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Abstract. The mesoscale meteorological model MM5 is ap-
plied to 22 selected days with intense precipitation in the
region of Epirus, NW Greece. At first, it was investigated
whether and to what extend an increased horizontal resolu-
tion (from 8 to 2 km) improves the quantitative precipitation
forecasts. The model skill was examined for the 12-h accu-
mulated precipitation recorded at 14 meteorological stations
located in Epirus and by using categorical and descriptive
statistics. Then, the precipitation forecast skill for the 2 km
grid was studied: (a) without and (b) with the activation of a
convective parameterization scheme. From the above study,
the necessity of the use of a scheme at the 2 km grid is as-
sessed. Furthermore, three different convective parameteri-
zation schemes are compared: (a) Betts-Miller, (b) Grell and
(c) Kain-Fritsch-2 in order to reveal the scheme, resulting in
the best precipitation forecast skill in Epirus. Kain-Fritsch-2
and Grell give better results with the latter being the best for
the high precipitation events.

1 Introduction

Precipitation is one of the most difficult parameters to fore-
cast in numerical weather prediction (Olson et al., 1995;
Wang and Seaman, 1997). The question if an increase
in horizontal resolution can produce more skilful precipi-
tation forecasts is discussed, among others, by Ducrocq et
al. (2002), Lagouvardos et al. (2003), Kotroni and Lagou-
vardos (2004). These authors pointed out that the subjective
impression of the forecaster is that the fine grid precipitation
fields are much closer to the real precipitation fields. Never-
theless, it seems that even when using very fine resolution,
the models are still unable in many cases to reproduce the
observed high precipitation amounts. Other researchers have

found that, in anomalous terrain, in order to generate a re-
alistic orographic representation of precipitation structures,
a high resolution grid is necessary (Colle and Mass, 2000).
Also, mesoscale modelling studies have shown that when
models use a relatively high resolution (down to∼10 km)
they can capture more of the observed mesoscale features
(Zhang et al., 1989; Bruintjes et al., 1994; Colle and Mass,
1996; Gaudet and Cotton, 1998).

One of the difficulties in precipitation prediction, in a
mesoscale model, is the satisfactory representation of both
resolved and subgrid-scale precipitation processes. The lat-
ter is known as a convective parameterization problem, and
its challenge and complexity have been acknowledged for
many years (Emanuel and Reymond, 1993; Wang and Sea-
man, 1997). A wide variety of convective parameterization
schemes (CPSs) have been developed and incorporated into
mesoscale models (e.g. Kuo, 1974; Arakawa and Schubert,
1974; Anthes, 1977; Frich and Chappell, 1980; Betts and
Miller, 1993; Kain and Fritsch, 1993; Grell, 1993; Kain,
2004). The various CPSs have been tested and compared
in many experiments (Kuo et al., 1996; Wang and Seaman,
1997; Ferretti et al., 2000; Kotroni and Lagouvardos, 2001;
Cohen, 2002; Mazarakis et al., 2009; Sindosi et al., 2010).
As far as it concerns the high-resolution models, many re-
searchers have emphasized that, in general, models are able
to explicitly resolve convective systems without CPSs (e.g.
Weisman et al., 1991; Carbone et al., 2002; Davis et al.,
2003; Wilson and Roberts, 2006).

Epirus Region is located in NW Greece, separated from
the rest of the country, to the east, by the Pindus moun-
tain range, which is orientated from NW to SE and exceeds
2000 m in height (Fig. 1). Therefore, during the wet period
of the year, depressions, which mainly form in the cycloge-
nesis regions along the northern Mediterranean coasts and
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Fig. 1. The three nested domains used 

 Fig. 1. The three nested domains used.

move eastwards over the relatively warm Mediterranean wa-
ters (see e.g. Alpert et al., 1990; Trigo et al., 2002; Nissen
et al., 2010), favour the development of severe precipitation
events over the windward NW Greece. This is why Epirus
is frequently called “the gate of the cyclones to Greece”.
Ioannina, a city with a population of 120 000, is the capi-
tal of Epirus, located in a plateau of about 500 m altitude,
in the center of Epirus. It receives, on average, 1082 mm in
124 precipitation days per year.

In order to improve as much as possible the local weather
forecast and to inform the authorities and the public in case
of an extreme weather event, the Laboratory of Meteorology
of Ioannina University, in the frame of RISKMED project
(Bartzokas et al., 2010), has implemented, since 2007, the
meteorological model MM5 (Dudhia, 1993; Grell, 1994) at
high-resolution. The aim of the present study is to investigate
whether precipitation forecast in Epirus, an area with discrete
topographic characteristics, is improved when: (i) model res-
olution is increased from 8× 8 km grid to 2× 2 km grid, (ii) a
CPS is applied in the high resolution grid (2× 2 km), and
(iii) different CPSs are applied. In addition, a possible de-
pendence of the results on the continentality is investigated
by comparing the results over three distinct areas: coastal,
inland and mountainous.

The rest of the paper is structured as follows. The follow-
ing session is devoted to the presentation of the methodology
and the data sets used. The results of the study are analysed
in Sect. 3 while one of the intense precipitation events is pre-
sented analytically in Sect. 4. The last section is devoted to
the concluding remarks of the study.

2 Data and methodology

As already mentioned, this study is based on the use of MM5
non-hydrostatic model, which is widely used by many in-
stitutes and meteorological services around the world. The
model allows the selection among a large number of pa-
rameterization schemes for the various physical processes.
In Ioannina University, the microphysical scheme described
by Schultz (1995) and the CPS Kain-Fritsch-2 (Kain and

 

 
Fig. 2. Automatic meteorological stations in Epirus (altitudes in meters). 
 

