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Abstract. This work proposes an advancement in analyticalslide and water (sekynett and Liy 2005. The model of
modelling of landslide tsunamis propagating along a planeSammarco and Ren£R008 on landslide tsunamis propa-
beach. It is divided into two parts. In the first one, the an- gating along a plane beach (SR model in the following) con-
alytical two-horizontal-dimension model &ammarco and tributed to fill this gap with a specific insight on the coupled
Renzi (2009 for tsunamis generated by a Gaussian-shapedlynamics of landslide motion and wave field generation. By
landslide on a plane beach is revised and extended to realist®olving the 2-D horizontal wave fiel§ammarco and Renzi
landslide shapes. The influence of finiteness and shape of thR008 investigated the general behaviour of the system and
slide on the propagating waves is investigated and discussedhowed that after a short time following the landslide gener-
In the second part, a new model of landslide tsunamis propation, the wave motion is made by transient edge waves trav-
agating along a semi-plane beach is devised to analyse thelling along the shoreline, the offshore motion being practi-
role of the continental platform in attenuating the wave am-cally absent. The wave field shows a strong dispersive be-
plitude along the shoreline. With these parameters taken intdvaviour, with longer waves travelling faster and the highest
account, the fit with available experimental data is enhancedrests shifted towards the middle of the wave train. Despite
and the model completed. being one of the few three-dimensional models available in
the literature, the SR model might be further improved by
removing some of its limiting assumptions. First, the au-
thors modelled the landslide as a double Gaussian-shaped,
1 Introduction rigid body, starting its motion from a fixed position (corre-
sponding to a half-submerged slide) and moving along the in-
The recent Sendai tsunami in Japan has shown how destrugtine with given velocity (about 1 nT$). Therefore, the SR
tive such an event is for coastal communities (Eeet al., model, yet providing a good description of the tsunami gen-
2011). Catastrophic tsunamis can be generated by a numegration and propagation mechanisms, does not describe the
ber of natural events like earthquakes and submerged or sufnfluence of the slide initial position and velocity on the gen-
aerial landslides. While excellent advancements have beegrated wave field. Furthermore, the double Gaussian slide,
made in understanding earthquake tsunamis, knowledge Gfith its infinite length, is not completely representative of
the generation and propagation of landslide tsunamis is ing real landslide shape of finite length. Second, the indef-
stead still fragmentary (seeu et al, 2005. The most chal-  jnite plane beach oBammarco and RenzR008 extends
lenging issue is that landslide tsunamis are not generated ing infinite depth, thus, being not representative of realistic
stantaneously as earthquake tsunamis, but strongly depenghthymetries, where the sloping beach eventually connects
on the time history of the seafloor deformation. As a con-tg a flat continental platform. To overcome these drawbacks,
sequence, these events cannot be investigated by transferrifg the present work we extend the SR model to investigate
to the free-surface a “hot start” initial condition due to the the influence of the landslide Shape and physica| parame-
ground movement (s&gammarco and RenZ008. Indeed,  ters and of the continental platform on tsunamis propagating
at the state of the art, the main gap in modelling landslideg|ong a plane beach. Contemporaneously, a statistical analy-

tsunamis seems to be the scarcity of analytical models thagjs pased on the extended SR model is being carried out by
take into account the prolonged interaction between land-
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z! equation for forced waves on a uniformly sloping beach to
describe the physics of the problehiy et al,, 2003:
4 92 92 f
¢’ / '

Inthe latter,V(-) =[d(-)/dx’,3(-)/dy’] is the nabla operator,
and¢’(x’,y’,t’) the free-surface elevatiog;is the accelera-
tion due to gravityy’ denotes time and’ =h'— f'(x’,y’,t')

the bottom depth, measured with respect to the mean water
levelz/ = 0. In the previous expressidi=sx’ is the undis-
turbed bottom depth, whilg’(x’,y’,¢’) is a time-dependent
perturbation of the seafloor, which represents the landslide

Fig. 1. The fluid domain in physical coordinates;ando are re-  moving on the beach (see Fit). Upon introduction of the
spectively the slide maximum vertical thickness and characteristiqouowing non-dimensional variables

horizontal length, depending on the shape of the landslide.
. =W"y)/o, t=yes/ot', & = f")/n (2)

Equation () becomes

Sarri et al.(2012.
In Sect. 2 the analytical two-horizontal dimension (2HD) *xx +&x +X8yy = & = fur, ©)

model is deduced for a general shape and law of motion,are the subscripts denote differentiation with respect to
of the slide. Then the model is applied to investigate thethe relevant variable. The free-surface elevatian, y,7)

parametric dependence of the generated wave field on thfenust be bounded at the shoreline- 0 and ast — co. Fi-
slide starting position and moving speed along the incline. . \ve require null initial free-surface elevation and ve-
Also, the influence of the shape is investigated by considerbciw i.e. Z(x,y,00=0 andZ(x,y,0) = 0. The complete
ing a double parabolic landslide of finite length with arbitrary analytical solution of this boundary-value problem for the

speed and initial position. Comparison is made between th?ree-surface elevation(x, y,7) has been obtained byam-

two models to show how the slide finiteness influences th%arco and Renz{2009 for a generic bottom perturbation
generated wave field. In Sect. 3 an analytical 2HD model isf(x%t)_ Here, we shall retrace the core passages of their

developed to investigate the influence of the continental plat'analysis. Application of the cosine Fourier transform pair
form on landslide tsunamis propagating along a semi-planedbngy
beach. In both sections results are discussed and the free-

surface elevation time series are calculated, showing excel- o0 2 [,
lent agreement with available experimental data. Eex.ko1) _/o §x.y.1)coskydy, £ = 7z Jo ¢ coskydk(4)

and the method of variation of parameters to the forced
Eq. @) yield
2 Influence of the landslide shape and

) 2., (oo
physical parameters [y ==Y / e M L, (2kx)T, (k,r)coskydk  (5)
T n=0Y0

2.1 Position of the problem for the free-surface elevation. In the latter expressignare

the Laguerre polynomials of zero-th order and degreeN,
Referring to Fig.1, let us consider a plane beach with con- corresponding to the free spatial oscillations (eigensolutions)
stant slope and define a Cartesian reference system of coorof the plane beach (sééei et al, 2005. TheT7,s in Eq. 6)
dinates(O',x',v,7’), with they’-axis along the mean shore- are given by
line, thez” axis pointing vertically upwards and water in the ok o0
regionx’ > 0. We assume that the landslide originates in a7, (k,r) = _f e XL, (2ka) 1, (o, k,1)da, (6)
neighbourhood of the origin‘@nd that it is symmetric with @n Jo
respect to the/’-axis; the induced wave field is also sym- ith
metric in y’, hence, we shall solve the equation of motion .
in y’ >0 only. Now, lety ando be, respectively, the maxi- 7 (4 k1) :/ fee (o k, T)SiN[wn (t —17)]dT, )
mum vertical height and the characteristic horizontal length 0
of the landslide. Let us further assume that the slope is mild
i.e. s <1, and that the slide is thin, with/o < 1. Un-
der these assumptions, we can employ the linear long-wave, = /k(2n+1) (8)

where

Nat. Hazards Earth Syst. Sci., 12, 1503t52Q 2012 www.nat-hazards-earth-syst-sci.net/12/1503/2012/



E. Renzi and P. Sammarco: Influence of landslide shape and continental shelf on landslide tsunamis 1505

' 2
z
s - /
. *
= Double-parabolic _ \ Double-Gaussian - /
N N\’ . ]
X7 n W\ g °
P, 8p) N \ S
/
0.5
Bottom
x,=6, X X+, X .
0.5 -0.25 0 0.25 0.5
4 X'(x,) (m)
Double-parabolic / \« Double-Gaussian
/ ) N Fig. 4. Experimental relationship between the mean underwater ve-
/ /’ Ty \\ \k locity U’ and the release distanc€ obtained byDi Risio et al.
Al — (2009 for an ellipsoidal landslide. Diamonds show experimental
s measurements, the bold line the relevant linear regressior8&g. (
ottom Note thaty’ ~1 ms™1 for X’ =0.
—ﬂp 0 ﬂp y'

