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Abstract. In this paper, we present a methodological ap-
proach based on a comparative analysis of floods that oc-
curred in a wide region over a long period and the climatic
data characterising the same period, focusing on the cli-
mate trend. The method simplifies the comparative analy-
sis of several time series by defining some indexes (e.g. the
monthly, bi-monthly, and . . .m-monthly indexes of precipi-
tation, temperature, wet days and precipitation intensity and
the monthly flood number) that can be used to study phe-
nomena such as floods that are characterised by spatial and
temporal variability. The analysis was used to investigate the
potential effect of climate variation on the damaging floods
trend.

The approach was tested for the Calabria region (Italy) us-
ing historical flood and climatic data from 1880 to 2007. The
results showed that the number of floods was correlated with
the monthly indexes of precipitation, wet days, and daily pre-
cipitation intensity. The following trends were recognised:
decreasing precipitation and wet days, almost constant pre-
cipitation intensity, increasing temperature, and linearly in-
creasing floods. A second-order polynomial trend analysis
showed a slight decrease in floods since the seventies, which
might be explained by the favourable climatic conditions dur-
ing the period and/or the effect of increasing awareness of
flood vulnerability.

1 Introduction

The relationship between extreme meteorological events and
climate changes is a challenging issue for scientists, espe-
cially considering the damaging effects that these extreme
events can produce. Climate change is often viewed as the
cause of the increases in both the frequency and magnitude
of damaging effects resulting from such events (EEA, 2008).

Other studies have concluded that societal change and eco-
nomic development were the principal factors responsible for
the increasing losses from natural disasters to date (Pielke et
al., 2008; Barredo, 2009, 2010). Finally, a third point of view
is that a combination of climate change and societal factors
has led to an increase in total damage, in particular damage
caused by floods, and the increase in damage is associated
with increased precipitation, population and wealth (Pielke
and Downton, 2000).

Since the beginning of the 20th century, precipitation has
been increasing by about 1 % per decade over most mid-
and high-latitude regions of the continental Northern Hemi-
sphere. Still, in the second half of the century, there was a 2–
4 % increase in the frequency of heavy precipitation (IPCC,
2001). In Europe, the percentage of winter rainfall appears
to have increased mainly due to the increasing frequency of
extremely wet seasons. These effects decrease from northern
Europe to the Mediterranean basin. In particular, the Italian
climate is becoming warmer and drier due to a reduction in
both annual precipitation and wet days (Brunetti et al., 2004,
2006).

In the context of climate change, it is important to analyse
both the frequency and the characteristics of Damaging Hy-
drogeological Events (DHEs), which are defined as episodes
of severe weather conditions with heavy rainfall and strong
winds (Petrucci et al., 2009, 2010a). During these events, a
series of damaging phenomena such as landslides, floods, sea
storms, and strong winds can cause human injuries, deaths,
and economic damage in almost all economic frameworks
and in a wide variety of climatic environments.

The present study is part of wider research that aims to
analyse, in the context of climate change, the historical se-
ries of DHEs (Petrucci et al., 2009) or particularly dam-
aging phenomena that occur during DHEs such as land-
slides (Polemio and Petrucci, 2010). We have focused on
floods, particularly on flood disasters that are the result of the
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interaction between abnormally high water levels of a river or
torrent and societal systems, as defined by Barredo (2009).

In populated areas, floods can kill or injure people
(Antoine et al., 2001; Jonkman and Kelman, 2005; Ruin et
al., 2008; Llasat, 2009; Polemio, 2010), cause severe eco-
nomic losses (Merz et al., 2010), and damage road networks
(Vinet, 2008) and residential buildings (Elmer et al., 2010).
Floods are a difficult problem in regions where, because of
either widespread economic activity or scarcity of flat ar-
eas, human settlements have developed on river plains with
subsequent expansion dangerously close to flood-prone ar-
eas. Along the river banks the areas of flood expansion be-
come progressively narrower while the amount of people and
goods exposed to floods increases. In these situations, flood
disasters are more likely to occur (Petrucci and Polemio,
2007; Barredo, 2009; Lara et al., 2010), and the damage
trend over time depends on both climate change and urban
development. Environmental degradation can be a secondary
effect of economic development because expansion of hu-
man settlement without planning and sustainable resource
management can increase vulnerability to floods and exacer-
bate their impact (Gupta et al., 2003). In addition, some hu-
man modifications might actually increase the long-run vul-
nerability; levees, for example, are intended to prevent dam-
age from a flood of a stated magnitude, but when they over-
flow, the severity of flood disasters actually increases (White
et al., 2001).