 
 

Fig. 2. Automatic meteorological stations in Epirus (altitudes in
meters).

Fritsch, 1993; Kain, 2004) have been adopted. After test-
ing the implementation of many schemes, this selection was
found to be, in general, the best for the Greek area (Kotroni
and Lagouvardos, 2001, 2004). For the parameterization
of atmospheric boundary layer, the scheme of Hong and
Pan (1996), known as MRF scheme, is used. The selection
of MRF scheme is based on findings of Akylas et al. (2007),
who compared the MM5 operational forecasts over Athens
with three different atmospheric boundary layer schemes.
For the operational weather forecasts the following three do-
mains are adopted: (a) grid 1, with 24 km horizontal grid in-
crement (140× 220 grid points), covering most of Europe
and the Mediterranean, (b) grid 2, with 8 km horizontal
grid increment (130× 151 grid points), covering Greece and
the surrounding sea areas, and (c) grid 3, with 2 km hori-
zontal grid increment (113× 113 grid points), covering the
Epirus area and the northeastern Ionian Sea (Fig. 1). The
one-way nesting strategy is used since the ratio of the three
resolutions is not 1 over 3, which is obligatory for the two-
way strategy. In all the domains, 23 not equally spaced ver-
tical levels are used with most of them being in the plane-
tary boundary layer for a better initialization of convection.
Although, for a more accurate triggering of precipitation, a
higher number of levels would be desirable, especially be-
cause of the high horizontal resolution of the third domain,
the settings adopted by the Ioannina University for the oper-
ational use of MM5 are kept. The version of MM5 used in
the University demands the same number of vertical levels in
all domains, and an increase of this number would imply an
impractically long simulation period because of the limited
computing power. The model uses, as initial and boundary
conditions, data from the GFS global model, provided by US
Weather Service.

For the purposes of this study, 22 days with intense pre-
cipitation in Epirus, during the wet period (October–April)
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Fig. 3. Flow diagram representing the process followed. The first
three rows represent the three domains and the CPS choices in each
of them. In the fourth row, the techniques used for the estimation
of precipitation forecasts at the locations of the stations are pre-
sented. Underneath, the abbreviations used for each process are
given (for example: 8KF2 Cre means that these results come from
the 8 km grid with Kain-Fritsch-2 CPS and the Cressman interpola-
tion method). Finally, in the coloured boxes, the questions investi-
gated in the present work by comparing results of certain procedures
are shown.

of the years 2009 and 2010, were selected. The selection
criterion was based on three factors: the spatial extent of pre-
cipitation, its intensity and the functioning of the rain gauges.
These events have been simulated using: (a) the operational
model chain described above, (b) the aforementioned chain
but using the Grell CPS instead of Kain-Fritsch-2, (c) the
aforementioned chain but using the Betts-Miller CPS instead
of Kain-Fritsch-2. It should be noted that for the operational
chain running at the Ioannina University, the CPS scheme is
activated in all three model grids. For that reason an addi-
tional experiment has been made that is identical to the oper-
ational chain except that the CPS is not activated for grid 3.

In order to verify precipitation forecast, data from 14 auto-
matic meteorological stations, located in Epirus (Fig. 2), are
used. Other type of data, e.g. radar retrieved rainfall, are not
available for this part of Greece while satellite data, given in
0.5× 0.5◦ resolution, are too coarse for Epirus, which covers
approximately 1.5◦ in latitude and 1◦ in longitude. The val-
idation as well as the whole research is applied for the rain
amounts recorded during the two 12-h intervals of the rain
days, considering the prediction values oft +12 andt +24.
All model simulations are initialised at 00:00 UTC and pre-
cipitation values are given at the centres of the grid boxes
(Arakawa-Lamb B staggering). The forecast is launched
without a spin-up time, on the one hand for homogeneity rea-
sons, as all the precipitation events do not start at the same
time, and on the other hand because of the routine procedure
of the Ioannina University that is based on 00:00 UTC data.

Table 1. Mean Absolute Error (MAE) (mm) for: (a) 8 km grid using
the Cressman method (8KF2-Cre), (b) 2 km grid using the Cress-
man method (2KF2 Cre), (c) 2 km grid using the 4 points method
(2 KF2 4p). In all cases Kain-Frich-2 CPS is used. The best values
are presented in bold.

classes cases 8KF2 Cre 2KF2 Cre 2KF2 4p
(mm)

t +12

1–2.5 14 10.2 5.7 4.8
2.5–5 22 4.1 4.1 3.3
5–10 58 4.9 4.4 3.2
10–20 84 7.3 8.0 5.8
>20 99 14.4 16.1 12.4

t +24

1–2.5 13 3.1 3.3 2.6
2.5–5 24 4.8 4.6 3.4
5–10 46 7.4 5.3 4.1
10–20 72 6.9 7.8 5.4
>20 100 17.0 19.3 14.6

For the estimation of precipitation forecasts at the loca-
tions of the stations, two techniques were employed: (i) the
Cressman method and (ii) the method of the 4 grid points.

In Cressman method, precipitation,P , is interpolated to
each observation site by using the inverse distance formula

P = (
∑

n=1,4

WnPn)/(
∑

n=1,4

Wn)

wherePn is the model precipitation at the four grid points
surrounding the observation site andWn is a weight given by

Wn = (R2
−D2

n)/(R
2
+D2

n)

whereR is the model horizontal grid spacing andDn is the
horizontal distance from the model grid point to the obser-
vational site (Cressman, 1959; Colle et al., 1999). If for a
grid pointD > R, this point is not taken into account andW

is set equal to 0.
In the method of the 4 grid points, the differences be-

tween the observation and the model precipitation at the four
grid points surrounding the observation site are calculated.
Then, the model precipitation with the smallest difference
from the observation is considered as the predicted value. In
this way, the 2× 2 km resolution may lead to a small shift
in rain distribution up to 2

√
2 km= 2.8 km. This method is

introduced in order not to consider as incorrect a rainfall fore-
cast with a spatial distribution slightly different from the ob-
served one.