2.2 Landslide shape

Fig. 2. Vertical cross sections of the double Gaussian landslideggmmarco and Reng2008 solved the forced plane-beach
(solid line) and the double parabolic slide (dashed lines) in phys'calproblem of Eq. 8) by considering a translating Gaussian

variables in thex’,z’) plan r panel) and in tiig’, ) plan . : o .
ariables in thex’, ') plane (upper panel) and in thg’, =) plane seafloor movement, whose kinematic description was given
(lower panel). Herer, =0, ng =1, and vertical dimensions are

exaggerated for easiness of reading. by
[y, =exp—(x —n?lexd—(o/2 y)?], ©)
being A the characteristic width of the slide at the shore-
line. Expression Eq9) represents a double Gaussian-shaped
slide moving in the offshore direction at uniform speed 1,
x' whose centroid occupies the positior=0 for ¢ =0, i.e. at
N rest. The results provided by the authors are in satisfactory
s agreement with available experimental data BeRisio et
al.,, 2009 for a similar condition of the SR model. How-
ever, at a deeper insight, both numerical and experimental
results (e.gLiu et al, 2005 Lynett and Liy 2005 Di Risio
Fig. 3. Ellipsoidal slide used in the experiments i Risio et al. et al, 2009 have shown that the generation and propagation
(2009. The initial position of the centroid isy; X’ represents the  of |andslide tsunamis along a sloping beach are sensibly in-
!an(_jslide release distance, whil€ is the slide velocity along the  fj,enced by the shape, the initial position and the speed of the
incline. slide. Hence, the expression of the forcing tefix, y, 1) in
Eqg. 9), yet describing satisfactorily the general behaviour of

are the motion eigenfrequencies in the transformed spacd€ System, needs some improvements to be applied to more
Each of thew, is associated with the-th modal Laguerre advanced tsunami forecasting models. In order to investigate

eigenfunctionZ,. Finally in Eq. () fi. is the second-order the phy_sics not reproduced by the Gaussian slide _of the SR
time derivative of the Fourier transform of the bottom pertur- M0del, in this section we shall extend our analysis to two

bation f(x,y,7). Clearly, thel, in Eq. (7) and henceforth different and more complete landslide shape functions.

the free-surface elevationin Eq. (5) can be evaluated only ~_ First, we retain the double Gaussian shape, but allow
after having determined the shape of the slide and its law ofor representation of the Igndsllde initial position and mean

motion by imposing an analytical form to the forcing teym ~ SPeed by defining the forcing term as

fg(x,y,t)zexp[— (x—xg—ugt)z]sg(y), (20)
where

2
s¢() =exp[—(cgy) ] (11)

www.nat-hazards-earth-syst-sci.net/12/1503/2012/ Nat. Hazards Earth Syst. Sci., 12, 180820 2012



1506

is the lateral spreading function aegd =0,/ is the lat-
eral spreading factor, the subscriptienoting quantities rel-
evant to the double Gaussian slide. Equatidi®® and (1)

represent a double Gaussian-shaped slide moving as a rigid

body in the offshore direction, with its centroid initially at
x = xg,and with uniform speed = u, alongx. At any timer
the centroid is afx,y) = (xg +u,t,0), where the slide thick-
ness is maximum, i.¢f; = 1 in nondimensional variables. In
the following, a landslide for whicl, <0 (x, > 0) will be

referred to as subaerial (submerged), according to the initial

E. Renzi and P. Sammarco: Influence of landslide shape and continental shelf on landslide tsunamis

where 5, (k) = /7 /(2c,) ¢ K14 is the cosine Fourier
transform of the spreading functiep(y) Eqg. (11) and

T o, 2 2
dg.n Zag,n(a,k,l)zg/—_e on/ At
g

X3 {eiwn(“xx)/”g |:erf<Ol —Xg
n
M 9

- erf(a—xg—ugt+i—
2ug

+|—
2u,

(15)

position of its centroid. Second, we investigate the influencepile
of the landslide shape and finiteness on the generated wave

field by considering a finite-length double parabolic slide,
whose shape and motion are described by

fp(x,y,t) = (x—xp—upt+1)(xp+upt+1—X)Sp(y)
x Hx—xp—upt+1DHG&p+upt+1—x)
X H(l/cp—y).

In the latter,

Sp(y):(l_cp y)(1+cpy) (13)

is the lateral spreading function aag =0, /1, the lateral
spreading factor, the subscriptdenoting quantities relevant
to the double parabolic slide. In Ed.Z) the Heaviside step
function H is introduced to cut the slide into a finite length
alongx andy; only the half-space > 0 is considered due
to the symmetry of the problem abowt= 0. Equations12)
and (L3) represent a landslide with a finite rectangular foot-
print and parabolic vertical cross sections aboutifzandy
axes; again, is the centroid initial position and, the mean
downfall speed of the slide along In the following, the so-
lution of the forced equation of motion E@)(will be found

in terms of the free-surface elevation EB), @nd the relevant

(12)

wave field discussed, for each of the two proposed forcing

v

bg,n :bg,n(a,k,t)z 2 eiwfzz/‘lug

Wp
u

8

B}

In Egs. (L5) and (6) i is the imaginary unit, whilér{} and
J{} indicate, respectively, the real and imaginary partjof
Substituting Eq. 14) into Eq. @) for T, , and then the latter
into Eq. 6), we finally obtain the analytical form of the free-
surface elevation for the Gaussian landslide:

Lo(x,y, 1) == Z

nO

g
R {eiw,l(axg)/“g [erf(a —Xg

— erf(oe—xg Ug (16)

2ug

/ e kL, (2kx)— x

x f e KL, (2ka)wy g (K)
0

2
X [ [wnag,n P ] Ccosw,t+

2u, (@ —x, 2 .
%e—(a—m +wpbg.p | SiNwAL
n

functions. The vertical cross sections of both the slides are

represented in Fi@ for easiness of comparison. For the sake

of clarity, all the quantities defined above will be referred to
with a g subscript for the Gaussian slide angb aubscript
for the double parabolic slide.

2.3 Solution

With the landslide forcing functions defined by EqE0)and

(12) for the double Gaussian and the double parabolic land

slide respectively, the integral functiap Eq. (7) and then
the free-surface elevation Eq. (6) can now be determined

for each of the two slides. For the Gaussian-shaped land-

slide, substitution of Eq.1Q) into Eq. (7) and integration by
parts yield

2
lgn= wngg(k) { I:wnag,n - e*(afxg) ]COSa)nt

Nat. Hazards Earth Syst. Sci.,

2u, (Ot —xg)
wp

e*(“*x2)2+w b ]sinw t
ntg.n n
+ e*(“*xg*”g’)z}, (14)

12, 1503t52Q 2012

4o (emxgmugn)’ } do cosky dk. 17)
To get a physical interpretation of EQ.4), let us now define
the integral transfornt” of a given function:(«, k,¢) as
2k [ _;
L [u] (k,t):—/ e "L, Cka)u(a,k,t)do, (18)
wn JO
so that Eq. §) can be easily rewritten &, = £"[1,,]. Hence,

by applying the transfornt” to Eq. (14), we can formally
rewrite Eq. 7) as¢, =¢; + ¢, where

o0
(== X_:/o e ML, (2kx)[Ag,n cOSOLE

+ By, Sinwyt | cosky dk, (19)
with
Agn=Agnlk,1) = 0,5 L [ onag (e, k1)

_ ef(afxg)z], (20)

www.nat-hazards-earth-syst-sci.net/12/1503/2012/
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Fig. 5. Free-surface time series(@) (x’,y’) = (0,3.10 m) and(b) (x’,y") = (0,4.07 m). The blue dashed line shows the experimental data.

The solid line &) represents the theoretical values for the double Gaussian slide, while the dash-dotted liefe(s to the double parabolic

slide. For both scenarios, the free-surface elevation is evaluated with the stationary-phase approximation formula and then transformed into
dimensional form.

By = Bon (1) = —5,L" [2ug (ar—x) e~ (e70)" with
+ bkt | QY Apalkn) =onF,k)L" [ Ontpn—(@=2,+1)
X(xp+l—a)H(a—x,+DH(x,+1-0a)],

and
(24)
2., [
fe== Z [ e Ly (2kx) w8 ()
T —3J0
n=0 ) Byt )= =5, ()£ [ @by —2up (@ —x,)
x L [e—@f—xk—"x” ]Codcy dk. (22)
xH(a—x,+1H(x,+1-a)], (25)

The component;’ Eq. (19) describes an oscillatory mo- i ara the counterparts of thig , and B, , for the Gaus-

tion in time, depending on cagt and sinw,7. Note that at : o : :
n sian slide in Eqs.20) and @1), respectively. Furthermore, in
large timest > 1, the second erf in Eqsl1%) and (L6) ap- Egs. 04)—(25) ?hezte)rm = P y

proaches unity, and the, , andb, ,, do not depend on time

anymore. As a consequencs, , Eq. (20) andB, , Eq. 21) _ o0 1
approach limiting values that do not vary with time. The 5p(&) 2/ Sﬁ(y)H<c_ _y> cogky)dy
o . 0 P
component¢ Eq. 22) fastly decays with time, depending on o0 X X
exp[—(ugt)?]. Hence, the landslide generates a wave field = k—?f’ |:Cp Siﬂ<c—> —kCOS<c—>]
p p

made up by an oscillatory and an evanescent component, the
latter rapidly vanishing with time. Note that this result is comes from the cosine Fourier transform of the forcing term
similar in form to the one already obtained 8gmmarco and f» of EQ. (12), while thea,, , andb,, ,, are given respectively
Renzi(2009 for the unit speed Gaussian slide of Eg). (In by

fact, by lettingx, = 0 andug = 1, the previous results of the

authors are fully recovered. Similarly, by applying the samea, , = 3{g(®)}, by, =N{g(®)}, (26)
passages as above to EtR)and after some lengthy algebra,

the free-surface elevation relevant to the wave field generatelﬂ’here

by the double parabolic landslide can be expressed as well as 0o

¢p=1t9+¢¢. Inthe latter expression, the first componentis ~ 8() = /o (@=xp—upt+DH(xp+upr+l-0a)

given again by [
xH(@—xp—upt+1DHx,+u,t+1—a)e " dr.