Depending on the data and methods used, four main ap-
proaches can be applied to investigate the relationship be-
tween floods and climate: the palaeo-approach, the quantita-
tive approach, the historical approach, and the time series ap-
proach. Numerous studies have been conducted using either
one or a combination of these approaches, as in this paper
(previous experiences are cited describing each approach).

Thepalaeo-approachanalyses palaeo-floods in relation to
past climatic conditions. This approach considers the obser-
vation of peak discharge frequency and levels and focuses on
natural and anthropogenic modifications, thus assessing the
actual role of climate change (Benito et al., 2003; Ortega and
Garźon, 2009).

The quantitative approachis based on mathematical or
numerical one-dimensional to three-dimensional techniques
for flow simulation in natural rivers and channels, based on
different types of topographical, geomorphological, and hy-
draulic data (Cunge et al., 1980; Herget and Meurs, 2010;
Ortega and Garźon, 2009; Polemio, 2010). The basic pur-
pose is to quantify the peak water height, the discharge yield
and/or the submerged area during a selected flood. Depend-
ing on the results, the so-called stage-damage curves can be
set and used to estimate the damage according to the inunda-
tion depth (EMA, 2002).

The historical approachis based on flood data obtained
from different information sources such as newspapers, his-
torical documents, maps, epigraphic markers on historic
buildings, etchings, paintings, scientific articles, books, and

documentation available in the archives of public agencies.
This approach has two main purposes: (a) to obtain data
concerning rivers or torrents that lack instrumental data; and
(b) to expand the observation period of instrumented rivers
to the pre-measurement epoch, to improve the assessment
of flood recurrence and trend (Benito et al., 2003; Herget
and Meurs, 2010; Petrucci and Polemio, 2009; Polemio,
2010; Schmocker-Fackel and Naef, 2010). In cases where
the river flow is extremely variable, discontinuous or spo-
radic, as widely observed in many Mediterranean areas and
other world regions, the time series of river discharge yield
or water height are generally unavailable for long periods
and/or large areas. In these cases, the historical approach
is extremely useful, if not mandatory.

The time series approachis based on the statistical analy-
sis of data concerning river discharge and climatic data, such
as rainfall and temperature, performed using different sta-
tistical methods (Box and Jenkins, 1994; Goovaerts, 1997).
Climatic data are used: (a) as a proxy for hydrological river
data if such data are unavailable or show low frequency, spa-
tial density, or quality, and (b) to analyse the effects of cli-
mate change on river discharge (Hannaford and Marsh, 2008;
Brissette et al., 2003; Saint-Laurent et al., 2009). This ap-
proach can be applied from the 19th century to the present,
according to the beginning of gauge networks in the majority
of countries.

In this article, we present a methodology that uses both the
historical and time series approaches and then we report the
results of an application of the methodology that compared
floods and rainfall trends in a study area in Southern Italy.

2 Methodological approach

The approach is based on the comparative analysis of a flood
database and a climate database. The floods occurred over
a long period, and the climate data characterising the same
period were cross-checked to assess the effects, if any, of
climatic trend on flood occurrence.

In the following sections, the characteristics of the two
databases are briefly described, and the assumptions that
needed to be made to perform the analyses are outlined. Fi-
nally, the steps for the comparative analyses of the databases
are described.