The verification of precipitation forecast, for each 12-h
interval, is carried out separately for 5 precipitation classes
with ranges: 1–2.5, 2.5–5, 5–10, 10–20 and>20 mm. For
each of them, the mean absolute error (MAE) is calculated

MAE =
1

n

n∑
i=1

|Pf −Po|

wherePf is the forecasted rain value at the station site (es-
timated by one of the above two methods),Po the observed
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Table 2. As in Table 1, but for Proportion Correct (PC) and Equitable Threat (ET) scores, for 5 precipitation thresholds. The best values are
presented in bold.

Proportion Correct (0–1) Equitable Threat (−1/3–1)

Thresh. cases 8KF2 Cre 2KF2 Cre 2KF2 4p 8 KF2 Cre 2KF2 Cre 2KF2 4p

t +12

1 mm 277 0.93 0.90 0.94 0.12 0.07 0.14
2.5 mm 263 0.85 0.83 0.89 0.09 0.13 0.23

5 mm 241 0.78 0.76 0.84 0.19 0.18 0.31
10 mm 183 0.71 0.71 0.75 0.23 0.26 0.33
20 mm 99 0.77 0.77 0.84 0.31 0.29 0.44

t +24

1 mm 255 0.92 0.90 0.94 0.44 0.37 0.53
2.5 mm 242 0.89 0.85 0.89 0.43 0.34 0.44

5 mm 218 0.87 0.80 0.87 0.50 0.36 0.50
10 mm 172 0.74 0.70 0.76 0.32 0.26 0.34
20 mm 100 0.79 0.76 0.80 0.33 0.26 0.36

value andn the number of stations with recorded precipita-
tion in a specific class.

MAE determines the magnitude of the precipitation errors
of the model but it does not give an insight of the frequency
of precipitation events above certain thresholds. For this pur-
pose, 2× 2 (yes/no) contingency tables are constructed and
several statistical parameters are computed (Schultz, 1995;
Mesinger, 1996; Belair et al., 2000; Accadia et al., 2003;
Lagouvardos et al., 2003; Federico et al., 2004; Mazarakis
et al., 2009). A contingency table consists of four elements
which determine the number of occurrences in which the ob-
servation and the forecasted precipitation value did or did
not exceed a given threshold. These elements are:H (hits),
which represents the number of cases that both the obser-
vation and the predicted value exceeded a certain threshold,
F (false alarms), number of cases that the model predicted
precipitation above the threshold but it did not occur,M

(misses), number of cases that the model erroneously pre-
dicted precipitation lower than the threshold, andC (correct
negatives), number of cases that the model predicted cor-
rectly rain lower than the threshold. In the framework of this
study, contingency tables are computed for the thresholds:
1.0, 2.5, 5.0, 10.0 and 20.0 mm.

Then, in order to describe particular aspects of precipita-
tion forecast performance, three categorical statistics of the
contingency tables are computed: Bias score (BIAS), Pro-
portion Correct score (PC) and Equitable Threat score (ET).

Bias is defined as: BIAS= For/Obs= (H +F )/(H +M).
It measures the ratio of the frequency of forecast events to
the frequency of observed events. The perfect score is 1 and
it indicates whether the forecast system has a tendency to
under-predict (BIAS< 1) or over-predict (BIAS> 1) events.

Proportion Correct is defined as: PC= (H +C)/N , where
N is the total number of observations verified. It represents
the fraction of predictions that were correct and it takes val-
ues from 0 (worst score) to 1 (perfect score).

Table 3. Mean Absolute Error (MAE) (mm) for forecast with Kain-
Fritsch-2 (KF2) and without activation of the CPS (NOCP) in the
2 km grid with Cressman and 4 points method. The best values for
each method are presented in bold.

classes 2KF2 Cre 2NOCPCre 2KF2 4p 2 NOCP4p
(mm)

t +12

1–2.5 5.7 2.7 4.8 2.0
2.5–5 4.1 8.2 3.3 3.3
5–10 4.4 5.6 3.2 4.2
10–20 8.0 10.0 5.8 8.0
>20 16.1 18.3 12.4 13.9

t +24

1–2.5 3.3 3.5 2.6 2.5
2.5–5 4.6 4.8 3.4 3.9
5–10 5.3 5.5 4.1 4.4
10–20 7.8 9.9 5.4 7.5
>20 19.3 19.9 14.6 14.8

Equitable Threat score is defined as: ET= (H −E)/(H +

F +M −E) whereE = (H +M)(H +F)/N . It measures
the fraction of observed and/or forecast events that were cor-
rectly predicted, adjusted for hits associated with random
chance. An Equitable Threat equal to 1 is a perfect score,
while −1/3 is the lowest possible value.

All the categorical statistics, bias, PC and ET are com-
puted for each 12-h interval and for each precipitation thresh-
old.

For the first of the three aims of the present study, i.e. in or-
der to investigate whether precipitation forecast in Epirus is
improved when model resolution is increased from 8× 8 km
grid to 2× 2 km grid, the settings of the University of Ioan-
nina (Kain-Fritsch-2) are used. The estimation of precipi-
tation forecast at the observation site is done by using the
Cressman method for both resolutions and the 4 grid points
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Table 4. As for Table 3 but for Epirus only with and without activation of the Kain-Fritsch-2 CPS in the 2 km grid. For each categorical
statistic and for each method the best values are presented in bold.