“+o00 o0
;[‘;Z EZ/ e‘kan(ka)[A,,,n(k,t)cos(a),,t) Within this framework, thez, , andb, , in Eq. (26) play
T =070 the same role as thg, , andb, , for the Gaussian slide in
+B n(k,1)sin(w,t)]cosky)dk (23) Egs. (L5) and (L6), respectively. Note also thgf, Eq. (23)

www.nat-hazards-earth-syst-sci.net/12/1503/2012/ Nat. Hazards Earth Syst. Sci., 12, 180829 2012
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Fig. 6. Snapshots of the free-surface profile in physical variables at tifags:=0's,(b) ¢’ = 0.2 s (corresponding to=0.5), (c) ¥’ =0.5s
(r=15) and(d) ¥ =155 ¢ =4.5). The double Gaussian landslide of parametgrs: 2, xé =0m, u;, =1 ms1is taken as reference
model. The first six modes have been considered. All values are in metres.

has the same formal expression&gsEq. (19), i.e. it de-
scribes an oscillatory component. Finally, the second term

3.5 of the decompositiog, = ¢, + ¢ is obtained as
\
3.0 ~
25 2nd \\ 2R roo
~ RN = _Z / e L, (2kx) cosky)w, 5, (k)
— N P 0
g 20 ~ n=0
;3 s | N N xE”[(oz—xp—upt+1)(xp+upt+1—a)
™ \\ X H(@ —xp—upt+1)- H(xp+upt +1—a)]dk. (27)
1.0
N N
0.5 s Clearly, in the latter equation at largethe two Heaviside
0.0 =~ step functions will constrain the domain of integrationsf
08 -07 -06 -05 -04 -03 -02 -0.1 00 betweenv; =x,4u,t —1 andouy = x, 4+u,t +1. Approach-
X', (m) ing large timesxz /a1 >~ 1, the domain of integration af” in

Eqg. 27) collapses into a single point and the integral rapidly
Fig. 7. Influence of the centroid initial position on the wave field. vanishes:¢; St'e" represents an evane_scent_ term, being the
Figure shows the maximum free-surface elevation of the first wavecounterpart ot Eq. (22) for the Gaussian slide. Hence, the
(dashed line - -) and of the second wave (solid liRpvs. x} at decomposition of the generated wave field into an oscillatory
a point on the shoreliney(=3.10m). Equation39) is used to  and an evanescent componentis a general result, independent
relate the slide velocity to the centroid initial position. The double Of the shape and finiteness of the slide. Computational as-
Gaussian reference slide of parameters=0.37 m,n, =0.045m pects concerning the numerical evaluatiortégl;) andgg( )
andc, =2 (see Sec®.4) has been considered. are discussed in Appendix B. In the following we shaﬁ pro-

vide an estimate of the decay of the evanescent terms for both

the landslides.

Nat. Hazards Earth Syst. Sci., 12, 1503t52Q 2012 www.nat-hazards-earth-syst-sci.net/12/1503/2012/
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Fig. 8. Free-surface time series in physical variablggatx’, ') = (0,3.10 m) and(b) (x,y") = (0,4.07 m). The bold dashed line represents

the values of;/, for the infinite double Gaussian landslide, while the continuous line shows the valyésfarf the finite-length double

parabolic landslide, both evaluated with the stationary-phase approximation formula. The first five modes have been considered for the
double Gaussian slide, and the first seven modes for the double parabolic slide. The arrows show the double-crested waves in the perturbatio

generated by the double parabolic slide.

2.3.1 Decay of the evanescent component

asg, (k) ~k+ O (k?), k— 0. Substituting the expansion for
gn into Eq. R9) and then solving the integral, we finally get

An estimate of the decay of the evanescent components can

be obtained with an asymptotic analysis at large time. Start

ing from the Gaussian slide of Eql(), consider then-
th modal componeng, , of the evanescent term Ec22).
Whent is large, theC" transform can be approximated by

[ [e—(a—xg—ugt)z:l ~ %e—k(xg—i-ugt) L, (2k(xg +Mgt))
wWp

> 2
X f e~ (@ XU gy ~
0

Zﬁk e—k(xg +ug

Wy

DLy (2k(xg+ugt)).  (28)

Hence, the:-th component of the evanescent term ExR) (
becomes

2 o0
Con~— / e "Wy, (k)dk, (29)
= ko
where
v<k>=k<x+tx“”+ug>,
and

2,2
enk) =ke ) L 2k L (h(x, +ugt))costy.

Expression Eq.29) features an integral decaying with time.

2

Z‘e n =
¢ +ug)t?

(30)

Cg(x—txg
for the leading behaviour of the evanescent term modal com-
ponents at large time. According to EQQf, an observer
moving along thex direction at constant speed/r sees
waves decaying all as afi(r—2). Also, the larger the ve-
locity of the slideu,, the faster the decay in the offshore
direction of the evanescent waves. The same reasoning as
above can be repeated with no significant alterations also for
the double parabolic landslide of Eq2), so that the relevant
rate of decay is

. 32

Cpn = , Yy
p.n gﬂCp(xtxp +Mp)2t2

(31)

Then the evanescent waves generated by the finite-length,
double parabolic landslide have the same rate of decay,
0(t~?), as those generated by the infinitely-long Gaussian

landslide. Hence, the behaviour in the near field soon after
the generation of the tsunami is not affected significantly by

the shape of the slide (as long as the thin slide hypothesis
is satisfied and the slide is smooth, $ée et al,, 2005. We

next turn to the analysis of the oscillatory componeggtand

¢y in the far field.

We shall determine its rate of decay by using the method 012'3'2 Behaviour for large times

asymptotic analysis of integrals devised Glieng (2007).
The dominant contribution to Eg29) at larger is given by
the pointk, at whichv (k) is minimum, i.ek =0. In a neigh-
bourhood of the dominant poing,, can be Taylor expanded

www.nat-hazards-earth-syst-sci.net/12/1503/2012/

At large times the contribution of evanescent terms to the to-
tal wave field can be neglected, so that the free-surface eleva-
tion ¢ can be approximated in terms of the oscillatory modes
only. For the Gaussian-shaped landslide Bd),(the n-th

Nat. Hazards Earth Syst. Sci., 12, 150524 2012
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modal component of the free-surface elevation E§) éval- Eq. 35): the wave field is now bounded along the coastline

uated at the shoreline= 0 reads then as and no perturbation is radiated offshore. Hence, no matter
2 (oo the landslide shape and boundedness, at large times after the

Cen(0,y,1) g“;n(o,y,t) = ;/0 [Ag n(k,t)cOSw,t) impact, the energy released by the slide to the water stays

trapped along the shoreline. The wave field consists of a

system of transient, longshore-travelling edge waves, repre-

Note that the same formal expression is still valid for the dou-S€Nting & potential threat for all the near-shore civilian in-
stallations. So far, many similarities seem to exist between

ble parabolic landslide Eq1®), provided the subscript is : .
replaced byp. Careful application of the method of station- tn€ wave fields generated by the two model slides. A deeper

ary phase (seSammarco and Renz2008 for details) re- insight will point out the differences, as shown in the next

+Bg n(k,t)sin(wyt)]cogky)dk. (32)

veals that the integrand in Ec3) admits stationary points S€Ction:
at
) 2.4 Discussion
* L
kn=(@n+1) <2y) ’ (33) 2.4.1 Experimental comparison

where the phase functiow, = ky/t — w, of the products
coqw,t)cogky) and sifw,t)cogky) is null. Near the sta-
tionary points of Eq. 33), the latter trigopnometric terms ex-
perience very slow variations with, so that their phase
function can be expanded abaut= & in a second-order
Taylor seriesw, (k) = w, (k) +1/2, (k*) (k — k)2, where
in (k) = —/2n+1/(4k%/?) is the second derivative of the

First, we shall validate the theoretical results of the previous
section by comparison with the experimental dat®oRi-

sio et al.(2009. The experiments were performed at LIAM
(Laboratory of Maritime and Environmental Hydraulics of
L'Aquila, Italy) in a basin 540m long by 1080 m wide
and 08 m deep. In the experiments an ellipsoidaB -

