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Abstract. A Geographic Information System (GIS)-based
quantitative risk assessment methodology was adopted to
evaluate the risks of loose deposits formed by the 2008
Wenchuan earthquake along a highway near the epicen-
ter. A total of 305 loose deposits with a total volume of
4.0× 107 m3 has been identified. A physical model was used
to determine the failure probability of these loose deposits
under six rainfall scenarios, assuming the loose deposits as
infinite slopes. The calculated probability of rain-induced
slope failures is verified by the recorded landslides at the
same site during a storm in 2010. Seventy-nine out of the
112 rain-induced loose deposit failures are predicted by the
reliability analysis, with an accuracy of 71 %. The results
of reliability analysis and information on the consequence of
these rain-induced landslides enable the estimation of the an-
nual societal and individual risks of the loose deposits. Under
the rainfall scenarios of 30 mm/12 h and 70 mm/12 h, the es-
timated annual societal risks reach 8.8 and 7.5, respectively,
and the individual risks reach 0.05 and 0.04, respectively,
which are very high compared with present risk acceptance
criteria. The preliminary assessment provides a benchmark
for studying the long-term risks of these loose deposits and
engineering decision.

1 Introduction

The 2008 Wenchuan earthquake in China triggered numer-
ous landslides. The debris of these landslides deposited on
steep terrains. Under normal weather conditions, such de-
posits are at a quasi-stable state. In the wet season, many of
these deposits may lose stability due to rainfall infiltration.

The 45 km reach of Province Road 303 (PR303) is the only
path from the epicenter, Yingxiu, to the Research and Con-
servation Centre for Giant Panda at Wolong (Fig. 1). The
reconstruction of PR303 started in April 2009. Although
efforts have been made to remove or strengthen some un-
safe slopes, many deposits at high elevations have not been
identified and some of them failed under rainfall conditions.
During the rainy seasons of 2009–2011, numerous landslides
were induced by rainfall, which caused a large number of ca-
sualty and serious damage to properties. It is expected that
rainfall induced slope failures will continue to occur in the
coming years. Therefore, it is important to evaluate the risks
of these loose deposits so that the potential loss of life can
be reduced in the future. The risk assessment in this paper
was undertaken along PR303 from milestone K1 to K18 as
shown in Fig. 1.

Risk can be defined as the potential adverse consequences,
loss, harm or detriment (Royal Society, 1992). Landslide risk
assessment has gained much attention in the past decades
(e.g. Sassa et al., 2004; Nadim et al., 2006; Cascini, 2008;
Fell et al., 2008; Salvati et al., 2010; Tang and Zhang, 2011).
Sterlacchini et al. (2007) described a multi-disciplinary ap-
proach of landslide risk analysis. Einstein (1997) suggested
that landslide risk assessment and management procedures
start with assessing the state of nature and end with actions
which include a variety of active or passive countermeasures
to cope with landslides.

Numerous landslides can be triggered simultaneously by
one rainstorm event and a particular element at risk may
be exposed to multiple landslide hazards (Zhang, 2009). A
quantitative risk analysis (QRA) requires the availability of
sufficient historical landslide information in order to estimate
the spatial, temporal and magnitude probabilities (Einstein,
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Fig. 1. Location of the study area and PR303.  
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Fig. 1. Location of the study area and PR303.

1997). Although numerous landslides had been triggered by
the Wenchuan earthquake, historical data on rainfall-induced
landslides in loose deposits at a specific site are insufficient
since this earthquake just happened 3 yr ago. Hence, it is not
feasible to carry out a QRA entirely based on statistical data.

This research aims to present a physically based method
to estimate the risks of rainfall induced failures of loose de-
posits between K1 and K18 along PR303 shortly after the
earthquake (Fig. 1). First, 305 loose deposits distributed in
27 catchments along this road were identified. Second, the
reliability of these loose deposits under six rainfall scenar-
ios was evaluated using rainfall infiltration analysis and slope
stability analysis. The analysis was tested with observed fail-
ures of loose deposits during a storm in 2010. Finally, the
potential loss of human lives due to failure of these deposits
was assessed. The risks are expressed in terms of both soci-
etal risk and individual risk.