Thresh. Proportion Correct (0–1) Equitable Threat (−1/3–1)

t +12 2 KF2 Cre 2NOCPCre 2KF2 4p 2 NOCP4p 2 KF2 Cre 2NOCPCre 2KF2 4p 2 NOCP4p

1 mm 0.90 0.77 0.94 0.84 0.07 0.03 0.14 0.07
2.5 mm 0.83 0.71 0.89 0.76 0.13 0.10 0.23 0.13

5 mm 0.76 0.67 0.84 0.74 0.18 0.15 0.31 0.22
10 mm 0.71 0.67 0.75 0.72 0.26 0.23 0.33 0.30
20 mm 0.77 0.76 0.84 0.82 0.29 0.28 0.44 0.40

t +24

1 mm 0.90 0.78 0.94 0.83 0.37 0.18 0.53 0.25
2.5 mm 0.85 0.71 0.89 0.77 0.34 0.15 0.44 0.24

5 mm 0.80 0.70 0.87 0.75 0.36 0.23 0.49 0.29
10 mm 0.70 0.66 0.76 0.75 0.26 0.21 0.34 0.34
20 mm 0.76 0.76 0.80 0.82 0.26 0.26 0.36 0.40

method for the high resolution (the latter is not used for the
8 km grid because of the large distances).

Then, in order to assess the role of the activation of the
CPS in the high resolution grid (grid 3), on the forecasted
precipitation, the simulations where the CPS is activated on
all three grids are compared with the simulations where the
CPS is activated in the coarse (24× 24 km) and the interme-
diate (8× 8 km) domains only and not in the fine (2× 2 km)
one.

The CPS resulting to the best precipitation prediction in
Epirus is revealed, by implementing, for the same rain days
apart from Kain-Fritsch-2, Betts-Miller and Grell CPSs, in
all domains.

Thereinafter, the 14 Epirus stations are classified, subjec-
tively, in three groups based on their altitude: 4 coastal (al-
titude up to 100 m), 5 inland (from 100 m to 500 m), and
5 mountainous (above 500 m) and the categorical statistics
are also computed for each sub-region.

The whole procedure followed, is presented, in a concise
way, in the flow diagram of Fig. 3.

3 Results

3.1 For Epirus as a whole

MAE values for the intermediate and the fine grid analyses
are presented in Table 1. The results are given for each 12-h
interval, for each of the 5 rainfall classes and each of the
2 interpolation methods. The number of cases for each class
is also given. The best values are presented in bold. It is
seen that by using Cressman method, higher resolution leads
to better results (lower MAEs) only for light and moderate
precipitation. However, when the 4 points method is adopted
for the fine grid, the results appear considerably better for all
cases.

The corresponding scores of PC and ET, for the 5 precipi-
tation thresholds, are presented in Table 2. The number of
cases for each threshold is also given. It is seen that for
both categorical statistics, by using the Cressman method a
higher resolution does not lead to better results. Ducrocq et
al. (2002), who reached the same conclusions, argued that
this is due to the fact that the surface observation network is
generally too coarse to describe the high spatial and temporal
variability of precipitation fields. Moreover, as resolution in-
creases, the model is able to produce more concentrated and
intense cores of precipitation. In that case, small errors in
locations between the observation and forecast can produce
large differences and consequently bad scores. However, in
Table 2 it is also seen that by using the 4 points method, the
finest grid does improve precipitation forecast for all cases.
For PC, the results are better for low thresholds, i.e. when
almost all rainfall events (with either light or moderate or
heavy precipitation) are taken into account, while for larger
thresholds (light precipitation events are excluded), the per-
formance of the model is poorer. For ET, which has the equi-
tability property and rates random forecasts and all constant
forecasts equally, the scores are lower. The reason is that ET
does not weight strongly correct forecasts of common events
in order not to artificially inflate the resulting score, and in
the present work, only days with extended and intense pre-
cipitation over the whole Epirus are considered. ET scores
would be higher if non-rainy days were also included in the
analysis.

The results of the examination of the necessity or not for
the activation of CPS in the 2 km grid simulation are pre-
sented in Table 3. Here, the two last columns of Table 1
(results with Kain-Fritsch-2 for all domains) are repeated for
a better comparison. It is seen that, for both Cressman and
4 points methods, the non activation of the CPS in the finer
grid simulations worsens (increases) the MAEs in all classes

www.nat-hazards-earth-syst-sci.net/12/1393/2012/ Nat. Hazards Earth Syst. Sci., 12, 1393–1405, 2012
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Table 5. The percentage of convective part of precipitation obtained by the use of Kain-Fritsch-2 for the two 12-h intervals (t +12, t +24).