, , X long (c = 0.4 m) by Q4 m wide ¢. = 0.2 m) block is dropped
th mode eigenfrequency E®)( Then by solving the integral down a steep slope,= 0.3, as shown in Fig3. The land-

of Eq. (32) with this simplification and summing up all the slide maximum thickness is@ m, and its maximum cross-

harmonics, th_e free-surface el_evation at the shoreline can bgectional area is about@B . The release distance of the
finally approximated for large times as ellipsoidal slide, i.e. the distance between the slide front and
00 ) V2 the mean water level measured upwards along the incline, is
0y, 0=) ¢80y, 1)~y —— settoX’ =—0.2m. In this configuration, the front part of the
n=0 n=0 (7 11n (k)] landslide is submerged at the starting position, but the land-
% [Ag,n(k,’;)cos(k:y — i+ £>+ slide c_entroid is outside the water. For the double Gaussian
4 landslide, the shape parametets=0.37 m, n, = 0.045m
_ Bg‘n(k,f)sin<k;ky—wnt+z>]. (34)  andcg =o,/i, =2 are chosen so that the overall area be-
4 neath the relevant shape function approximates the experi-
Again, Eq. 64) has been written for the Gaussian_shapedmenta| landslide maximum cross-sectional area. Following
landslide Eq. 10), but it formally holds also for the dou- the same criterion for the double parabolic slide, the shape
ble parabolic slide Eq1@) with a simple replacement of the Parameters are chosen as = 0.44m, n, =0.045m and
Subscriptg with p. Hence, Eq $4) describes an oscilla- Cp= O'p/)up = 2. Now let us set the centroid initial position
tory wave motion propagating along the shoreline. For anx, andx), for the double Gaussian and the double parabolic
observer moving along the direction at a constant speed Slide, respectively, by referring to the laboratory setup of
of y/t, k¥, Eq. @3 is constant and the oscillatory compo- Fig. 3. The centroid initial positionx; for the experimen-
nent Eq. 64) decays with time ag (t—l/Z)’ regard|ess of the tal landslide can be obtained from the release dlStaﬁdﬁ@/
shape and boundedness of the slide. Note also that the dec&yeans of the simple geometrical projection
of the transient longshore waves is slower than the decay of
the evanescent perturbation moving offshaper(2)). xp=—0 — X'cos, (36)
By applying the same method but for= 0, we obtain an

approximated expression of the free-surface elevation for alWherea = arctam is the angle of the incline on the horizon-
(x,y) for large times: tal plane and the half-length of the slide. By employing the

experimental valueX’ = —0.2m ando =0.4 m in Eq. 86),

)1/2 X

+00 i i initi i
N . . o we obtain the centroid initial positiox, = —0.18 m. Now,
Lg(x.y.1) ’“Ze Ln(2ky )85 (0.3, 1), (35) given the centroid initial position, the mean horizontal ve-
n=0 locity of the landslidex;, needs to be estimated. For this
where again the subscrigtis to be replaced withpy to ob- purpose we consider again the experimental result®iof

tain the relevant expression for the double parabolic slideRisio et al. (2009. By measuring the mean velocity of
Note the exponential decay inof the free-surface elevation the slide along the inclin&’ during the underwater motion
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for various release distanceé& (see Fig.3), we obtain the  between the theoretical and the experimental data, in the fol-
empirical linear relation lowing sections we analyse the tsunami generation and prop-
, , agation mechanisms and the parametric dependence of the
U'=1119+1.139%", 37) wave field on the initial position and shape of the slide, en-
where the dimensional coefficients.119 m s! and hancing the peculiarities of and the differences between each

1.139 5% have been derived via the linear regression of the©f the two model slides considered so far.
experimental data, as shown in F#§. Let us now express

Eg. B7) in terms of the variables; andx,. Firstassume 242 Tsunamigeneration and propagation
that U’ coincides with the landslide average velocity along
the incline for all the stages of motion (i.e. subaerial plus
submerged); then the velocity, in the x” direction can be
obtained from Eq.37) with the simple geometrical projec-
tion

The three-dimensional dynamics of tsunami generation and
propagation along the indefinite plane beach lying onythe
axis can be appreciated with the plots of FéggHere, three-
dimensional snapshots of the free-surface elevation are pre-
up=U'cosx = (1.119+1.139X") cosw, (38)  sented at fixed times, starting from the beginning of the mo-
tion till the perturbation is fully generated and propagating
away from the source. The double Gaussian landslide with
parameters, = 0.37 m,n, =0.045m,c, =2, x, =0m and
uy=1m sl is taken as a reference model. At the earli-
up(xp) =1.119 cost — 1.13%0 + x{). (39)  esttimes of motion, the landslide pushes water ahead, while
a depression generates just landwards of the slide @aig.
This is the sought relation between the landslide horizontabo)_ Hence, large free-surface gradients are created along the
velocity u and the centroid initial positiomy, valid for the  shoreline, driving strong fluxes to converge towards the cen-
the experimental setup @i Risio et al.(2009. Here, we e (Fig.6c). As a result, the convergent flows eventually
shall take the same values as the experimental ones for thgy|jide at the origin to form a large elevation wave. Finally,
slide initial position Eq. $6) and uniform speed Eq39),  the rebound wave splits into two crests, which symmetrically
for both the Gaussian-shaped and the double parabolic slidtart to travel along the shoreline (F&gl) and the wave field
Hence, from the values of the centroid initial positigh= s fylly developed. After having highlighted the dynamics of
x, =xg=—0.18m, the values of the average spegd=  tsunami generation, in the following sections we shall con-
u\, =up=0.845 ms* for both slides are derived directly sider the dependence of the generated wave field on the main
via Eq. @9). In Fig. 5 the time series of the free-surface el- parameters of the problem, namely the initial position of the
evation for the infinite Gaussian-shaped slide Ed)) @re  slide and its shape.
plotted in physical variables at two different points along
the shoreliner’ =0 and compared to the experimental data
of Di Risio et al. (2009. Figure 5a shows the time se-
ries aty’ = 3.10 m away from the point of generation; in
Fig. 5b is instead depicted the free-surface time series afFigure7 shows the behaviour of the maximum free-surface
point y’ = 4.07 m from the origin. The main properties of elevation of the first (dashed line) and second (solid line)
the generated wave field, i.e. the shape of the waves, the tim&coming waves versus the centroid initial positiﬂg ata
of arrival of crests and troughs and the maximum runup andpoint along the shoreling/(= 3.10 m) for the reference dou-
drawdown, are predicted very satisfactorily by the analyticalble Gaussian slide defined above. The induced waves reach
model. The agreement between analytical and experimentaheir maximum amplitude when the slide is fully subaerial
results is good, up t0 =8s. After that, waves reflected by and the corresponding velocity (see B) is larger than
the side walls in the experiment make the wave field not com-1 ms™! (see Fig4). Hence, the higher the slide initial po-
parable with that given by the model. In Figcomparison  sition on the incline, the larger the amplitude of the induced
is also made between the free-surface elevation for the finitevave field at a point on the shoreline far from the slide. How-
double parabolic slide Eql®) and the experimental results ever, increased dissipations due to viscosity and vortices gen-
of Di Risio et al.(2009 at the same points along the shore- erated at the impact, not taken into account in this model,
line as before. Again, the main physical properties of thewould certainly reduce the amplitude of the generated waves
wave field are well-reproduced by the model, even if in this below the theoretical values. Moving the landslide towards
case the wave amplitude seems to be slightly overestimatethe origin both increase%, and reducesg’,. As a result, the
for the larger waves. The excess of mass at the corners aimplitudes of the generated waves decay quickly, due to the
the double parabolic landslide, whose footprint is rectangu+educed exchange of total energy between the slide and the
lar and not elliptical as in the experiments, is likely to be the fluid (see again Fig7). Let us now investigate the influence
reason for this effect. After having shown a good agreemenbf the shape of the slide on the generated wave field.

wherea = arctan is still the angle between the incline and
the horizontal (see again Fig). Finally, by substituting
Egs. 86) into Eq. 38), the latter can be rewritten as

2.4.3 Parametric analysis: the slide initial position
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Fig. 10. Branch cuts in the complex plane f@ik,w) Eq. 65).

The complex frequency € 2, which is the unshaded area corre-
sponding to the lower half-plane, real axis included. Angleand

0, are measured counterclockwise from the real axis on the chosen
Riemann sheet Eq58).

Fig. 9. The fluid domain of the semi-plane beach in physical coor-
dinates. The dashed line divides the near fi€lek b’ from the far
fieldx’ > »'.