2 Study site

2.1 Geological conditions

The alignment of PR303 between K1 and K18 is primarily
along the Yuzixi River that is bounded by terrains with eleva-
tions from 880 to 4140 m. A GIS platform was used to study
the topography, geology and river system in the study area
based on a 20-m resolution digital elevation model (Fig. 2).
The terrain in this area is rugged with steep slopes exceeding
40◦ in many places, as a slope gradient analysis reveals in
the GIS platform (Fig. 3). The slope gradient in the area was
divided into 10 levels from 0◦ to 90◦. From K1 to K18, the
slope gradients mainly range from 20◦ to 50◦ on both sides
of PR303. The slope gradient on the west side of K18 near
Gengda is mainly in the range of 0◦ to 30◦. The geologi-
cal setting between K1 and K18 mainly consists of medium
fine-grained granite and diorite (Fig. 4). These hard rocks ex-
plain why the topography of the study area can be so steep.
Furthermore, the study area goes across four faults and is
located at the hanging wall of a fault where strong motions
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Fig. 2. Topography of PR303 between K1 and K18.  
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Fig. 3. Gradient of the natural terrain in the study area. 

 

Fig. 3. Gradient of the natural terrain in the study area.

happened during the Wenchuan earthquake. The special ge-
ological structure contributed to the contrasting landsliding
scenarios taking K18 (Gengda) as a boundary.

2.2 Hydrological conditions

Rainfall records of the Yingxiu area indicate that the aver-
age annual precipitation ranges from 1002 to 1265 mm and
approximately 66–76 % of rainfall occurs during the rainy
season from June to August. In the study area, due to the
discrepancy in topography, the temperature and rainfall vary
greatly. The groundwater is mainly magmatic rock fissure
water. It is shallowly restored, and the supply is almost equal
to the discharge. After the Wenchuan earthquake, the study
area suffered from several rainstorms. Of these events, the
rainstorm on 14 August 2010 was the heaviest, with a total
precipitation of 163 mm within 8 h. The landslide events trig-
gered by this storm event were used to verify the theoretical
landslide probability for the loose deposits.
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Fig. 5. Satellite image of loose deposits along PR303 shortly after the earthquake. Note: The detail of the 
marked part is shown in Fig. 6.  
 

  

Fig. 5. Satellite image of loose deposits along PR303 shortly after
the earthquake. Note: the detail of the marked part is shown in
Fig. 6.

3 Hazardous loose deposits

The most common methods for geological hazard identifi-
cation are based on satellite images, aerial-photo interpreta-
tion, field surveys and collection of local data. In this pa-
per, interpretation of Quick-bird satellite images taken on
30 May 2008 combined with field investigations allowed the
identification of a large number of loose deposits formed dur-
ing the Wenchuan earthquake over a large area. The slope
geometry was measured and the boundaries of catchments
that affect a particular element at risk were delineated with
the assistance of a GIS platform. These made it possible
to estimate the likelihood of failure of the deposits and find
likely deposition areas of the landslide debris where land-
slides could be reactivated.

As shown in Figs. 5 and 6, the road was largely buried
or destroyed by densely populated loose deposits formed by
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Fig. 6. Photo of a loose deposit that buried a part of PR303.   

 

 

Fig. 6. Photo of a loose deposit that buried a part of PR303.

collapses during the earthquake. Identifying the hazards is of
great significance to the re-reconstruction of the road. In or-
der to quantify the impact of such loose deposits, a landslide
inventory was generated for the study area (Fig. 7) based on
available photos, satellite images and field investigations. As
Fig. 7 reveals, a total of 305 loose deposits were identified,
which were distributed along PR303 from K1 to K18 in 27
catchments of various watershed areas. The slope gradients
of the 305 loose deposits ranged from 6◦ to 48◦. The steep-
est loose deposit was No. 109 with an average gradient of
48◦ distributed in Yingchanggou Ravine. By measuring the
scar and deposition areas of 25 selected slides during the field
investigations, the average ratio of scar area and deposition
area was determined as 1:3. The deposit depths in the scar
area and the deposition area were on average 1 m and 3 m, re-
spectively. Therefore, based on the covering area, the volume
of each loose deposit and the total volume of debris materi-
als in each catchment were evaluated. The total volume of
the 305 loose deposits was approximately 4.0× 107 m3. The
largest one was deposit No. 113 in Yinchanggou Ravine with
a slope gradient of 21◦ and a covering area of 464 006 m2,
located at elevations between 2300 m and 3190 m.

4 Risk assessment methodology

In this paper, risks are presented in two formats. One is
societal risk, which concerns the risk to the population as
a whole, independent of geographical location. Tradition-
ally, the societal risk is expressed in terms of an F-N curve,
i.e. a graphical representation of the cumulative frequency of
N or more fatalities (viz. F) against the number of fatalities
(viz. N) on a log-log scale. The annual potential loss of life
can be used to express the societal risk. The other format is
individual risk, which regards the risk to a single person at a
specific location (e.g. Wong et al., 1997).
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Fig. 7. Distribution of 305 loose deposits between K1 and K18 along PR303.  Fig. 7. Distribution of 305 loose deposits between K1 and K18
along PR303.