2.1 The flood database

Historical hydrology is a well-defined research field that
can provide data concerning floods that occurred in the pre-
instrumental period (Glaser and Stangl, 2003; Llasat et al.,
2005; Bŕazdil and Kundzewicz, 2006; Adhikari et al., 2010).
Knowing the long-term data series of past floods, the statis-
tical analysis of return periods, frequency, seasonality and
severity of floods can be improved (Agasse, 2003; Bartl et
al., 2009), thus contributing to the assessment of the role of
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climatic variability on floods (Seidel et al., 2009). Based on
descriptions available in the historical data, past floods can be
classified according to scales expressing their relative mag-
nitude (Barriendos Vallve and Martin Vide, 1998; Benito et
al., 2004; Mudelsee et al., 2004; Rohr, 2006; Copien et al.,
2008). This can be helpful in ungauged basins for which in-
strumental data are unavailable. Moreover, historical hydrol-
ogy can gather data on extremely exceptional floods (Bartl et
al., 2009; Balasch et al., 2010), which are difficult to anal-
yse directly, because their recurrence period is longer than a
human lifetime (Naulet et al., 2005).

Qualitative and quantitative analysis of flood variability
over a period of centuries can include investigation of the
driving climatic causes (Benito et al., 2003; Glaser and
Stangl, 2004; Glaser et al., 2010), and specific floods can
be studied to individuate the typical flood-generating atmo-
spheric conditions (B̈ohm and Wetzel, 2006; Seidel et al.,
2009). Comparative analysis of past and present monthly dis-
tribution of floods can be performed to detect both the pres-
ence of trends in the flood series (Benito et al., 2004; Glaser
et al., 2010) and the changes in flood risk over the centuries
(Mudelsee et al., 2004).

Even though historical data represent the only information
available concerning floods that occurred in both ungauged
and gauged basins during the pre-instrumental periods and
can be used to estimate peak discharge, there are some limi-
tations which have to be taken into account:

– The entire procedure is time consuming, and the re-
search can never be considered complete because some
archives may be inaccessible and others may have been
affected by accidental document losses.

– Gaps may occur, generally affecting the oldest periods
of the series and characterised by either a minor number
of sources or a minor diffusion of information. Thus, an
underestimation of the number of floods could affect the
oldest periods. Other gaps could affect phenomena that
occurred in unpopulated areas and did not induce dam-
age; these may not be recorded because most sources
provide more information on the damage than on the
phenomena that caused it.

– The area actually affected is not exactly delimitable be-
cause, unless the document is a scientific article or a de-
tailed technical report, maps of the impacted area are
not supplied, even if details about the rivers affected
and the points (place names) where flood damage oc-
curred are frequently available. On a regional scale,
to obtain a synoptic view of flood effects for compar-
ison with climatic data, the basic geographical unit can
be the municipal area. Actually, the effects of floods
are cancelled by vegetation growth with the passing of
seasons, and then only surveys conducted shortly after
the flood can supply a delimitation of the impacted ar-
eas. Therefore, for investigation of floods that occurred

many years ago, for periods in which aerial photogra-
phy and satellite imaging technology were not yet de-
veloped, the municipal level of localisation should be
considered acceptable, even if it is less than ideal.

To establish a flood database, the steps listed in Table 1 must
be performed. Such a database can have several uses for
the study of both flood processes and their impacts. For
the present work, an index, called the Monthly Flood (MF),
is defined as the total number of flood occurrences in each
month; MF is used to characterise both the monthly recur-
rence and the spatial pattern of floods. Starting from monthly
data, seasonal, annual, and/or multi-annual analyses can be
realised (Benito et al., 2003).

2.2 The climate database: data, elaborations, and
cross-analysis with the flood database

The assessment of the effects of climate variability on flood
trend is based on the time series of monthly rainfall, the num-
ber of wet days, and temperature data. These data are freely
available worldwide, with differences in length, density, and
accuracy.