2.4.4 Parametric analysis: the shape of the slide

slide has infinite length and width, which is a limit of the SR
In Fig. 8 the free-surface time series for both the infi- model and the reason that motivated this work. Furthermore,
nite Gaussian-shaped slide EGOY and the finite double the Gaussian is smoother than the double paraboloid, having
parabolic slide Eq.12) are plotted at the same points, along no abrupt terminations at the sides (see B)g. These two
the shoreline, i.ey’ =3.10 m (Fig.8a) andy’ =4.07m  specificities can account for the dissimilarities between both
(Fig. 8b) for the geometry of SecR.4.1 The general be- models (see again Fi§), such as the difference in wave am-
haviour of both curves is very similar, with the largest wave plitudes and the accentuation of spiky, double-crested waves
shifted towards the middle of the incoming wave group, aoccurring with the double parabolic slide. Mathematically,
typical feature of landslide generated tsunamis (sgeett this is a side effect of the wave E@)(which propagates the
and Liu 200§ Sammarco and RenzR00§. This be- irregularities (i.e. the cuts) of the forcing function Eq2(
haviour, independent of the shape and dimensions of thevithout smoothing them completely. Physically, these dou-
slide, can be explained theoretically as follows (S@nza-  ble crested waves can be explained with the secondary iner-
lez et al, 1995 for a similar argument). Back to Sect. 2, the tial rebound generated at the origin soon after the tail of the

phase velocity of the individual wave modes:is=w,/k=  slide enters water, as shown hynett and Liu(2005 and
V/(2n+1)/k, while the group velocity i€g, =dw,/dk= Sammarco and Reng2008. Hence, this effect is mostly

V@n+1)/k/2, so thatCg, =c,/2. The difference be- enhanced for landslides whose tail terminates abruptly, like
tween phase and group velocity explains the dispersive bethe double parabolic one, rather than for smooth infinite bod-
haviour of the edge waves propagating along the beach ggs like the Gaussian slide. In conclusion, the finiteness of the
large times, already noticed numerically bynett and Liu  |andslide is an important feature that cannot be neglected in
(2009 and Bellotti et al. (200§ and analytically bySam-  analytical models, aiming to reproduce accurately the shape
marco and Renz{200§. When the landslide moves into of the generated waves. Having investigated the effect of the
water, the initial disturbance of the free-surface evolves intoslide shape and finiteness, in the next section we move into
groups of edge waves, each group travelling at velaCigy ~ the analysis of the influence of the continental platform on
along the shoreline. In turn, the single wave crests propatandslide-generated tsunamis.

gate inside the group at a larger spegd Since the group

velocity is the velocity of the energy transport, we expect

the bulk of the energy released by the slide into the water t@3 Influence of the continental platform

travel at a lower speedyg, than that of the first generated

wave crests,,. This explains why, regardless of the geome- 3.1 Position of the problem

try of the landslide, the larger waves, which are also the most

energetic ones, are always shifted towards the middle of thén Sect. 2 we have shown that, within the linear shallow-
group. Note that the linear long wave theory, non-dispersivewater theory, the landslide-forced waves over an indefinite
over bottoms of constant depth, reproduces the dispersivencline rapidly decay in the offshore direction, while a tran-
behaviour of the trapped waves over inclined bottoms. De-sient system of longshore travelling edge waves propagates
spite a general similarity between the wave fields generate@way from the landslide. However, an infinite slope does
by the Gaussian-shaped slide and the double parabolic slideot fully represent a coastal area. To obtain a more realis-
some differences can be pointed out. The Gaussian-shapdit model, in this section we investigate a different geometry,

Nat. Hazards Earth Syst. Sci., 12, 1503t52Q 2012 www.nat-hazards-earth-syst-sci.net/12/1503/2012/



E. Renzi and P. Sammarco: Influence of landslide shape and continental shelf on landslide tsunamis 1513

3 3.2 Solution
By employing the cosine Fourier transform E4), the equa-
25 tion of motion Eq. 41) becomes
5 smen=0 G hile—KPhE =G — fulx, kD). (43)
3 Tl Recall from Sect. 2 that, for the simple plane-beach geom-
%: 15 —mn=2 etry, the system eigenfunctions are the Laguerre polynomi-
------- n=3 als L,, with the relevant eigenvalues, given by Eq. 8).

To determine the eigenfunctions and the eigenvalues of the
semi-plane beach geometry, we seek the solugjoof the
homogeneous equation associated with Bg):(

0 2 4 6 8 hgxx +hy Ex _kzhg - gtl =0. (44)

By introducing the further transformations

_ P, 5/2
Fig. 11. Behaviour of the first eigenvalues,, n =0, 1,2, 3, versus §=2kx, (=e Z(E.k.1). (45)
b for k=1. The bold line represents the upper limit k+/b of the Equation 44) becomes
domain Eq. 85).

4k? |:th5 + (he —h) Ze — %hg z} ~Z; =0. (46)
where the slope extends to a finite length and further con-
nects to a continental platform of constant depth. The physTo solve Eq. 46) we shall assume the following separation
ical domain of the model is shown in Fi§. Having seta of variables forZ (¢, k,1):

3-D system of coordinate&’, y’,z"), water is in the region

x"> 0. Atadistancé’ from the coastline, the slope ends and Z = ER{X(S)e_iwt} 47)
connects to a flat bottom of constant defsth Due to the ge-

ometric discontinuity introduced by the flat-bottom zone, we whereX (£) is the unknown spatial part of the homogeneous
shall define the near field as the domain< &', wherebd’ is solution, andw a complex wave frequency. Note that the
the horizontal length of the incline. As a consequence, wecomplex frequency = w, +iw; must have a null or negative
shall also define the far field as the regidn- &', where the  imaginary partw; <0 in order for Eq. 47) not to diverge
bottom depth is constant = i), = sb’, s being the slope of for larget, i.e.w € 2, whereQ ={we C: —m <argw <0}

the incline. The system is assumed to be symmetric with reis the lower complex half plane, real axis included. With
spect to they’ axis; also assume that the landslide motion the substitution dictated by Eq47), Eq. @6) can be finally
starts in a neighbourhood of the origin and that the landslidgewritten as

shape is symmetric with respect & Within the assump- ( 5

tion of linear shallow-water waves, the behaviour of the fluid j, x ., + (4 —h)x; he @Yy o (48)
is still described by the forced long-wave Eg),(where the

bottom depthh’ is now defined as

2 4k?

The latter is to be solved separately in the two fields; the two

R(x'<b)=sx', W' =b)=hy,=sb (40)  solutions obtained will be matched afterwards at the common

according to the geometry of Fig. By introducing the same boundary to assure contln.wty of pressure and fluxes. .

non-dimensional variables of EQ)( the equation of motion 1N the near field: =.x or, in terms of the transformed vari-

Eg. (1) becomes ables of Eq.45), h =&/2k. By using the latter expression,
the homogeneous form of the governing E&B)(becomes

hé‘xx +hx§x +h§yy=§tt_ftt- (41)

In Eq. @1) h =h’/os is the non-dimensional bottom depth §Xee+(1-8) X —aX =0, (49)

h(x <b)=x, h(x>b)=h,=>b, (42) where

where b = b'/o is the non-dimensional horizontal beach ¢ =« (k,w) = 1/2(1_w2/k>. (50)

length. As already done in Sect. 2 for the plane beach, we re-

quire the free-surface elevation to be bounded at the shorelinEquation 49) is the Kummer's equation of parameter
and asx — oo and also to be an even function of the shore- whose general solution is a linear combination of the Kum-
line coordinatey. Finally, we require null initial free-surface mer functions of first and second kind (séd&ramowitz
elevation and velocity, i.€.(x,y,0) =0, ¢ (x,y,0)=0. and Stegunl1972, respectivelyM and U, i.e. X (&,k) =
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Fig. 12. Time series of the free-surface elevation in physical variables at po{afs: (x’,y") = (0.4,0) m, and (b): (x/,y") = (0,0.8) m.
Solid lines (-) represent the time series for the semi-plane beach of horizontal teadthic = 1, while dashed lines (- -) are relevant to
the indefinite plane beach model.

3.0 3.0
(@) AN b
2.0 2.0 /N

1.0 ¥ A, 1.0 ; y A,
o - ~ [\ 1
0.0 \ / L 0.0 ~_’\ / \ / \{ |
-1.0 a -1.0 \
4 x x
\/ \ [\
2.0 -2.0 ‘/
3.0 ! -3.0 \
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
t'(s) 1'(s)

¢ (cm)

Fig. 13. Time series of the free-surface elevation in physical variables at paias(x’, y’) = (0.4,0) m and (b): (x’,y") = (0,0.8) m. Solid
lines () represent the time series for the semi-plane beach of horizontal Iergll®), while dashed lines (- -) are relevant to the indefinite
plane-beach model. Note that fbrs> 1 the two models converge to the same results.

AM(&,a)+ BU(§,a), whereA and B are integration con- a complex parameter. The solution of the homogeneous
stants. Since the Kummer function of second kind has a logEq. @4) in the far field is then obtained by substituting the
arithmic singularity at the origin, boundedness of the solutionspatial componenX (&, k) into the general form Eq4{):

at the shoreline require8=0, i.e. ECx k1) = CePhe—iot  popx—ior (56)

X(E k) =AM, o), & <2kb. (51)  where usage of Eq46) has also been made to switch back

Hence, the homogeneous solution of E46)(in the near  to the original variables. In Eq56) the complex parameter
field is simply Z, (€,k,1) = X (£, k)e™ ' = AM (£, )", B Eg. 65), is given by the product of two square roots of
% having been omitted for brevity, and in terms of the origi- complex variable and admits two branch points in the com-
nal variables of Eq.45) plex domaing, respectively ato = Fk+/b, i.e. the zeros of

the square roots. As a consequence, we introduce two semi-

e = —k —iwt . .. . .
En(x,k,1) = Ae™ M (Zkx,a)e™, x <b. (52)  infinite branch cuts along the real axis ©f as shown in

In the far fieldh = b, so that the homogeneous form of the Fig.10(seeMei, 1997 for a similar example). To evaluage
governing Eq.48) becomes correctly on the different edges of the cuts of Fi@, let us

2 define
w . .