Suppose there weren mutually exclusive landslide events.
The societal risk was defined as the sum of the products of
the conditional temporary and spatial probabilities and the
consequence caused by the individual loose deposits. The
annual potential loss of life,R(LOL), is quantified by (Morgan
et al., 1992):

R(LOL) =

n∑
i=1

[P(L)i ×P(T :L)i ×P(S:T )i]×[V(D:S)i ×Ei] (1)

whereP(L)i , P(T :L)i andP(S:T )i are the annual probability of
landslide incidenti, the probability of the landslide reaching
the highway and the probability that passengers are present
at the location impacted by landslide incidenti, respectively;
V(D:S)i is the vulnerability of the passengers to landslide
eventi (i.e. the chance of the passengers lose their lives when
they are impacted by the landslide);Ei is the number of per-
sons at risk by landslide incidenti.

The individual risk of loss of life,R(DI), can be calculated
from (Australian Geomechanics Society Sub-Committee on
Landslide Risk Management, 2000):

R(DI) =

n∑
i=1

P(L)i ×P(T :L)i ×P(S:T )i ×V(D:S)i (2)

whereR(DI) is the risk based on the annual probability of
loss of life of an individual.

According to Eqs. (1) and (2), the first step to assess the
risks of the loose soil deposits is hazard identification. The
second step is to perform reliability analysis to determine the
failure probability of the loose deposits. The third step is to
evaluate the vulnerability by calculating the debris run-out
distances. Meanwhile, the element at risk must be computed
in line with design traffic conditions. Then the risks can be
estimated.

5 Determination of occurrence probability

Physical-based slope stability analysis and Monte Carlo sim-
ulation were adopted in this paper to calculate the failure

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Stability of an infinite loose soil deposit.  
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Fig. 8. Stability of an infinite loose soil deposit.

probability of each deposit under different rainfall levels.
In order to test the calculation results, rainfall-induced fail-
ures of the loose deposits during the 14 August 2010 storm
were interpreted by comparing the satellite images taken
shortly after the 2008 earthquake and shortly after the 14 Au-
gust 2010 rainstorm.

5.1 Reliability of the deposits during rainfall infiltration

Methods for the analysis of rainfall-induced slope fail-
ures have been recently reviewed by Zhang et al. (2005),
L. L. Zhang et al. (2011). The geological conditions and rain-
fall characteristics vary significantly along the road and data
of the rainfall-induced landslides in the past 3 yr are limited.
Hence, it is difficult to establish credible rainfall-landslide
correlations for general uses. Thus, physically based models
were used to assess the landslide risks instead. The site in-
formation needed for the models includes the slope gradient,
soil properties, and thickness of each of the loose deposits.
The slope gradient was calculated based on the GIS digital
elevation model. The thicknesses of the deposits were typi-
cally small while their plan dimensions are large. The mean
value of the individual loose deposit area was 50 698 m2. The
soil thickness was assumed to be 3 m, which was far less than
the plan dimensions. Therefore, these deposits can be as-
sumed as infinite slopes for risk analysis purposes, as shown
in Fig. 8. The initial ground water table was assumed to be
4.0 m below the original ground surface, or 7.0 m below the
deposit surface.

Seepage analysis was conducted to investigate the infiltra-
tion of rainfall during six levels of rain (Table 1). The in-
filtration process was simulated using saturated/unsaturated
finite element seepage analysis and a computer program
SEEP/W (Geo-slope International Ltd., 2004) was used to
compute the pore-water pressures in the loose deposits. Siev-
ing tests were conducted at carefully selected sites and the
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Table 1. Classification of six rainfall scenarios.

Class Intensity 12-h rainfall Considered 12-h Annual probability2

rainfall (mm)1 rainfall (mm)

0 No rain 0 – –
1 Light rain 0.1–4.9 5 1
2 Moderate rain 5.0–14.9 15 1
3 Heavy rain 15.0–29.9 30 0.7826
4 Torrential rain 30.0–69.9 70 0.2842
5 Large storm 70.0–139.9 140 0.0517
6 Extreme storm ≥140 240 0.006175

1 Based on China National Standardization Commission (2008);2 based on Sichuan Provincial Central Hydrological Station (1979).