For the purposes of the present research, the analysis of
climatic monthly data should be preferable with respect to
those of shorter duration such as daily or hourly data. The
use of daily data presents limitations which have to be taken
into account, and these limitations are worse in the case of
hourly data:

– Monthly rainfall data generally provide the maximum
spatial density and largest observation period compared
with daily data (e.g. in our database, the availability of
data decreases from 128 to 70 solar years for monthly
and daily data, respectively). In some regions, daily data
are available only for short periods and/or a few gauges.

– Compared with monthly data, a database of daily data
is about 30 times greater, and data processing is more
complex and time consuming.

– The test of trend requires that both cyclic effects (e.g.
seasonality) and autocorrelation are removed from the
time series. If annual data are used, as in the proposed
approach, the former condition is almost guaranteed.
The use of daily data for annual trend analysis is not
necessary.

– The use of monthly data represents a simple but neces-
sary solution to the uncertainty affecting the exact time
in which historical floods were observed. On a monthly
basis, cross-analysis is possible.

The use of monthly data should be considered a disadvantage
for those areas where floods are triggered by short-duration
rainfall (a day or some hours). In these cases, the trend of
short-duration rainfall should be taken into account in the
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Table 1. Main steps in the creation of the historical database concerning floods (Petrucci and Pasqua, 2008; Polemio and Petrucci, 2010).

Activities Steps

Data gathering

1. Analysis of existing databases
2. Selection of archives to look through
3. Planning historical research
4. Performing data collection

Historical database construction
1. Conversion of historical documents into text files
2. Disaggregation of data according to damaged sites
3. Chronological sorting of data

discussion of the effects of climate trend on flood occurrence.
If a short-duration rainfall trend has not been described by
previous studies, the changes of short-duration rainfall, either
in terms of frequency distribution or exceptionality of an-
nual peak values, should be analysed using the traditional ap-
proach of extreme value characterisation (Jenkinson, 1955).
Since the time series of short-duration rainfall are generally
shorter than climate monthly time series, the former trends
will be qualitatively comparable with the latter trends.

The homogeneity of the selected climatic time series
should be tested using the Craddock test or similar proce-
dures (Craddock, 1979), and non-homogeneous data should
be discarded. The time series or gauge location and num-
ber should be selected to obtain the maximum (or at least a
sufficient) gauge density and spatial continuity, primarily of
rainfall and secondarily of temperature, covering the largest
period possible with the lowest number of data gaps.

A day with precipitation≥1 mm is defined as a wet day. If
the time series of monthly wet days (D) is unpublished, the
time series of daily precipitation (P) can be used to calcu-
late D. The precipitation intensity (I ) can be calculated as
the average rain amount per wet day (e.g. if the rainfall of a
month is equal to 44.4 mm and the number of wet days is 11,
in that month the precipitation intensity is 4.0 mm day−1).

P , D, andI describe characteristics of rainfall amount and
distribution and so can be described asrainfall indexes.

The effects of temperature (T ) variability on runoff in-
crease from humid to arid climates and change from season
to season. For this reason, it is useful to define the type of cli-
mate and the characteristics of the climatic regime. TheP ,
D, I , andT regimes can be compared to the flood regime, as
described below.

To assess the precipitation variability in the region, the
monthly precipitation index IP1(x,y) can be calculated for
each month using Eq. (1):

IP1(x,y) =

∑n
i=1MPi(x,y)∑n
i=1AMPi(x)

100−100 (1)

wherex indicates the month (x = 1,2,..., to 12, starting from
the first month of the hydrological year),y is the year (start-
ing from the beginning of the monitoring period), MPi is
the monthly precipitation at gaugei of the month(x,y) and

AMPi is the average monthly precipitation of monthx at
gaugei, with i = 1,2,...,n, wheren is the number of avail-
able gauges in the month(x,y).