Xeg = Xg+ 5 X =0, (53)  w+kVb=r1e", kVb—w=rp @, (57)
This is also a linear ODE of the second order, whose generaivhere the phase anglés, are measured counterclockwise
solution is from the positive real axis. To avoid multivaluedness of the

square roots in Eq.5H), let us first consider the Riemann

— Co1-P)E/2 A+p)§/2 . .
X(@E k) =Ce +De ’ (54) sheet defined by, € [, ), 62 € (0,27]. Then restrict the
with C and D integration constants and range of variation ob1 > by requiringw € @ (unshaded re-

1 12 12 gion of Fig.10, including the real axis), so that
ﬁzﬂ(k,w)=m(kﬁ—w) (’“/EH)) o B9 pe[-n,0, 6re[n,2n]. (58)
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Note that, according to EQ58), 61 = —n describes the lower

1515

When w = +w,, the solution of the system Eq62) is

edge of the left-hand cut on the negative real axis, whilestraightforward:

62 = 2 describes the lower edge of the right-hand cut on

the positive real axis. Other values @f> in the range de-
fined by Eq. 68) correspond to points in the lower complex
plane. Substituting Eq5(¢) into Eq. 65), we obtain for the
complex parameter

T2 io1+6,—7)/2
= —F € .
p V bk?

Now, if the frequencyw is anywhere along the the lower
edge of the right-hand cut, théa =0 and6, = 27, so that
B =1|B] is imaginary with positive sign. A similar analysis
can be done also for the left-hand cut, wh@re- —i|8| on

(59)

the lower edge. In all these cases the corresponding free-

surface elevation in the far field Egb6) is an oscillating
function of the offshore coordinate and physically repre-

C = M (2kb,o)e P~ Dk

having set the arbitrary parametér= 1. Now consider the
spatial eigenfunctions in the near and far field given respec-
tively by Egs. 61) and 61), with w = w,,:

Xn (&, k) =M (§,0)
X, (€,k) = M (2kb, ) e L —Pn)E/2=kD)

if & <2kb

ife>2b,  (64)

withn=0,1,..., N(k,b), where the Kummer function
o

ME on) =Y anm(@)§", (65)
m=0

and @, = (an)m/(m!)?, being (ap)m = oy (ot + 1) (an +

sents incoming and outgoing progressive waves. Finally, if2)--- (e, +m —1) (see agaimbramowitz and Stegyri972.

w is on the real axis betweenrk+/b < w < k+/b, theng, =0
andd, =, so that Eq.%9) givess = /r1r2/k~/b, i.e. a pos-

itive real number. As a consequence, the second term of the

far field solution Eq.$6) would grow without boundaries as
x — oo unlessD = 0. With this position the homogeneous
solution in the far field Eq.56) becomes

Tn(x,k,t) = Ce™Phxmion x5 p, (60)

while the relevant spatial componeXitEq. (54) reduces to

X(E k) =CeTPE2 & 2k, (61)

3.2.1 Matching and eigenvalues

The solutions of the homogeneous E4g)(in the near field
and in the far field, Eqs5@) and 60) respectively, must now
be matched at the common boundary . Continuity of
the free-surface elevationand the fluxe$¢ /dox yields, re-
spectively,

Ae Fo M (2kb, o) = Ce= Pk
Ae R [—kM (2kb, ) + M, (2kb,a)] = —CBke Pkt (62)
This homogeneous system with unknowhandC admits a
non-trivial solution(A, C) # (0, 0) if and only if

Ak, w) = M, (2kb, ) +k (B — 1) M (2kb, o) =0, (63)

whereA € C, k> 0 is a real parameter artw) and 8(w)
are given by Eqs.50) and 65), respectively. Equatior6@)

Finally, in Eq. 64)

1 ? w?
— B, =Bk,wy)=,/1— %, 66
oo B =Blkwn) = [ 1- 75 (66)

ay=oak,w,) ==

and againt = 2kx . Note that for a given modal order,

both the real eigenvaluesw, correspond to the same real
parameters,, andg, Eq. 66), i.e. botht+w, are relevant to
the same spatial eigenfunction E§4). Therefore, to ensure
unigueness of the solution, we retain only the eigenmodes

associated to the positive eigenvalugse (O,k\/Z . Refer-
ring back to Eqgs.45) and @7), the solution of the homoge-

neous Eq.48) can be written as the linear superposition of
all the (N +1) modes

N (k)

e k)= e M X, (2kx)e ',
n=0

(67)

where theX, s are given by Eq.64). To investigate the phys-
ical nature of the perturbation described by Eij/)( let us
consider the spatial part:

iin (k1) = e " X, (2kx) (68)

of the n-th modal component of the free-surface elevation
Zn(x,k,1). Using Eq. 64) to express the eigenfunctionss,,
Eq. (68) becomes

fn(x, k,1) = M (2kx, 0t )e (69)

represents the eigenvalue condition of the matching sysin the near fieldr <5 and

tem Eqg. 62); the complex values,, for which Eq. 63)

is satisfied, are the sought eigenvalues. Numerical sol
tion of Eq. 63) shows that, for a given value @&f there
is an enumerable set of 2N (k,b)+1] real eigenvalues

+wo,twi... + w,... £ wy on the chosen Riemann sheet,

such that-kvb < —wy <...< —wg<0<awg<...<wn <
kb, i.e. £, (—kﬁ,kﬂ), n=0,1,...,N(kb)eN.

www.nat-hazards-earth-syst-sci.net/12/1503/2012/

uln (K, 1) = M(2kb, oy )e PP g =Fukx,

(70)

in the far fieldx > b. Since the eigenvalues, are all real
and positive, withw, < k+/b, the parametes, Eq. 66) is a
positive real number too. As a consequence, all the spatial
components),, of the free-surface elevation, proportional to
e~Prkx in the far field (see Eq.0), decay exponentially while
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moving in the offshore direction at a large distance from theFinally, inverse transform of Eq7@) together with the sub-
shore. Hence, all the natural eigenmodes of the semi-planstitutions dictated by Eq46) yield the free-surface elevation
beach are trapped along the shoreline and no wave propa- NG

gates to infinity, even if the presence of the flat-bottom re-, (. ;) —/ ZXn(ka)Tn(k r)ycoskydk (75)
gion would suggest a propagating nature of the perturba- TJo ;=0

tion. This somehow unexpected fact, i.e. that long waves oo theT, are given by Eq.74) and X, Eq. (64) are

existing at a sl_ope discontinuity are unable te propagate to'the eigenfunctions of the associated homogeneous problem
wards larger distances, has been already pointed out also

Longuet-Higgins(1967 and Mei et al. (2009. Physically, g. (4_16). Further enaly5|_s_can be done only after the forcing
. . . function f (x, y,t) is specified.
trapped waves can be excited linearly only by a localised

perturbation at the coastline, e.g. a landslide. Since sucl 31 Tsunami generated by a double Gaussian-shaped

a perturbation moves only a finite volume of water in a fi- landslide

nite amount of time, the generated edge-wave spectrum in-

volves no radiation to infinityNleyer, 1971). However, this  |n this section we determine the analytical form of the free-
does not exclude that in cases where nonlinearity is domisyrface elevation Eq.76) generated by a landslide whose
nant, e.g. when the slide is thick, resonant amplification ofshape function is

the offshore-going wave can occur, making it comparable to

the oscillations along the shorelinei et al, 2003. flx,y,t) = eXp[—(x —x0— uot)z] s(Y)H(b—x) (76)

3.3 Wauve field where s(y) — e~ @7 s still the lateral spreading function
andc = o/ the landslide shape coefficient. Equatiait)(

After having investigated the homogeneous problemyepresents a double Gaussian-shaped landslide sliding along

Eq. (44), we now seek the solution of the forced equation the incline with uniform velocity:q from the initial position

of motion Eq. 43). By using the transformations dictated by . with the position of Eq.76) f is non-zero only in the

Eq. @5), Eq. @3) becomes near fieldx < b, while in the far fieldx > b the direct in-

4k2[th§ + (h%_ —h) Ze —1/2h; Z] -z, fluence of the forcin'g.term' on the generated perturbation is

e assumed to be negligible, i.¢.~ 0. Since the effects of the

=—e " fu(§/2,k.1). (71)  parameterso anduo on the generated wave field have been
To solve the latter equation, we shall employ the method ofalready investigated in Sect. 2, in this section we shall limit

variation of parameters, assuming o, k1) the following ~ our analysis to the cas@ = 0 anduo = 1, describing a half-
expression: submerged landslide moving with unit horizontal velocity.