main debris materials are classified as silty gravel or silty
sand (e.g. Chang et al., 2011). The soil-water characteris-
tic curves and permeability functions for similar coarse soils
have been measured earlier (Li et al., 2009a, b). The soil-
water characteristic curves and permeability functions for the
two soil layers in Fig. 8 are assumed with reference to re-
sults of Li et al. (2009a, b) and are shown in Fig. 9. The
saturated coefficients of permeabilityksat for the two lay-
ers are equal to 4.55× 10−5 m s−1 and 4.55× 10−6 m s−1,
respectively. These curves are fitted using the models pro-
posed by Fredlund and Xing (1994). Measurement of the
hydraulic functions for specific soil deposits is needed in
the future. The initial condition was established assuming
a steady state condition subject to a constant rate of rain-
fall equivalent to the average annual rainfall evenly spread
over the year (3.58× 10−8 m s−1). The sliding depth was af-
fected by the ground water table. When the infiltration front
reaches the original ground water table, the water table will
rise. Figure 10 shows the pore water pressure distributions in
a 40◦ infinite slope subject to a sustained rain of 20 mm h−1

in intensity. The initial pore-water pressure is approximately
linearly distributed. During the rainfall infiltration process,
the wetting front advances gradually but the pore-water pres-
sures in the wetted zone are still negative. The groundwater
table rises gradually and is close to the original ground sur-
face after 8 h of rain.

Rahardjo et al. (1995) derived equations for calculating
the factor of safety,Fs, of an infinite slope under different
pore-water pressure conditions in Fig. 8. For the hydrostatic
condition (profilea), Fs was expressed as:

Fs=
c′

γtH sinβcosβ
+

tanφ′

tanβ
(3)

whereβ = slope angle;H = depth of sliding;Hw = depth of
groundwater table;c′ andφ′

= effective cohesion and friction
angle of the soil, respectively;φb

= friction angle related to
the contribution of soil suction to the shear strength;γw and
γsat= unit weight of water and total unit weight of soil, re-
spectively.

0

0.1

0.2

0.3

0.4

0.5

1 10 100 1000
Soil suction (kPa)

V
o

lu
m

et
ric

 w
a

te
r 

co
n

te
n

t 

Loose deposit soil

Original ground soil

 

(a)

1.0E-14

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

0.1 1 10 100 1000
Soil suction (kPa)

C
o

e
ffi

ci
e

n
t o

f p
e

rm
e

a
b

ili
ty

 (
m

/s
)

Loose deposit soil

Original ground soil

 

(b) 

Fig. 9. Soil-water characteristic curves and permeability functions for seepage analysis.  

 

 

Fig. 9. Soil-water characteristic curves and permeability functions
for seepage analysis.

The suction in the shallow soil dissipates as rainwater in-
filtrates. When the wetting front is at a depthzw from the
original ground surface (Fig. 8) and when the suction within
the wetted zone is ignored, the factor of safety along the slid-
ing surface at the wetting front is (profileb)

Fs=
c′

γtH sinβcosβ
+

tanφ′

tanβ
. (4)
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Fig. 10. Change of pore-water pressure with time during rainfall infiltration in a 40 infinite 
slope. 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Change of pore-water pressure with time during rainfall
infiltration in a 40◦ infinite slope.

Equation (4) shows thatFs decreases with the depth of slid-
ing, H . HenceH is taken as the infiltration depth.

When the wetting front reaches the interface between the
loose deposit and the original ground surface, the water pres-
sure will turn into positive and the factor of safety will de-
crease substantially as the groundwater table rises:

Fs=
c′

γtH sinβcosβ
+

tanφ′

tanβ
−

mγw tanφ′

γsattanβ
(5)

wherem = (1−Hw/H) > 0.
The failure probability of each deposit was calculated ac-

cording to Eqs. (3)–(5) using Monte Carlo simulation, as-
suming that the sliding depth is equal to the wetting front
depth. Cohesionc′ and friction angleφ′ for the loose
soil were assumed as two independent normally distributed
random variables. The mean values ofc′ and φ′ were
8 kPa and 32.7◦, respectively, and their coefficients of vari-
ation were 0.32 and 0.14, respectively following Tang and
Zhang (2011). In each analysis, 65 550 pairs of random vari-
ables forc′ andφ′ were generated. The error of calculated
probability of failure would be 7.8 % if the mean probability
of failure is 0.01 (Ang and Tang, 2007).

The stability of the loose deposits is categorized in Fig. 11
in terms of calculated probability of failure according to the
qualitative measures of likelihood proposed by Australian
Geomechanics Society Sub-Committee on Landslide Risk
Management (2000). The qualitative measures provide a
link between qualitative terms and indicative probabilities
(Table 2). The failure of a slope was considered “Almost
certain” if the probability of failurePf >≈ 10−1, “Likely”
if Pf ≈ 10−2, “Possible” if Pf ≈ 10−3, and “Unlikely” if
Pf ≈ 10−4. The regions of “Possible” and “Almost certain”
to fail expanded greatly under the 140 mm/12 h rainfall con-
dition, as shown in Fig. 11e. Under the extreme rainstorm

of 240 mm/12 h, the majority of the “Possible” to fail region
becomes “Almost certain” to fail in Fig. 11f.