Similarly, the monthly, bi-monthly, tri-monthly, and . . .
m-monthly indexes IP1(x,y), IP2(x,y), . . . , IPm(x,y), with
m = 1,2,...,12, can be defined using Eq. (2):

IPm(x,y) =

∑z
j=z−m

∑n
i=1MPi,j (x,y)∑z

j=z−m

∑n
i=1AMPi,j (x)

100−100 (2)

wherez is the position number of the months, in progressive
order, starting from the first month of the first hydrological
year and IPm(x,y) are rainfall values observed in the month
z and in them−1 previous months, wherem is the duration
of the considered index. Using this dimensionless index, a
unique precipitation time series can be applied to the whole
region. Defined based on monthly duration, the index dura-
tion should extend 12 months at least. IP12(12,y) accounts
for the rainfall values observed during the whole hydrologi-
cal yeary, so it can be defined as IP(y), the yearly precipita-
tion index of the yeary.

Thanks to the IPm(x,y) definition, occasional gaps in sin-
gle rainfall time series do not create difficulties in the method
application and do not require approximations or missing
data extrapolations. Because MPi(x,y) is positive or equal to
zero, the IPm(x,y) minimum value ranges from a theoretical
−100, due to no rainfall at each of the availablen gauges in
the selectedm-month period, to an undefined positive value
that can be reached due to exceptional rainfall events that
occurred during the selectedm months. Negative values of
IPm(x,y) indicate that the rainfall was lower than average
over the whole area, while positive values indicate the con-
trary. The range should become narrower asm increases;
this effect is due to the minimum increase and (especially)
the maximum decrease of IPm(x,y).

Similar indexes ITm(x,y), IDm(x,y), and IIm(x,y) can be
defined for the parametersT , D, andI .

The interpretations of the range and variability of
IDm(x,y) and IIm(x,y) should be similar to the interpreta-
tions of IPm(x,y). Because the monthly temperature can be
negative, and the variability is different and lower than the
monthly rainfall parameters, the ITm(x,y) range should be
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the narrowest and almost symmetrical with respect to zero,
whatever value ofm is considered.

If MF(x,y) is the monthly flood number recorded during
the month(x,y), then IFm(x,y), the m-monthly index of
flood occurrence, is assessed using the Eq. (3):

IFm(x,y) =

∑z
j=z−m

∑n
i=1MFi,j (x,y)∑z

j=z−m

∑n
i=1AMFi,j (x)

100−100 (3)

where AMFi is the Average Monthly number of Floods of
the monthx in the celli, with i = 1,2,...,n, wheren is the
number of cells into which the study area is divided. The
total AMFi(x), for i = 1,2,...,n, calculated for each month,
defines the flood regime.

The interpretation of the range and variability of IFm(x,y)

is similar for IPm(x,y), even if the range should be much
wider, due to the effects of peak values of each time series.

The five groups of indexes (IF, IP, IT, ID, and II) permit
the comparison of flood variability with climate variability
throughout the time period, considering durations ranging
from one month to a whole hydrological year. Trend and
cross-correlation analyses should be the basic methods used
to analyse these time series (Brockwell and Davis, 1987).

The simplest way to quantify the trend slope is to use
(straight) linear regression analysis. Linear regression pro-
vides an estimation of the trend slope (the slope, or angu-
lar coefficienta, can be calculated by least square linear fit-
ting) and confidence interval, and it quantifies the goodness
of fit, even if it is greatly affected by both outliers and cyclic
data. To solve these uncertainties, the statistical reliability
of detected trends should be tested; an affordable choice is
to use the non-parametric Mann–Kendall test (Mann, 1945;
Kendall, 1975; Hirsch et al., 1982, Polemio and Casarano,
2008; Wahlin and Grimwall, 2010). If the quantitative as-
sessment of the slope trend is particularly relevant, the Sen
method should be used (Thiel, 1950; Sen, 1968).

3 The Calabria case study

Calabria, the southern-most Italian region (Fig. 1), is a penin-
sula with a surface of 15 230 km2, a perimeter of 738 km,
and mean and maximum altitudes of 418 and 2266 m above
sea level, respectively. Almost 90 % of the regional territory
shows topographic relief, and 10 % is represented by coastal
and fluvial plains; 93.5 % of the region is lower than 1300
m a.s.l. From an administrative point of view, the region
is divided into five provinces and 409 municipalities. The
population density (133 inh km−2) is lower than the national
value (198 inh km−2) (ISTAT, 2003).

