of spiky,
double-crested waves. These double crested waves are an ef-
fect of the secondary inertial rebound occurring at the origin
soon after the tail of the slide enters water, which cannot be
rendered by employing the more ancillary double Gaussian
shape. Hence, the finiteness of the landslide is an important
feature that cannot be neglected in analytical models aiming
to reproduce accurately the shape of the generated waves.

In the second part, an analytical forced 2HD model has
been developed to analyse the distinguishing features of
landslide tsunamis on a semi-plane beach. The solution ob-
tained via the method of separation of variables only allows
the existence of trapped wave modes propagating along the
coast. For very large values of the horizontal length of the
slope, the free-surface elevation matches the solution ob-
tained for an infinite sloping beach, where all the eigenmodes
are trapped. For a finite horizontal length of the slope, a
smaller number of eigenmodes are excited. The free-surface
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elevation is the sum of an evanescent component, quickly
decaying with time, and an oscillatory component travelling
along the shoreline. Despite the presence of the constant-
depth region would suggest the occurrence of an offshore-
travelling wave train, no wave is radiated offshore. As a con-
sequence, energy is trapped along the coastline, but a smaller
number of spectral components are excited with respect to an
infinitely long beach. In this sense, the presence of the con-
tinental platform may be beneficial in mitigating the severity
of the tsunami.

Appendix A

Orthogonality of the semi-plane beach natural modes

It is a well-known result that the spatial eigenfunctions
of the plane beach problem, namely the Laguerre poly-
nomials Ln, are orthogonal with respect to the weight-
ing function e−ξ (see Abramowitz and Stegun, 1972),
i.e.

∫
∞

0 e−ξLn(ξ)Lm(ξ)dξ = δnm. In this subsection we
wonder if a similar property still holds for the spatial eigen-
functionsXn Eq. (64) of the semi-plane beach problem. To
perform this investigation, recall that theXns are the inde-
pendent solutions of Eq. (48); in other words, they satisfy

hXn,ξξ +(hξ −h)Xn,ξ +

(
ω2

n

4k2
−

hξ

2

)
Xn = 0, (A1)

with ωn the system eigenvalues solving Eq. (63). Now, let us
reduce Eq. (A1) to its corresponding Sturm-Liouville form[
h(ξ)e−ξXn,ξ

]
ξ
−

(
hξ (ξ)

2
−

ω2
n

4k2

)
e−ξXn = 0. (A2)

Then consider two independent solutions of Eq. (A2), Xp

andXq , of eigenvaluesωp andωq respectively, withp,q ∈ N
and p 6= q. If we first write Eq. (A2) for Xp and for Xq

separately, multiply the first equation byXq , the second by
Xp and then subtract the two of them, we get

[
he−ξXp,ξ

]
ξ
Xq −

[
he−ξXq,ξ

]
ξ
Xp =

(
ω2

p −ω2
q

4k2

)
e−ξXpXq .

The latter expression can be further simplified by using the
differential form
d

dξ

[
he−ξ

(
XqXp,ξ −XpXq,ξ

)]
=

(
ω2

p −ω2
q

4k2

)
e−ξXpXq . (A3)

Integrating Eq. (A3) in all the fluid domain,ξ ∈ (0,∞),
yields

ω2
p −ω2

q

4k2

∫
∞

0
e−ξXpXq dξ

=

∫
∞

0

d

dξ

[
he−ξ

(
XqXp,ξ −XpXq,ξ

)]
. (A4)

To solve the latter integral, express the bottom depthh

Eq. (42) at the right-hand side in terms of the transformed
variableξ Eq. (45): h(ξ) = ξ/2k if ξ < 2kb and h(ξ) = b

if ξ ≥ 2kb. Note thath is a continuous function ofξ ; also,
continuity of the free-surface elevation and of the fluxes in
Eq. (62) determinesX(ξ) andXξ (ξ) to be continuous over
the entire domainξ ∈ (0,∞). As a result, the integrands at
both sides of Eq. (A4) are continuous functions ofξ . Solving
the integral at the right-hand side of Eq. (A4) gives then