It should be noted that the loose deposits often fail locally.
As time goes on, the geometry of the deposits may become
more irregular and the infinite slope assumption will become
less valid.

5.2 Verification of calculated failure probability

To test the reliability analysis results based on the physi-
cal models presented in Sect. 4.1, a comparison was made
between two categories of images: Category 1 – Quick-
bird satellite images taken on 30 May 2008 shortly after the
Wenchuan earthquake and Category 2 – Worldview-2 satel-
lite images taken in 2010 shortly after the 14 August 2010
rainstorm event.

For the loose soil deposits identified from the Category-1
images shown in Fig. 7, the computed average failure proba-
bility of the 305 loose deposits using the physical models is
25.4 % under the 240 mm/12 h rainfall condition, which oc-
curred during the 14 August 2010 rainstorm event. Among
the 305 deposits, 125 deposits belong to the “Almost certain”
category with failure probabilities above 10−1; 91 deposits
fall into the “Likely” category with failure probabilities be-
tween 10−1 and 10−2; 26 deposits in the “Possible” category
and 30 deposits in the “Unlikely” category.

The Category-2 images represent the real cases of rainfall-
induced failures of the loose deposits during the 14 Au-
gust 2010 rainstorm with a rainfall intensity of 240 mm/12 h.
The reactivated loose deposits in this study were identified
according to the newly exposed scars of landslides in the
satellite images. A total of 112 loose failures in the Category-
2 images have been identified by fresh signs of exposed sur-
faces. Those failures were triggered by the 14 August 2010
storm. Shallow failures occurred in 33 % of the 305 loose
deposits. A total of 79 of the 112 rainfall-induced failures
were indeed evaluated as “Almost certain” to occur in the
reliability analysis, with an accuracy of 71 %.

6 Assessment of consequence of landslides

6.1 Estimation of run-out distance

Nicoletti and Sorriso-Valvo (1991) defined the run-out dis-
tance of a landslide as the distance from the topmost point
of the head scarp to the farthest end of the landslide deposit.
The run-out distance of the landslide can be used to deter-
mine the probability of a landslide reaching the elements at
risk and the vulnerability factor. In Fig. 12,L is the run-out
distance,L0 is the projected distance from the landslide scar
to the inside edge of the road, and1L is the travel difference
betweenL andL0, which denotes the distance that the land-
slide debris runs out beyond the inside edge of the road. A
positive value of1L indicates that the landslide debris buries

Nat. Hazards Earth Syst. Sci., 12, 1381–1392, 2012 www.nat-hazards-earth-syst-sci.net/12/1381/2012/
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Fig. 11. Categories of possibility of failure of the loose deposits under six 12-h rainfall scenarios (a: under 5 mm/12 h rainfall;b: under
15 mm/12 h rainfall;c: under 30 mm/12 h rainfall;d: under 70 mm/12 h rainfall;e: under 140 mm/12 h rainfall;f: under 240 mm/12 h
rainfall).

Table 2. Qualitative measures of likelihood (modified from Australian Geomechanics Society Sub-Committee on Landslide Risk
Management, 2000).

Descriptor Description Indicative probability
of failure

Almost certain The slide is expected to occur >≈ 10−1

Likely The slide will probably occur under adverse conditions ≈ 10−2

Possible The slide could probably occur under adverse conditions ≈ 10−3

Unlikely The slide might occur under very adverse circumstances ≈ 10−4

www.nat-hazards-earth-syst-sci.net/12/1381/2012/ Nat. Hazards Earth Syst. Sci., 12, 1381–1392, 2012
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Fig. 12. Run-out distance of landslide debris.  

 

 

Fig. 12. Run-out distance of landslide debris.

the road, whereas a negative1L value reveals that the land-
slide debris does not reach the road and hence will not affect
facilities located along the road at time of the landslide.

Many empirical relationships are widely used to estimate
the run-out distance of landslide materials (e.g. Corominas,
1996; Legros, 2002; Finlay et al., 1999; Hunter and Fell,
2003). The relationship between landslide volume and reach
angle,α (Fig. 12) proposed by Hunter and Fell (2003) was
adopted here, which was established for flow slides in loose
fill slopes:

Hd

L
= 0.67V −0.882 (6)

whereHd is the elevation difference in Fig. 12;V is the land-
slide volume, which can be calculated by multiplying the
depth of sliding surface by the slide area. In this study, it
is assumed that the sliding depth is equal to the depth of wet-
ting front for an infinite slope and the slide area interpreted
from satellite images is constant. The rationale to choose
Eq. (6) is verified by information of six landslides during
the Wenchuan earthquake (Fig. 13). A detailed study of par-
ticle flows observed in a large landslide event is presented
by L. M. Zhang et al. (2011). Equation (6) slightly over-
estimates the value ofHd/L for the type of failures in the
Wenchuan earthquake zone.