This assumption simplifies the algebra, yet allows us to in-
72) vestigate the influence of the beach horizontal lergtipon
the generated wave field. Substituting Egg)(with xg =0

L . andug=1into I,,(p,k,1), the latter becomes
whereX,, Eq. (64) are the spatial eigenfunctions of the asso- "o n(p.ki1)

ciated homogeneous problem E48Y and7,, are unknown I, = wp5(k) { [wnan _g—PZ]cogont

functions to be determined. Now substitute the series ex-

pansion Eq.72) into the governing Eq.71) and exploitthe  _ [2_'06—02 +wnbni| sinw, +e " } ’ 77)
orthogonality property EqAQ9) of the homogeneous eigen- Wn

solutionsX,,, thus, getting

N (k)

ZE k=Y XuE) Ty k1),
n=0

with p < b, where§(k) = /7 /(2c)e**/%* is the cosine
Fourier transform of the spreading functiofy) and

\/E 7(1)2/4(,\ iwpp . Wn
for the unknown functiond,. In Eq. (73), w, are still the 4 (P-k1)= ¢ “’le [erf<p+|7)

eigenvalues of the associated homogeneous probleny,and _ o
Eq. (A8) is the square norm of the relevant eigenfunctions erf(p r 2 )“ (78)
Eqg. 64); finally, f is the cosine Fourier transform of the \yhile

landslide shape function. The solution of E63)is straight-

1 [ n
T+ of T == fo e E X0 (E) frn(E /2 k)05 2dE (73)

forward: bp(p.k,t) = ‘/—Ee*‘“fzz/“m {ei‘“"” [erf(p—i—i&)
% (= 2 "
Ty(k,t)= / e P X, (2kp) 1 (p .k, 1)dp, 74 - iz
oniZ Jo (74) erf(p r+i )]] (79)

where p = &/2k and I,,(p,k,t) is the same expression as Substituting Eq.{7) into 7,, Eq. (74) and then the latter into
Eq. (7) for the indefinite plane beach. Agaif, can be de- Eg. (75), we finally obtain the analytical form of the free-
termined only once the landslide shape functfois defined.  surface elevation(x, y,t). Let us now follow the same steps
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of Sect. 2 to investigate the physical meaning of Eth).(
First, define the integral transforrin” of a given function
u(p,k,t):

M ulk,1) =

b
2’;(2/0 e X0 M (2kp, 0 u(p,k,t)dp, (80)
where M is still the Kummer function of first kind and,,
is given by Eqg. 66). Then, by making use of Eq80),
rewrite Eq. {4) asT, = M"[1,]. Hence, by simply applying
the transformM” to Eg. (7/5), we can formally write again
¢ =¢°+¢°, where

5 poolN@)
0= —/ Ze‘k"xn(ka)[An COSwyt
7 Jo

n=0
+ B, Sinw,t]coskydk, (81)
with
A~ _ 2
An:An(kvt):wns-/\/‘n[wnan(p’k,t)_e P ]7 (82)
By =Buk,) =—5M" 20 +Zbuo. k)], (83)
and
2 oo N (k)
= —/ Ze*kxXn(ka)wnf
wJo =
n=0
X M" [e*@*f)z] coskydk, (84)

X, being the eigenfunctions of Ec64). Now, ¢° Eq. 81)
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wave field, let us consider the variation of the system eigen-
valuesw, with b. Recall that thew,, are the positive solutions
of the eigenvalue condition Ec63), with

o € <O,k«/5>, n=0,...,N(kb).

Figure 11 shows the behaviour of the first four eigenfre-
quenciesw,, n =0,...,3, versusb for the fixed parameter
k =1; the bold line represents the upper lihi/b. When
b is very small, i.e. the domain of Eq8%) is very nar-
row, only the first eigenvaluey exists, corresponding to
the first trapped mode. All eigenfrequencies larger tlan
would correspond to progressive waves, which cannot be ex-
cited by a transient local perturbation (see S&c®) and
must be excluded. Increasirtg wg increases and quickly
reaches a limiting value, corresponding numerically to the
first eigenvalue of the indefinite plane beasfk =1) =1
(see Eq8). For larger values o, the upper limit of the do-
main Eq. 85) increases ag’b, thus, leaving room for higher-
order eigenvalues to appear. As a consequence, the sequence
of eigenvaluesvy, ...,wn, N =1,2,... forms progressively,
all the w, quickly converging to their relevant indefinite
plane-beach values. For very largall the eigenvalues of
the semi-plane beach, eventually equate those of the in-
definite plane beach amd(k, ) grows to infinity, i.e.w, —
Jk(2n+1) and N(k,b) — oo. Now, in the limith — oo
the parametery, becomesy, =1/2 — wﬁ/Zk — —n, and
the relevant Kummer functioM (¢, «,) Eq. 65) of the first
kind and ordem transforms into the Laguerre polynomial
L,&),i.e.M(E,ay) > M(E,—n)= L, (&) (seeAbramowitz
and Stegun1972. As a consequence, fdr — oo, the
eigenfunctions Eq.64) are given byX, (¢§) > M(§,—n) =

(85)

describes an oscillatory motion in time. The coefficieits L. (§), & € (0,00), while the distinction between the near
andB, are formally similar to those already found in Sect. 2 field and the far field becomes meaningless, since the geom-
for the indefinite plane beach. The differences lie in threeetry is that of an indefinite plane beach. Finally, note that the
aspects: (1) the usage of the Kummer transfobtt in- square norm of the eigenfunctions EA8] becomes

stead of the Laguerre oné?, (2) the presence of the eigen-
functions X,, instead of the Laguerre polynomials,, and
finally (3) the truncation of the sum to the ord€«k). ¢¢ is

an evanescent component decaying with time, its expressio
being similar to the evanescent term of the indefinite plane " 2k [ 4 o
beach of Sect. 2. Again, the landslide generates a twofold M ul ~ w_n/o e Ln@kp)up,k.tydp = L7[u],

wave field made up by oscillatory and evanescent COmpOoyyhere £ is the Laguerre integral transform EQ.g. As

nents, thg Igttgr rapidly vanishing with time. Due to 'Fhe an-a consequence, the asymptotic forms of the oscillatory and
alytical similarity between the wave field of the semi-plane e evanescent components of the free-surface elevation
beach and that of the indefinite plane beach, all the obserEqS_ 81) and B84), are, respectively

vations already made in Sect. 2 can be repeated also for the o oo
current system. In the following we shall focus our atten- .o, \, ;) EZ/ e L, (2kx)
tion on the influence of the main system parameter, i.e. the T

X2 (k) — / Ooe*fL,%@)ds:l
0

ﬁsb — 00, so that Eq.&0) can be rewritten as

non-di.mensional horizontal Iength of the inclide on the x [ A COSwyt + B, Sinw,t] cosky dk (86)
behaviour of the generated wave field. and
3.4 Discussion: influence ob ey 1) —> ;Z/ o=KL (2n)
—J0
As a first step to investigate the influence of the beach non- n=0 )
dimensional horizontal length = »'/o on the generated xwpSL" [6’7(’)7') ]COSkydk, (87)
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asb — oo, where thed,; s andB,;s are still given by Eqs8@Q) semi-plane beach and the indefinite beach models agree al-
and @3), respectively, replacing\1” with £". Now note = most completely, i.e. the influence of the flat bottom on the
that the asymptotic forms of the free-surface componghts generated wave field is negligible. In such cases, application
Eqgs. 86) and ¢ (87) coincide with the analogous expres- of the plane beach model is preferable, due to its easiness in
sions of the indefinite plane beach for the Gaussian slidecalculations and to the availability of a closed form for the
Egs. (19) and @2) respectively, providedo =0 andug = 1. free-surface elevation at large times, obtained via the method
Therefore, in the limib — oo, the semi-plane beach model of the stationary phase.

perfectly agrees with the indefinite plane beach model. Let

us now investigate the influence b= b’'/o on the gener-

ated wave field by analysing the tsunami propagating alongt Conclusions

a semi-plane beach. Let us first consider sma# O (1)

and compare the results to those obtained for the indefinitd his work consists of two sections. In the first one, the an-
plane beach. I = 0(1), thenb’ ~ o, i.e. the character- alytical forced 2HD theory oBammarco and Reng008,