The region is made up of a stack of allochthonous terrains
(from Palaeozoic to Jurassic), composed of crystalline rocks
(mainly gneiss and granite) that were derived from both con-
tinental and oceanic crusts and stacked during the middle
Miocene (Tortorici, 1982) over the carbonate units of north-
ern Calabria (Ogniben, 1973). During the emplacement of

Fig. 1. Digital elevation model of the Calabria region and its loca-
tion on the Italian peninsula.

terrains and onwards, the Neogene’s tectonic melange and
flysch built a substratum that underwent extension because
of uplift that began in the Quaternary and is still active. The
rapid neo-tectonic uplifting shaped the form of the region,
which looks like a platform with a round-shaped summit
bounded by steep flanks. This shape led to the creation of
a river network mainly made of ephemeral streams, named
fiumara, widely observed in southern Italy. Actually, 55 %
of the regional area is covered by fiumara basins (less ex-
tended than 200 km2), while 45 % is occupied by both the
main basin of the region, named Crati River (2440 km2, 16 %
of the regional surface) and other eight major basins.

Larger rivers rise from the innermost and highest reliefs
of the region, while fiumaras originate from the steep flanks
of regional reliefs and reach the sea along steep, short and
narrow paths which enlarge abruptly when they reach the
coastal plan, where they create wide, anastomosed river beds.
These beds can be wider than one kilometre: during summer
they can be completely dry, but the major floods can flow
through the entire section, re-distributing the bed load and
changing the geometry of the channels’ network (Viparelli,
1972). Due to its high neo-tectonic uplift (1000 m) (Ibbeken
and Schleyer, 1991), in fact, Calabria is a powerful source of
sediments: both erosion processes and landslides represent
the sources of the huge amount of debris transported by ma-
jor floods. The active section of the river frequently changes
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its position as an effect of floods. Because of the seasonal
migration of river channels through the river bed, it is almost
impossible to install a gauge that works properly, and then
discharge data are unavailable.

Because of the mountainous morphology of the region,
the population density is lower in the mountainous munic-
ipalities and higher in the coastal and river plains, where
major cities, transport facilities, agricultural and industrial
settlements have been settled. The high density of vulner-
able elements in the narrow river and coastal plains, just in
the places where fiumara floods concentrate their destructive
power, amplifies the relevance of this research.

3.1 The FLO-Cal database

A part of the data concerning floods were obtained from
ASICal (Aree Storicamente Inondate in Calabria, 2010), a
database of landslides and floods that occurred in Calabria
during the past centuries. To fill some space/time gaps in the
series, further historical studies were conducted. In this way,
a new database, called FLO-Cal, which contains the floods
that occurred in Calabria between September 1880 and Au-
gust 2007, was created.

The data were collected by hydrological years (from
1 September to 31 August), which were conventionally
named as the solar year that began with September (i.e.
the hydrological year 1924 spans the time from 1 Septem-
ber 1924 to 31 August 1925). FLO-Cal records were sorted
chronologically and by municipality, with each record corre-
sponding to a flood event affecting a certain municipality on
a certain date.

FLO-Cal contains 2173 records concerning floods that oc-
curred in the analysed 127 yr (1880–2007). Because of the
type of historical documents from which the data were col-
lected (mostly reimbursement requests and newspaper arti-
cles), FLO-Cal is sufficiently reliable and mainly includes
floods that caused damage. Basically, because of both the
regional distribution of vulnerable elements and the river
network characteristics, flood damage affected the terminal
portion of both fiumaras and rivers. Damaged elements are
mainly: (a) towns and seaside villages; (b) main regional
roads and railways, which run close to the coast due to the
mountainous regional characteristics, thus crossing all the
rivers in their terminal reach; (c) cultivated fields and rural
settlements established in these relatively large plains near
the riverbed in order to easily catch water for irrigation pur-
poses.