Stations 00:00–12:00 12:00–24:00
(height in m)

Coastal

Ammoudia (1) 71 72
Arta (13) 59 66

Sagiada (48) 55 47
Igoumenitsa (75) 39 33

Inland

Koboti (105) 52 66
Paramithia (128) 57 53

Doliana (404) 38 31
Lake Isl. (472) 39 33

Ioannina Univ. (485) 37 36

Mountainous

Vourgareli (648) 18 29
Eleftherohori (650) 5 8

Trapeza (719) 30 21
Katarraktis (902) 12 20
Metsovo (1231) 20 17

Table 6. As in Table 1 but for the three different CPSs: Betts-Miller, Grell and Kain-Fritsch-2. For each grid and for each method the best
values are presented in bold.

classes 8BM Cre 8GR Cre 8KF2 Cre 2BM Cre 2GR Cre 2KF2 Cre 2BM 4p 2 GR 4p 2 KF2 4p
(mm)

t +12

1–2.5 8.1 8.2 10.2 9.2 11.9 5.7 7.8 9.6 4.8
2.5–5 4.9 4.9 4.1 4.5 5.3 4.1 3.9 4.4 3.3
5–10 5.1 4.7 4.9 6.4 5.1 4.4 5.1 3.3 3.2
10–20 7.8 8.2 7.3 9.5 9.1 8.0 7.0 6.6 5.8
>20 15.6 14.0 14.4 17.1 14.5 16.1 12.7 10.1 12.4

t +24

1–2.5 3.7 3.7 3.1 4.9 4.1 3.3 3.9 3.1 2.6
2.5–5 6.1 4.8 4.8 5.7 6.2 4.6 4.4 4.3 3.4
5–10 8.0 7.4 7.4 5.8 6.9 5.3 4.5 4.9 4.1
10–20 7.9 7.4 6.9 9.2 8.9 7.8 7.0 6.0 5.4
>20 15.9 15.4 17.0 19.7 17.8 19.3 14.6 13.0 14.6

apart for the lowest (1–2.5 mm). In order to explain the fore-
cast improvement, without CPS, in the 1–2.5 class, simula-
tion results have been examined in detail (not presented). It
was found that for the light precipitation, the NOCP simu-
lations have much more misses (forecast 0–1 mm) than false
alarms (forecast above 2.5 mm) (comparison of NOCP with
Kain-Fritsch-2), resulting in lower MAE values.

The verification of the forecasts above specific thresholds
is presented in Table 4. It is seen that the PC and ET scores
support the findings of MAE (estimated in classes) since the
values are found better when the CPS is activated. A small
exception can be seen in very high precipitation values where
scores with and without CPS are more or less comparable.

For a further examination of the model performance with
CPS and in order to distinguish the parameterized convection

from the explicit one, the percentage of convective precipita-
tion obtained by the use of Kain-Fritsch-2 (22 days average)
is presented in Table 5. It is seen that for the coastal sta-
tions the percentage is very high, exceeding 50 % almost in
all of them. In the inland stations this percentage is reduced
to about 40 % while on the mountainous ones it is, in gen-
eral, below 20 %. This last finding was more or less expected
since MM5 tends to produce precipitation in the mountain
regions because enough triggering is available. The moun-
tains force the flow to uplift, allowing for water vapour to
condensate, that is, the MM5 air column reaches saturation
and, if the case, produces precipitation explicitly.

In Table 6, MAEs are given for the three different CPSs
(Kain-Fritsch-2, Betts-Miller and Grell), for the intermediate
(8 km) and fine (2 km) grids. For the latter, both Cressman
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Table 7. As in Table 2 but for Proportion Correct (PC) score (0–1) and three different CPSs: Betts-Miller, Grell and Kain-Fritsch-2.

Thresh. 8BM Cre 8GR Cre 8KF2 Cre 2BM Cre 2GR Cre 2KF2 Cre 2BM 4p 2 GR 4p 2 KF2 4p

t +12

1 mm 0.87 0.94 0.93 0.83 0.91 0.90 0.86 0.94 0.94
2.5 mm 0.80 0.85 0.85 0.77 0.84 0.83 0.81 0.88 0.89

5 mm 0.76 0.80 0.78 0.71 0.78 0.76 0.77 0.83 0.84
10 mm 0.69 0.72 0.70 0.67 0.70 0.71 0.72 0.76 0.75
20 mm 0.81 0.75 0.77 0.77 0.76 0.77 0.81 0.81 0.84

t +24

1 mm 0.90 0.90 0.92 0.83 0.88 0.90 0.88 0.92 0.94
2.5 mm 0.86 0.85 0.89 0.77 0.83 0.85 0.81 0.86 0.89

5 mm 0.81 0.82 0.87 0.73 0.78 0.80 0.78 0.85 0.87
10 mm 0.72 0.71 0.74 0.68 0.71 0.70 0.74 0.82 0.76
20 mm 0.78 0.80 0.79 0.79 0.77 0.76 0.81 0.83 0.80

Table 8. As in Table 2 but for Equitable Threat (ET) score (−1/3–1) and three different CPSs: Betts-Miller, Grell and Kain-Fritsch-2.

Thresh. 8BM Cre 8GR Cre 8KF2 Cre 2BM Cre 2GR Cre 2KF2 Cre 2BM 4p 2 GR 4p 2 KF2 4p

t +12

1 mm 0.05 0.13 0.12 0.05 0.08 0.07 0.06 0.13 0.14
2.5 mm 0.05 0.09 0.09 0.10 0.11 0.13 0.15 0.18 0.23

5 mm 0.17 0.22 0.19 0.15 0.20 0.18 0.21 0.28 0.31
10 mm 0.22 0.26 0.23 0.21 0.22 0.26 0.29 0.33 0.33
20 mm 0.38 0.26 0.31 0.29 0.31 0.29 0.39 0.41 0.44

t +24

1 mm 0.30 0.28 0.44 0.17 0.29 0.37 0.28 0.39 0.53
2.5 mm 0.29 0.26 0.43 0.17 0.24 0.34 0.23 0.32 0.44

5 mm 0.34 0.36 0.50 0.22 0.28 0.36 0.30 0.41 0.49
10 mm 0.27 0.25 0.32 0.22 0.26 0.26 0.32 0.47 0.34
20 mm 0.34 0.37 0.33 0.34 0.30 0.26 0.37 0.44 0.36

and 4 points methods are applied. The results show that,
for Betts-Miller and Grell in general, precipitation forecast
is not improved as resolution gets higher. Some improve-
ment appears in Kain-Fritsch-2 only, mainly for low pre-
cipitation amounts. On the other hand, if the results of the
4 points method in the 2 km grid are compared with those of
Cressman in 8 km grid, it is seen that there is a considerable
improvement for all CPSs. A comparison among the three
CPSs shows that for the fine grid, Kain-Fritsch-2 is the best
for light and moderate precipitation while for heights above
20 mm Grell gives smaller MAEs.