ω2
p −ω2

q

4k2

∫
∞

0
e−ξXpXq dξ = 0, (A5)

sinceh(0) = 0 and by virtue of Eq. (64)

lim
ξ→+∞

h(ξ)e−ξ
(
XqXp,ξ −XpXq,ξ

)
= 0. (A6)

As a consequence, Eq. (A5) simply becomes∫
∞

0
e−ξXn(ξ)Xm(ξ)dξ = 0 if n 6= m. (A7)

Let us now define the square norm of the eigensolutionsXn

Eq. (64) as

χ2
n (k) =

∫
∞

0
e−ξX2

n(ξ)dξ =

∫ 2kb

0
e−ξM2(ξ,αn)dξ

+
e−2kbM2(2kb,αn)

βn

; (A8)

hence, coupling Eqs. (A7) and (A8) yields the orthogonal-
ity relation satisfied by the spatial eigenfunctionsXn of the
governing Eq. (48)∫

∞

0
e−ξXn(ξ)Xm(ξ)dξ = χ2

nδnm. (A9)

Appendix B

Computational aspects

In Sect. 2 the solution of the plane beach problem was found
in terms of the oscillatory and evanescent components of
the generated perturbation, given respectively by Eqs. (19)
and (22) for the double Gaussian landslide and by Eqs. (23)
and (27) for the double parabolic landslide. Mathematically,
these expressions involve calculation of an infinite series of
two nested integrals over infinite domains and posed several
computational challenges. Numerical evaluation of the in-
tegrals was performed via a modified Gauss-Laguerre inte-
gration method (Renzi, 2010, see for details). The latter is
a quadrature method whose nodal abscissas are the zeros of
the Laguerre polynomials and proves to be very efficient for
the calculation of integrals with an exponentially convergent
integrand. A number of 60 Gauss points is sufficient to en-
sure convergence of the integrals treated in this work with
largest relative errorO

(
10−3

)
. The rate of convergence of
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the outer summations in the full solutionsζg andζp depends
on the parameters of the system. For the geometry consid-
ered here, about 10 modes were necessary to evaluate the
free-surface elevation at different times and points, with an
average relative error of about 10 %. This is enough preci-
sion to provide an estimate of the general behaviour of the
fluid. Extension of the summation up to 20 terms allows a
significant refinement of the results, with an average relative
error now less than 3 %. Convergence of the outer series is
much faster when considering the stationary phase approxi-
mation Eq. (34). Here, about 5 terms are already sufficient to
obtain an average relative error of about 1 %. Usually, con-
vergence was faster for the double Gaussian slide than for
the double parabolic one. This is likely due to the singular-
ity introduced by the Heaviside step function at the borders
of the double parabolic slide (see Eq.12). Similar figures
also apply to the solution of the semi-plane beach problem in
Sect. 3.
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di Roma Tor Vergata, Italy, 2010.

Sammarco, P. and Renzi, E.: Landslide tsunamis propagating along
a plane beach, J. Fluid Mech., 598, 107–119, 2008.

Sarri, A., Guillas, S., and Dias, F.: Statistical emulation of a tsunami
model for sensitivity analysis and uncertainty quantification, ac-
cepted, Nat. Hazards Earth Syst. Sci., 2012.

Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., and Tappin, D. R.:
Landslide tsunami case studies using a Boussinesq model and
a fully nonlinear tsunami generation model, Nat. Hazards Earth
Syst. Sci., 3, 391–402,doi:10.5194/nhess-3-391-2003, 2003.

Nat. Hazards Earth Syst. Sci., 12, 1503–1520, 2012 www.nat-hazards-earth-syst-sci.net/12/1503/2012/

http://dx.doi.org/10.1029/2004JC002443
http://dx.doi.org/10.5194/nhess-3-391-2003