The mean number of floods per year was 17, and the max-
imum number of floods was recorded in the hydrological
year 1953 (177 cases, 8 % of the total number of records)
(Fig. 2a). For the first decades of the series (Fig. 2b), the
scarcity of data may have been related to the low number of
information sources available in that period. For 8 yr (6 % of
the total number of analysed years), no flood data were avail-
able, and in 11 yr (9 %), the number of floods recorded was

1. When the study period was divided into decades (Fig. 2b),
the mean number of floods per decade was 167, and the high-
est number of cases (506 cases, 23 %) was recorded in the
decade 1951–1960, during which three severe DHEs affected
Calabria (Petrucci et al., 2009). The minimum number of
floods occurred in the decade 1880–1890 (17 cases, 1 %).

The total number of floods recorded in each municipal-
ity was used to perform a basic spatial analysis (Fig. 3a).
The highest values were found for municipalities located in
north-eastern Calabria, along the Sibari plain. This is the
widest plain in Calabria; it was created by sedimentation of
the Crati River and adjacent fiumaras and it is intensively
used for agricultural purposes. The presence of both valuable
cultivations and urban settlements ensured the recording of a
long series of damaging floods.

In 127 yr, the mean number of floods per municipality was
5; a low number of municipalities (13 % of the total) had
no floods in the study period, while the majority of munici-
palities (80 %) had a mean number of floods between 1 and
15. The maximum number of floods per municipality was
83, which occurred in Reggio Calabria (the red area on the
SW coastal sector of the region): here, flood damage was
caused by fiumaras: eleven of this kind of river pass through
the municipalities and nine cross the town. Historical data
concerning major floods describe cases in which, because of
the bed load, “first floors of the houses became basements”.

The municipality map of flood recurrence can be obtained
from Fig. 3a, by dividing the class values of the legend by
127 yr (the study period duration). The highest recurrence
value was 0.65 floods yr−1, or 1 flood every 1.53 yr; the mean
recurrence value was 0.04 floods yr−1. The maximum to-
tal number of floods and recurrence values were mainly ob-
served in coastal areas.

When the density of total flood numbers per municipality
was considered (0, 15, and 287 floods× 100 km−2 were the
minimum, mean, and peak values, respectively), it was evi-
dent that the municipality areas had only secondary effects on
the spatial distribution of the flood number (Fig. 3b). In the
inland and mountainous municipalities, which generally had
lower population densities, the total number of floods was
low; a slight increase was observed along the southeast sec-
tor of the region. The total flood number per population den-
sity (Fig. 3c) (0, 6, and 63 floods× 100 km2 inhabitants−1

were the minimum, mean, and peak values, respectively) data
showed that the region appeared to be almost homogeneous
and dominated by classes with significant values of floods per
population density. More generally, the highest number of
cases were recorded in the densely populated municipalities
located near the coasts, especially at the mouths of rivers, as
highlighted in previous studies (Petrucci and Pasqua, 2008;
Petrucci et al., 2010b).

On a monthly basis, November was characterised by the
greatest amount of floods (22.1 %), followed by October
(17.8 %) and December (16.5 %), while the lowest value
(0.9 %) pertains to July. On a seasonal basis, the highest
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Fig. 2. Number of flood data and annual distribution.(A): number of flood data collected for each year of the study period.(B): Data
distribution per decade.

percentages of data concerns autumn (46 %), followed by
winter (39 %) spring (11 %) and summer (3 %).