As far as it concerns the frequency of occurrence of pre-
cipitation events above certain thresholds, Tables 7 and 8
show that they are captured better by Kain-Fritch-2 and Grell
CPSs. These results are in agreement with the findings of
Mazarakis et al. (2009) for the warm season precipitation
over Greece.

For Bias values (Table 9), the main conclusion that can be
drawn is that precipitation is underestimated, either a CPS is
activated or not (only three out of the 110 values are higher
than 1). In general, the results are better for Grell, which
comprises more values close to unity. If no CPS is used, pre-
cipitation is strongly underestimated for all thresholds, an-
other indication that, in the finest grid, the CPS activation is
necessary.

3.2 For coastal, inland and mountainous areas
of Epirus

In Table 10, MAEs for each sub-area of Epirus are presented
(Cressman method is shown only). The results for precipita-
tion classes lower than 5.0 mm are not shown, because they
only refer to a few cases and therefore, they may not be reli-
able. In each sub-area, the columns 2KF2 C and 2NOCPC
are compared (because for the NOCP case, in the first two
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Table 9. As in Table 2 but for bias score and three different CPSs: Betts-Miller, Grell and Kain-Fritsch-2 (and also for NOCP in the 2 km
grid).

Thresh. 8BM Cre 8GR Cre 8KF2 Cre 2BM Cre 2GR Cre 2KF2 Cre 2NOCPCre 2BM 4p 2 GR 4p 2 KF2 4p 2 NOCP4p

t +12

1 mm 0.91 0.98 0.97 0.86 0.95 0.94 0.80 0.89 0.98 0.99 0.86
2.5 mm 0.91 0.96 0.95 0.83 0.93 0.90 0.73 0.86 0.97 0.96 0.78

5 mm 0.86 0.91 0.89 0.78 0.89 0.85 0.68 0.84 0.93 0.92 0.76
10 mm 0.86 0.93 0.91 0.78 0.90 0.76 0.65 0.79 0.90 0.82 0.68
20 mm 0.75 0.78 0.79 0.79 0.98 0.75 0.70 0.76 0.93 0.77 0.74

t +24

1 mm 1.02 1.02 0.99 0.94 0.97 0.97 0.83 0.96 1.00 0.98 0.87
2.5 mm 1.00 1.02 0.97 0.89 0.97 0.93 0.76 0.94 0.97 0.95 0.80

5 mm 0.95 0.95 0.96 0.84 0.94 0.87 0.73 0.89 1.00 0.95 0.78
10 mm 0.95 0.92 0.89 0.77 0.85 0.74 0.67 0.79 0.89 0.81 0.74
20 mm 0.84 0.88 0.69 0.69 0.78 0.56 0.61 0.67 0.87 0.60 0.68

Table 10. Mean Absolute Error (MAE) (mm) for the three different CPSs and without CPS for three sub-areas of Epirus (a) coastal,
(b) inland, (c) mountainous for 2 km grid and Cressman method. The best values are presented in bold.

Classes (mm) Coastal Areas Inland Areas Mountainous Areas

t +12 2 BM C 2 GR C 2 KF2 C 2 NOCPC 2 BM C 2 GR C 2 KF2 C 2 NOCPC 2 BM C 2 GR C 2 KF2 C 2 NOCPC

5–10 5.1 5.8 5.8 7.7 7.2 4.7 3.6 5.0 6.5 5.4 4.8 5.0
10–20 10.9 10.1 8.5 11.4 9.0 7.2 7.5 9.6 10.0 10.3 7.8 10.3
>20 15.9 12.7 15.4 19.3 17.3 14.6 14.4 17.0 14.5 14.3 14.7 15.8

t +24

5–10 11.4 13.1 7.7 6.5 4.1 4.6 6.1 5.8 3.9 7.4 5.5 7.2
10–20 10.8 7.7 9.1 11.3 8.5 8.6 6.2 9.0 8.4 9.1 8.3 9.3
>20 19.2 17.3 20.9 21.8 17.3 15.4 16.8 16.6 20.4 18.0 18.2 19.1

domains, Kain-Fritsch-2 has been used). It is seen that the
activation of CPS (Kain-Fritsch-2) in the 2 km grid appears
necessary. As far as it concerns the inter-comparison of the
three CPSs, the results are not very clear. However, in gen-
eral, Grell and Kain-Fritsch-2 appear to be better with Grell
dominating for high precipitation values. Comparing the per-
formance of the models in the three sub-areas, in general, it
appears that it is better in the inland areas. However, this
finding must be assessed with caution, since the high MAEs
of the mountainous areas may be due to some extremely high
precipitation amounts recorded in these areas.