6.2 Element at risk and vulnerability factor

The element at risk is taken as the passengers travelling on
the road who may be buried by the landslide debris. The
size of the element at risk relates to the type of vehicles and
the relevant landslides. The scaling is decided by the buried
length of the road. In this paper, road passengers were re-
garded as the only element at risk. Assuming a constant
traffic flow over the road segment concerned, the expected
number of passengers at risk,E, in a landslide event is given
by:
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Fig. 13. An empirical model for predicting run-out distances of loose deposits.  

 

 

Fig. 13. An empirical model for predicting run-out distances of
loose deposits.

E =
WT n

v
(7)

whereT = number of vehicles passing through the road per
second;W = the length of road that is buried by the collapsed
deposit, which can be determined by the width of the loose
deposit; v = design vehicle speed, 40 km h−1; n = average
number of passengers in one vehicle. By counting both the
number of vehicles passing by and the number of passengers
in each vehicle within one hour,n is determined as 2.35. The
expected number of passengers at risk,E, is hence equivalent
to 35 persons km−1.

The vulnerability factor can be defined as the probability
of loss of life. It reflects the level of potential damage, or
degree of loss, of a given element subjected to a landslide of
a given intensity (Fell, 1994). Finlay et al. (1999) proposed
vulnerability factors for several cases. If a vehicle is buried,
the persons in the vehicle will be certain to die; the corre-
sponding vulnerability factor value is then 1.0. According
to the landslide run-out distance analysis results, the vulner-
ability given that a landslide buries the road (i.e.1L > 0),
V(D:T ), is taken as 1.0, considering that vehicles will be com-
pletely buried; namely, the passengers will be buried once
a landslide runs over them (Australian Geomechanics Soci-
ety Sub-Committee on Landslide Risk Management, 2000).
OtherwiseV(D:T ) is taken as 0.

7 Results of quantitative risk analysis

Given the values of conditional probability of failure, the el-
ement at risk and the vulnerability factor for each loose de-
posit, the societal and individual risks in six exclusive rainfall
scenarios can be evaluated based on the respective assess-
ment models, i.e. Eqs. (1) and (2).

The results of the societal risk(R(LOL)) of the loose de-
posits under six rainfall scenarios are listed in Table 3. A total
of 305 loose deposits have been assessed. Based on the run-
out distances, not all the sliding deposits can reach the road.
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Fig. 14. Relationship between 12-hour rainfall and PLL between K1 and K18 (a: 

Annual PLL; b: PLL given the rainfall intensity). 

 

Fig. 14. Relationship between 12-h rainfall and PLL between K1
and K18 (a: Annual PLL;b: PLL given the rainfall intensity).

Hence, not all the deposits can bury the road and the passen-
gers. The loose deposits with zero predicted societal risk are
excluded in Table 3. The most serious cumulative risk from
K1 to K18 is 8.82 under the 30 mm/12 h rainfall condition
followed by 7.48 under the 70 mm/12 h rainfall condition.
These imply that the most serious case happens when the rain
level is 30 mm/12 h (heavy rain) and 70 mm/12 h (torrential
rain) rather than an extreme storm (240 mm/12 h), as shown
in Table 1. The very low rainfall frequency of the extreme
case (240 mm/12 h), as one of the components of conditional
probability, explains such a phenomenon well. The societal
risk can also be graphically presented in the form of poten-
tial loss of life (PLL) (Fig. 14). The annual PLL and PLL
given the rainfall intensity are both used to express the so-
cietal risk. Figure 14a shows that the annual PLL caused
by the 305 loose deposits between K1 and K18 is closely re-
lated to the rainfall frequency. Figure 14b shows the PLL val-
ues at given rainfall intensity values. The increment of risk
is not significant when the rainfall intensity increases from
5 mm/12 h to 15 mm/12 h rain. However, the risk increases
substantially when subject to a rain severer than 30 mm/12 h.
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Fig. 15. F-N curves for K1-K18 shortly after the earthquake in six rainfall scenarios.  

 

 

Fig. 15. F-N curves for K1–K18 shortly after the earthquake in six
rainfall scenarios.