istic length of the landslide is comparable to the horizontalon tsunamis generated by a double Gaussian landslide of unit
length of the incline. As an example, this situation can oc-speed and propagating along a plane beach, is extended to
cur for unstable rock cliffs falling into the ocean. To analyse slides of more complex shape and dynamics. The wave field
the wave field propagating in such a geometry, let us congenerated by an infinite double Gaussian slide of arbitrary
sider the same Gaussian landslide of Sect. 2, with parameterelocity and initial position is investigated and compared to
0=037m,c=0/A=2,x0=0,up9=1, sliding along anin-  the wave field generated by a double parabolic slide of fi-
cline of slopes =1/3 and take¥’ =0, i.e.b=b'/c =1asa nite length, again having arbitrary velocity and initial posi-
limit case. The solid lines of Figl2a, b show the time se- tion. For both slides, the generated wave field consists of an
ries of the free-surface elevatigh(x’, y’,¢’) in physical vari-  evanescent component travelling offshore, quickly decaying
ables, at points, respectivelgs’,y’) = (0.4,0) m offshore,  with time, and a system of transient travelling edge waves
and (x’,y") = (0,0.8) m on the shoreline. In the same fig- along the coastline. For a mild slope and a thin slide, the
ure, the time series of the free-surface elevation obtained agource-related evanescent terms show the same rate of decay
the same points, but for an indefinite plane beach, are reO (1=2) for either slide, regardless of its shape. At large times
ported with dashed lines for comparison. First, note thatthe offshore motion decays and only transient edge waves
the maximum runup and drawdown of the generated wavdravelling along the beach are present, their rate of decay
field are larger for the indefinite plane beach than the semibeing 0(t~1/2). These waves show a clear dispersive be-
plane beach, i.e. the wave field generated in the semi-planbaviour, with longer waves travelling faster, followed by a
beach is less energetic. This happens since for dmatly tail of shorter waves. Larger waves are shifted towards the
the very first eigenmodes are excited and concur to genermiddle of the group, due to the difference between phase
ate the propagating wave field. Physically, having requiredand group velocities of the transient wave trains. Dissim-
the forcing functionf to annihilate in the far field, deter- ilarities arise in the shape of the waves generated by the
mines the landslide mass to disappear suddenly as it reachéwo slides and propagating in the far field. The wave field
the boundaryx =b. The reduced time of interaction be- originating from the Gaussian slide is smooth and regular,
tween landslide and water for smaillis therefore respon- while the perturbation generated by the finite-length double
sible for a strong decrease in the amount of the total energyparabolic slide is characterised by the occurrence of spiky,
yielded by the landslide to the water, especially in the off- double-crested waves. These double crested waves are an ef-
shore direction (see Fid.2a). This determines the reduc- fect of the secondary inertial rebound occurring at the origin
tion in amplitude of the generated waves in the semi-planesoon after the tail of the slide enters water, which cannot be
beach. However this does not imply loss of physical mean-+endered by employing the more ancillary double Gaussian
ing for this case: the landslide accumulates and stops at thehape. Hence, the finiteness of the landslide is an important
toe of the slope. Now let us consider the case 1, or in feature that cannot be neglected in analytical models aiming
physical variableg’ > o, i.e. the characteristic length of to reproduce accurately the shape of the generated waves.
the slide is small if compared to the horizontal length of In the second part, an analytical forced 2HD model has
the incline. Physically, this situation represents a landslidebeen developed to analyse the distinguishing features of
involving only a small part of the beach. As an example, landslide tsunamis on a semi-plane beach. The solution ob-
here we consider the same slide of the previous subsectiortained via the method of separation of variables only allows
but increase the non-dimensional horizontal length of the inthe existence of trapped wave modes propagating along the
cline to the valueb =10. Figs.13a, b represent the time coast. For very large values of the horizontal length of the
series of the free-surface elevation in non-dimensional varislope, the free-surface elevation matches the solution ob-
ables both for the semi-plane beach (solid line) and the intained for an infinite sloping beach, where all the eigenmodes
definite beach (dashed line) at poits, y') = (0.4,00mand  are trapped. For a finite horizontal length of the slope, a
(x',y") = (0,0.8) m, respectively. Note that fas =10 the  smaller number of eigenmodes are excited. The free-surface
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elevation is the sum of an evanescent component, quicklyTo solve the latter integral, express the bottom depth
decaying with time, and an oscillatory component travelling Eq. 42) at the right-hand side in terms of the transformed
along the shoreline. Despite the presence of the constantrariableé Eq. @5): h(&) =&/2k if & <2kb andh(§) =b
depth region would suggest the occurrence of an offshoreif & > 2kb. Note thats is a continuous function of; also,
travelling wave train, no wave is radiated offshore. As a con-continuity of the free-surface elevation and of the fluxes in
sequence, energy is trapped along the coastline, but a small&q. 62) determinesX (¢§) and X¢ (£) to be continuous over
number of spectral components are excited with respect to athe entire domair§ € (0,00). As a result, the integrands at
infinitely long beach. In this sense, the presence of the conboth sides of Eq.A4) are continuous functions gf Solving
tinental platform may be beneficial in mitigating the severity the integral at the right-hand side of EA4( gives then

of the tsunami.

Appendix A

Orthogonality of the semi-plane beach natural modes

2 2

It is a well-known result that the spatial eigenfunctions

nomials L,, are orthogonal with respect to the weight- p,o

w”4;2w‘1 fo " e X, X, de =0, (A5)
sincek(0) =0 and by virtue of Eq.G4)
. _Ii)Tooh(S)e_E (XgXpe—XpXqe)=0. (A6)
of the plane beach problem, namely the Laguerre poly-AS a consequence, Eqp\E) simply becomes
e Xu(E)Xn(E)dE=0 ifn#m. (A7)

ing function e~% (see Abramowitz and Stegun1972,

i.e. fo e SLy(&)Ly(€)dE = 8,y. In this subsection we

wonder if a similar property still holds for the spatial eigen- Let us now define the square norm of the eigensolutions
functionsX, Eq. (64) of the semi-plane beach problem. To EQ. 64) as

perform this investigation, recall that th¢,s are the inde-
pendent solutions of Eg48); in other words, they satisfy

a2 2 (A1)

with w,, the system eigenvalues solving E§3). Now, let us
reduce Eqg.A1) to its corresponding Sturm-Liouville form

2
[h(&)e s X, ], (@ - ﬂ) e¥X, =0,

2
w h
hXp e+ (he —h) Xpe + (—” i) X, =0,

2 42 (A2)
Then consider two independent solutions of E§2) X,
andX,, of eigenvalues, andw, respectively, withp,q € N
and p #q. If we first write Eq. @2) for X, and for X,
separately, multiply the first equation 1%, the second by
X, and then subtract the two of them, we get

0)2 —a)z

[he_sxp,é]gXq_[he_sxq,é]gxp:( p4k2 q)e_sxpxq'

o) 2kb
x2(k) = / e X2(8)de = / ¢S MP(&, ay) dE
0 0

~2kb \12(2k. a1,
¢ ﬁ( . (ag)

hence, coupling EqsA{) and (@A8) yields the orthogonal-
ity relation satisfied by the spatial eigenfunctiaXis of the
governing Eq.48)

+

/0 8 X, () Xon (8)dE = 1250 (A9)

Appendix B

Computational aspects

In Sect. 2 the solution of the plane beach problem was found
in terms of the oscillatory and evanescent components of

The latter expression can be further simplified by using thethe generated perturbation, given respectively by Ef@). (

differential form

d _
E [he ¢ (XqXp,E - Xqu,S)]

2 2
w w,
p_ %\ -
_( o >e 5X, X,

Integrating Eq. A3) in all the fluid domain,& € (0, 00),
yields

(A3)

0)2 —a)2

p a [~ £
e /Oe X, X, dE

*©d
:/(; %[h[s (XgXpe—XpXge)]- (A9)
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and @2) for the double Gaussian landslide and by EGS) (
and @7) for the double parabolic landslide. Mathematically,
these expressions involve calculation of an infinite series of
two nested integrals over infinite domains and posed several
computational challenges. Numerical evaluation of the in-
tegrals was performed via a modified Gauss-Laguerre inte-
gration method Renzi 201Q see for details). The latter is

a quadrature method whose nodal abscissas are the zeros of
the Laguerre polynomials and proves to be very efficient for
the calculation of integrals with an exponentially convergent
integrand. A number of 60 Gauss points is sufficient to en-
sure convergence of the integrals treated in this work with
largest relative errop (10—3). The rate of convergence of
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the outer summations in the full solutionsand¢, depends  DiRisio, M., Bellotti, G., Panizzo, A., and De Girolamo, P.: Three-
on the parameters of the system. For the geometry consid- dimensional experiments on landslide generated waves at a slop-
ered here, about 10 modes were necessary to evaluate theing coast, Coast. Eng., 56, 5-6, 659-671, 2009.

free-surface elevation at different times and points, with anGonzalez, F. ., Satake, K., Boss, E. F., and Mofjeld, H. O.: Edge
average relative error of about 10%. This is enough preci- Wave and Non-Trapped Modes of the 25 April 1992 Cape Men-

sion to provide an estimate of the general behaviour of the docino Tsunami, Pure Appl. Geophys., 144, 409-426, 1995.

fluid. Extension of the summation up to 20 terms allows a R., Liu, S., Guan, Q. and Peng, Y.: Post-disaster Assessment
) P of Northeastern Coastal Region for the 2011 Sendai Earthquake

significant refinement of the results, with an average relgtivg and Tsunami, ISWREP 2011 — Proceedings of 2011 International
error now less than 3%. Convergence of the outer series IS symposium on Water Resource and Environmental Protection, 3,
much faster when considering the stationary phase approxi- 24292432, 2011.

mation Eq. 84). Here, about 5 terms are already sufficient to Liu, P. L.-F., Lynett, P., and Synolakis, C.-E.: Analytical solutions
obtain an average relative error of about 1%. Usually, con- for forced long waves on a sloping beach, J. Fluid Mech., 478,
vergence was faster for the double Gaussian slide than for 101-109, 2003.

the double parabolic one. This is likely due to the singular-Liu, P. L.-F., Wu, T. R., Raichlen, F., Synolakis, C.-E., and Bor-
ity introduced by the Heaviside step function at the borders rero, J. C.: Runup and rundown generated by three-dimensional
of the double parabolic slide (see Etf). Similar figures sliding masses, J. Fluid Mech., 536, 107-144, 2005.
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