In Tables 11 and 12 the categorical statistics for the 3 sub-
areas of Epirus are presented (Cressman method is shown
only). It is obvious that the application of Kain-Fritsch-2 in
the finest grid is necessary for the coastal and inland areas
(small exceptions appear for the high thresholds). For the
mountainous areas, the results appear comparable. Having
in mind the convective precipitation percentages presented
in Table 5, it could be argued that this comparableness was
expected since mountains trigger adequate uplift, leading to
sufficient explicit precipitation without a need for a CPS.
However, it has to be noted that the results of MAE (Ta-
ble 10) indicate that although the frequency of precipitation
in mountainous areas is not captured better by Kain-Fritsch-
2, without it, the errors in precipitation height are larger. The

comparison of the three CPSs reveals that for coastal and
inland areas Grell and Kain-Fritsch-2 give the best results
while for mountainous areas all the CPSs perform equally
well.

4 The precipitation event of 9 November 2009

In this section, one of the 22 examined days is presented ana-
lytically as an example. The precipitation event that occurred
on 9 November 2009 has been selected since high precipita-
tion amounts were recorded in all the stations during both
12-h intervals. By using the ECMWF analysis data, the syn-
optic conditions for this day, at 00:00 and 24:00 UTC, are
constructed (Fig. 4). At the beginning of the day, a low pres-
sure system is centred over the Ligurian Sea covering the
whole western and most parts of the central Mediterranean.
This system produces southwesterly winds in the upper at-
mosphere and south-southwesterly winds near the surface
over NW Greece. At the end of the day, the system is moved
slightly southeastwards, now centred over the Tyrrhenian Sea
in the upper atmosphere and over central Italy near the sur-
face. This very slow movement of the system maintains
the air flow over NW Greece during the whole day, with a
small shift south-southwesterly in the upper atmosphere and

Nat. Hazards Earth Syst. Sci., 12, 1393–1405, 2012 www.nat-hazards-earth-syst-sci.net/12/1393/2012/



O. A. Sindosi et al.: Verification of precipitation forecasts of MM5 model over Epirus 1401

Table 11.As in Table 10 but for Proportion Correct (PC) score (0–1).

Thresh. Coastal Areas Inland Areas Mountainous Areas

t +12 2 BM C 2 GR C 2 KF2 C 2 NOCPC 2 BM C 2 GR C 2 KF2 C 2 NOCPC 2 BM C 2 GR C 2 KF2 C 2 NOCPC

1 mm 0.74 0.90 0.92 0.62 0.82 0.90 0.91 0.77 0.90 0.91 0.89 0.89
2.5 mm 0.62 0.80 0.75 0.56 0.78 0.82 0.87 0.70 0.88 0.88 0.85 0.85
5 mm 0.54 0.72 0.67 0.54 0.72 0.77 0.77 0.65 0.83 0.85 0.80 0.79
10 mm 0.60 0.68 0.63 0.58 0.64 0.67 0.72 0.65 0.77 0.74 0.75 0.76
20 mm 0.78 0.76 0.79 0.79 0.75 0.79 0.76 0.77 0.78 0.76 0.75 0.75

t +24

1 mm 0.78 0.87 0.89 0.75 0.78 0.88 0.92 0.71 0.91 0.89 0.90 0.89
2.5 mm 0.74 0.83 0.86 0.64 0.72 0.84 0.86 0.68 0.85 0.82 0.85 0.79
5 mm 0.67 0.83 0.81 0.66 0.70 0.76 0.81 0.68 0.81 0.79 0.79 0.78
10 mm 0.59 0.69 0.63 0.60 0.67 0.65 0.72 0.65 0.77 0.78 0.75 0.75
20 mm 0.76 0.71 0.70 0.74 0.84 0.84 0.82 0.79 0.80 0.76 0.77 0.74

Table 12.As in Table 10 but for Equitable Threat (ET) score (−1/3–1).

Thresh. Coastal Areas Inland Areas Mountainous Areas

t +12 2 BM C 2 GR C 2 KF2 C 2 NOCPC 2 BM C 2 GR C 2 KF2 C 2 NOCPC 2 BM C 2 GR C 2 KF2 C 2 NOCPC

1 mm 0.09 0.14 0.11 0.03 0.01 0.05 0.04 0.01 −0.02 −0.02 −0.01 −0.01
2.5 mm 0.05 0.09 0.10 0.07 0.05 0.04 0.15 0.08 0.09 0.08 0.08 0.14
5 mm 0.06 0.15 0.12 0.08 0.17 0.18 0.22 0.12 0.27 0.33 0.22 0.24
10 mm 0.15 0.19 0.17 0.13 0.18 0.21 0.30 0.22 0.32 0.24 0.30 0.31
20 mm 0.27 0.26 0.29 0.37 0.19 0.29 0.19 0.17 0.31 0.28 0.30 0.30

t +24

1 mm 0.24 0.38 0.47 0.26 0.13 0.40 0.50 0.10 0.28 0.32 0.33 0.39
2.5 mm 0.23 0.30 0.45 0.18 0.18 0.43 0.42 0.17 0.20 0.11 0.30 0.18
5 mm 0.19 0.42 0.43 0.26 0.23 0.33 0.38 0.21 0.30 0.25 0.32 0.29
10 mm 0.12 0.25 0.19 0.17 0.25 0.18 0.28 0.20 0.35 0.38 0.31 0.31
20 mm 0.25 0.15 0.09 0.19 0.40 0.44 0.34 0.27 0.39 0.27 0.32 0.26

Table 13. Mean Absolute Error (MAE) (mm) for the 9 Novem-
ber 2009.

2 BM Cre 2GR Cre 2KF2 Cre 2NOCPCre

t +6 6.0 5.7 7.0 7.5
t +12 15.5 11.0 13.3 17.2
t +18 20.4 11.4 15.6 18.9
t +24 21.5 18.4 16.9 17.2

southerly near the surface. This flow, transfers warm and hu-
mid air masses from the Ionian Sea over Epirus, and because
of the convergence in the direction of motion and the uplift
due to the complex topography, creates large precipitation
amounts.