The societal risks of the loose deposits under the six rain-
fall conditions can also be presented in an F-N curve in
Fig. 15. One of the advantages of an F-N curve is that it
provides additional information on the full range of credi-
ble fatal scenarios and the corresponding likelihood of oc-
currence (Wong et al., 1997). The societal risk acceptance
criteria proposed by GEO (1998) were adopted in this paper
as a benchmark, which is suitable for a study area with a ref-
erence toe length of 500 m or smaller (Reeves et al., 1999).
As shown in Fig. 15, the societal risk criteria involve a 3-tier
system, which is the conventional approach incorporating an
unacceptable region, a broadly acceptable region and an “As
Low As Reasonably Practicable (ALARP)” region. The soci-
etal risks of the six rainfall scenarios are mainly located in the
ALARP and unacceptable region. Under the extreme rainfall
condition of 240 mm/12 h, the failure probability is high and
the consequence is very serious, but the annual frequency is
small. Hence, the final risk reflected in the F-N curve is not
the worst. However, the risks of the 30 mm/12 h (torrential
rain) and 70 mm/12 h (heavy rain) rainfall-intensity cases de-
serve more attention. Although the conditional probability
and consequence are not the largest, the annual frequency is
very high compared with the rainfall conditions of 240 and
140 mm/12 h.

The individual risks of the loose deposits are presented
in Fig. 16. GEO (1998) set a maximum allowable individ-
ual risk at 10−5 for new developments and 10−4 for exist-
ing developments. All the individual risk results under dif-
ferent rainfall intensity values in this study are very high.
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Table 3. Results of annual societal risk (R(LOL)) for fatal loose deposit failures under six rainfall scenarios.

Deposit ID 240 mm/12 h 140 mm/12 h 70 mm/12 h 30 mm/12 h 15 mm/12 h 5 mm/12 h

1 0.0009 0.0074 0.0059 0.0044 0.0017 0.0006
2 0.0042 0.0353 0.0457 0.0302 0.0176 0.003
3 0.0041 0.0346 0.0436 0.0293 0.0154 0.0032
4 0.002 0.017 0.0196 0.0128 0.0074 0.0012
5 8×10−5 0.0007 0.0005 0.0003 0.0003 0.0003
6 0.0008 0.0071 0.0056 0.0042 0.0016 0.0006
7 5×10−5 0.0004 0.0003 0.0003 0.0004 0.0003
8 2×10−6 2×10−5 9×10−5 0.0002 0.0002 0.0002
9 0.0013 0.0105 0.0107 0.0073 0.0037 0.0006
10 2×10−6 2×10−5 9×10−5 0.0002 0.0002 0.0002
11 0.0003 0.0025 0.0024 0.0012 0.0008 0.0002
12 0.0022 0.018 0.0208 0.0135 0.0078 0.0013
13 4×10−6 3×10−5 9×10−5 0.0002 0.0002 0.0002
14 2×10−6 2×10−5 0.0001 0.0002 0.0003 0.0002
15 0.0069 0.0576 0.0793 0.0521 0.0296 0.0056
16 0.0006 0.0051 0.0041 0.003 0.0012 0.0004
17 6×10−5 0.0005 0.0004 0.0004 0.0005 0.0004
18 0.0081 0.0674 0.1011 0.0675 0.0389 0.008
19 0.0098 0.0443 0.0422 0.0237 0.0043 0.0024
29 0.0181 0.0341 0.0345 0.0188 0.0048 0.0006
30 0.0126 0.0264 0.0245 0.0157 0.0042 0
31 0.0051 0 0 0 0 0
40 1.83×10−5 0.0045 0.0025 0.0016 0.0006 0
41 0.0079 0.0609 0.0501 0.0308 0.0083 0
42 0.0008 0.0014 0 0 0 0
43 5×10−6 0 0 0 0 0
44 0.0002 0.0003 0 0
45 0.0451 0.0008 0 0 0 0
46 0.002 0 0 0 0 0
47 0.0004 0 0 0 0 0
48 0.0001 0.3326 0.1241 0.77 0.0117 0.0062
49 8×10−6 0.0244 0.0142 0.184 0.0014 0.0004
50 3×10−6 0.0084 0.0041 0.17 0 0
51 6×10−7 0.0022 0.0004 0.1712 0 0
52 9.03×10−8 0.0011 0 0 0 0
54 2.9×10−7 6×10−5 0 0 0 0
56 0.007135 0.0096 0.1266 0 0 0
57 0.004792 0.0136 0.0695 0.0443 0 0
59 0.0152 0.0678 0.0652 0.0461 0.0126 0
60 0.0006 0.0011 0.0003 0 0 0
61 0.0022 0.008 0 0 0 0
62 0.0274 0.1779 0.3404 0.1955 0.1084 0
63 0.0056 0.0609 0.2119 0.002 0.0756 0
64 0.0002 0.0015 0.0023 0 0 0
105 0.0363 0.3141 0.5346 0.6865 0.5193 0.4654
106 0.042 0.4162 0.2651 0.3225 0.1116 0.1
108 0.0377 0.3226 0.6315 0.8423 0 0
110 0.0412 0.3459 1.0165 1.4604 0.3012 0.1452
112 0.0167 0.323 0.0198 0.0194 0 0
113 0.0616 0.5272 1.032 1.3766 0 0
115 0.025 0.2619 0.1292 0.1479 0.0031 0
123 0.0571 0.4882 0.9557 1.2747 0 0
140 0.0008 0.0025 0 0 0 0
141 0.0132 0 0 0 0 0
142 0.0023 3×10−5 0.1251 0 0 0
143 0.002 0.0322 0.0342 0 0 0
144 5×10−5 0.0176 0.0149 0.0443 0.0045 0
179 0.0011 0 0 0 0 0
185 6×10−5 0.0023 0 0 0 0
188 0.0102 0.0358 0 0 0 0
193 0.0013 0.0153 0.1166 0.1935 0 0
244 0.0357 0.0340 0.1095 0.002 0 0
245 0.0002 0.0202 0.0062 0 0 0
249 0.0034 0 0 0 0 0
263 3×10−6 0.2226 0 0 0 0