Similarly to the above process, MAE (Cressman method)
is estimated for the three CPSs as well as for the NOCP
simulation. For a more detailed examination of the case,
the analysis is carried out for the four 6-h intervals of this
day. For each 6-h interval, at least half of the operating
rain gauges recorded precipitation exceeding 10 mm, with
the highest amounts observed during the last 6-h interval, ex-
ceeding 25 mm in most stations. The results for the 2 km

grid are shown in Table 13. It is seen that a CPS is neces-
sary with Grell and Kain-Fritsch-2, giving the lowest MAEs.
These one-day findings are in agreement with the results for
the 22 days.

In order to outline the differentiations between the applica-
tion of Kain-Fritsch-2 and NOCP in the finest grid, the corre-
sponding distributions of the precipitation heights predicted
above Epirus are drawn for each of the 6-h intervals (Fig. 5).
In the same figure, the observed precipitation values are plot-
ted. As it can be seen, there are areas, mainly coastal and
low-land, where Kain-Fritsch-2 predicts light-moderate pre-
cipitation (1–10 mm) while NOCP predicts no precipitation
at all.

Furthermore, it can be seen that NOCP rainfall maxima
are located at almost the same areas as the ones derived by
Kain-Fritsch-2, but the former ones are more intense. This
finding is in agreement with Table 4, in which the scores
of NOCP are comparable with the ones of Kain-Fritsch-2 in
high thresholds only. In other words, the two approaches
spot equally well areas with rain>20 mm. Nevertheless, as
it is inferred from Table 3, for rain above 20 mm, MAEs of
Kain-Fritsch-2 are somewhat smaller than those of NOCP in-
dicating that the usage of CPS is preferable.
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Fig. 4. Sea level pressure (hPa) and 500 hPa height (gpdm) for 00:00 and 24:00 UTC of 9 November 
2009. 

Fig. 4. Sea level pressure (hPa) and 500 hPa height (gpdm) for 00:00 and 24:00 UTC of 9 November 2009.

5 Conclusions

The purpose of this work was to assess the performance of
the numerical weather prediction model MM5 over Epirus
Region, NW Greece, focusing on the precipitation forecasts.
The analysis is based on the results of the simulations of
22 days with intense rainfall over the area of interest. This
work was motivated by the fact that MM5 model is used op-
erationally at the University of Ioannina with the aim to pro-
vide weather forecasts in the area, and it is also the basis of
the early warning system developed in the area in the frame
of RISKMED project. Three main questions are discussed:
(a) does increased resolution grid produce more skilful pre-
cipitation forecasts? (b) is the activation of a convective
parameterization scheme (CPS) needed at the resolution of
2 km? and (c) which CPS results in the most accurate precip-
itation forecasts in the study area? For this reason, three well
known CPSs (Betts-Miller, Grell and Kain-Fritsch-2) were
utilized for three nested domains with grid resolution of 24,
8 and 2 km. The validation of the model was done for various
precipitation classes and thresholds by estimating the Mean
Absolute Error and three categorical statistics (Bias, Propor-
tion Correct and Equitable Threat score) derived from con-
tingency tables. Thereinafter, these validations were also ap-
plied for three sub-areas of Epirus, coastal, inland and moun-
tainous and finally, a case study was analytically examined.

According to the results,

– An improvement in precipitation prediction appears as
horizontal resolution gets higher (from 8 to 2 km). Nev-
ertheless, the best results are found if a slight displace-
ment (up to 2.8 km) in spatial distribution of rainfall is
considered acceptable. The complexity of the terrain of
Epirus may be responsible for this.

– In general, the model underestimates precipitation for
all three examined CPSs, but the activation of a CPS in
the finest grid of 2 km appears necessary as the results
are considerably improved; except for mountainous ar-
eas where results with or without CPS are comparable.

– The CPSs forecasting the most reliable precipitation
heights are Grell and Kain-Fritsch-2, with the former
being better for high thresholds (strong precipitation
events only) and the latter for small and medium ones
(all precipitation events).

– All the examined CPSs give the smallest precipitation
errors in the inland sub-area.

For the future, it is planned to extend the present research
to further sensitivity experiments, i.e. to examine the role of
various microphysical schemes in combination with the three
CPSs as well as the role of topography in precipitation dis-
tribution in small sub-areas of Epirus. This will be better
achieved as more meteorological stations are planned to be
installed all over Epirus.

Acknowledgements.The research work is co-funded by the Euro-
pean Union – European Social Fund (ESF) & National Sources, in
the framework of the program “HERAKLEITOS II” of the “Opera-
tional Program Education and Life Long Learning” of the Hellenic
Ministry of Education, Life Long Learning and religious affairs.

The authors would like to thank the anonymous referees for their
valuable suggestions which led to a substantial improvement of the
manuscript.

Edited by: A. Mugnai
Reviewed by: two anonymous referees

Nat. Hazards Earth Syst. Sci., 12, 1393–1405, 2012 www.nat-hazards-earth-syst-sci.net/12/1393/2012/



O. A. Sindosi et al.: Verification of precipitation forecasts of MM5 model over Epirus 1403

   
 

   
 

   
 

   
 
 Fig. 5. Precipitation distribution for each 6-h interval (00:00–06:00, 06:00–12:00, 12:00–18:00, 18:00–24:00 UTC) of 9 November 2009

(rows a–d). Fisrt column: MM5 forecast with the application of Kain-Fritsch-2 in the 2 km grid; second column: MM5 forecast without CPS
application in the 2 km grid; third column: observations (mm).
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