Sum 0.58 4.50 7.48 8.82 2.27 1.82
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Fig. 16. Individual risk of the loose deposits between K1 and K18 shortly after the 

earthquake.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Individual risk of the loose deposits between K1 and K18
shortly after the earthquake.

Especially in the cases of 30 mm/12 h and 70 mm/12 h rain-
fall scenarios, the annual individual risks reach 0.05 and
0.04, respectively. Figures 15 and 16 represent the risk pro-
file shortly after the earthquake. Indeed, the risk level is
very high, which is not surprising, referring to the landscape
shown in Figs. 5–7. Four methods to mitigate the high risks
would be to: (1) change the highway alignment or use tun-
nels to avoid the hazardous deposits; (2) strengthen the high-
risk slopes and construct rockfall barriers; (3) remove the
deposits distributed in the gullies and construct debris-flow
check dams and drainage channels in the gullies; and (4) im-
plement a warning system to reduce the elements at risk in
case of slope failures.

8 Limitations

Some assumptions and limitations in the analysis of the risks
of rainfall-induced landslides should be noted: (1) the loose
deposits were assumed as infinite slopes for reliability anal-
ysis; (2) the run-out distance was computed based on an em-
pirical equation without considering local special topography
conditions; (3) the soil parameters for each deposit may vary
and extensive soil testing in the study area was required.

In this paper, only the risks of human life due to rain-
induced landslides were assessed. Assessment of economic
losses and cost-benefit analyses are also of significance to
the road re-construction and decision-making. The assess-
ment of the risks of debris flows and other types of hazards
should also be conducted in the future.

9 Conclusions

This study attempts to estimate the risks of 305 loose de-
posits in a quantitative manner under six rainfall scenarios.
The outcomes of the slope reliability analysis combined with
the findings of vulnerability and elements of risk enable the

estimation of the societal and individual risks. The following
conclusions can be drawn:

1. A GIS platform was used to identify hazardous loose
deposits based on the Qiuckbird satellite images taken
on 30 May 2008 shortly after the Wenchuan earthquake.
A total of 305 loose deposits distributed along PR303
from K1 to K18 in 27 catchments have been identified.
The slope gradients ranged from 6◦ to 48◦ and the total
volume of these 305 loose deposits was approximately
4.0× 107 m3.

2. Physically based slope stability analysis and Monte
Carlo simulation were used to compute the failure prob-
abilities of the loose soil deposits under six rainfall sce-
narios. The reliability analysis results were tested us-
ing observed performance of these loose deposits dur-
ing the 14 August 2010 storm. A total of 112 failures
were triggered by the storm, accounting for 33 % of the
total number of loose deposits. Seventy-nine of the 112
rainfall-induced failures were indeed evaluated as “Al-
most certain” to occur in the reliability analysis, with an
accuracy of 71 %.

3. The risks posed to passengers in K1–K18 along
PR303 have been evaluated. Both the annual soci-
etal and individual risks under the conditions of heavy
rain (30 mm/12 h) and torrential rain (70 mm/12 h) are
higher than those under the other four rain scenarios.
Under the extreme rainfall condition of 240 mm/12 h,
the failure probability is high and the consequence is
very serious. However, the annual frequency is small;
hence the final risk reflected in the F-N curve is not the
worst. The high risk level of rainfall induced failures
along PR303 reveals quantitatively the adverse impact
of the Wenchuan earthquake.
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