Analysing the flood occurrences in terms of frontal anal-
ysis, the hydro-climatological patterns which triggered the
severest cases were individuated. A wide majority of cases
were caused by the persistent effects of perturbations pre-
ceded by the appearance of low-pressure fields in two differ-
ent areas located westwards of the region (Hirschboeck et al.,
2000; Petrucci and Polemio, 2009). The former low-pressure
was generally located in north-western Africa, Spain or be-
tween these areas, while the latter was located northward, in
an area bounded by the western Mediterranean Sea, France,
Spain or the northern Atlantic. The former barometric de-
pression ensured the inflow of African masses of warm air,
while the latter permitted the inflow of very cold air masses.
In this way, approximately at the centre of the Mediterranean,
a cold front met a warm one, causing strong and lasting
storms. These results were obtained by studying the damag-
ing hydrogeological events that occurred from 1921 to 2005,
for which all necessary data were available (Petrucci and
Polemio, 2009). This study was continued, enlarging the
study period and including a series of climatic variables to
highlight the existence of climatic modifications on flood oc-
currence.

3.2 The CLIMATE-CAL database

Starting from an existing climatic database created to study
the climate change in southern Italy (Polemio and Casarano,
2008), a climatic database for Calabria, named CLIMATE-
Cal, was built. CLIMATE-Cal has collected monthly time
series of both rainfall and temperature since 1821 and con-
tains the monthly and daily data for 263 Calabria gauges
(155 daily time series). Eliminating non-homogeneous data,
65 gauges were selected from CLIMATE-Cal to provide re-
liable elevation coverage of the study area (between 3 and
1300 m a.s.l.) for the period 1880–2007. In this way, both
adequate gauge density and spatial continuity were obtained
(mainly for rainfall and secondly for temperature) for a long
portion of the study period (Fig. 4); the minimum, mean, and
peak values of annual number of available gauges were re-
spectively equal to 5 (observed sometime in the first thirty
years), 45, and 65. Forty-five of the selected gauges (located
at altitudes between 5 and 1300 m a.s.l.) were also equipped
for temperature measurement. Precipitation, wet days, and
temperature data published by public institutions were used
to cover the period from 1880 to 2007 (the main source of
data was the Calabria Region Office). The temperature data
suffered some gaps from 1907 to 1920 and for 18 months
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Fig. 3. Maps of total municipality flood number.(A) Total number of floods (TNF);(B) density: TNF divided by municipality area (TNF
100 km−2); (C) TNF per population density (TNF 100 km2 inhabitants−1).

during the period 1975 to 1982. Until 1919, the institutions
publishing data used to define a wet day as a day in which
precipitation was greater than zero (hereinafter, the number
of wet days concerning that period is termedDold); since
1920, the standard definition has been used.

To remove the effect of this non-homogeneity, a daily pre-
cipitation dataset of 155 time series (from 1921 to 1990) was
used, and for each month/gauge,D andDold were assessed.
A monthly linear multiple regression was defined by setting
P andDold as independent variables andD as the dependent
variable (regression coefficient equal to 0.99), thus assessing
a preliminary value ofD for the period 1880 to 1919. The
next step was a logical validation, taking into account thatD,
in each month, should be either≤ Dold and either less than
or equal to the integerP (mm).

Using the selected time series, the climate in Calabria ap-
peared to be typically Mediterranean, characterised by hot
dry summers and long wet periods that occurred both in au-
tumn and winter and could last until the early spring (Fig. 5).
The mean annual precipitation ranged from 495 to 1775 mm,
and the regional spatial average was about 1100 mm. The
spatial variability of precipitation was mainly due to the alti-
tude effect (Figs. 1 and 4) and secondly to the distance from
the western coast; at equal altitudes, the precipitation was
higher on the western side because the main perturbations
generally moved from west to east (Petrucci and Polemio,
2009). The annual mean forD ranged from 51 to 110 (86
was the regional average), while forI it ranged from 7.2 to
15.9 mm day−1 (11.2 mm day−1 was the regional average),

and forT it ranged from 8.9 to 18.3◦C (15.7◦C was the re-
gional average). The spatial variability of these variables was
mainly correlated with the altitude. The effect of meteorolog-
ical frontal systems on annual spatial distributions of rainfall
characteristics, in terms ofP , D andI , seems relevant.

In the region, theP regime was almost homogeneous;
rainfall started to increase from September up to the monthly
maximum in December, and then decreased; minimum rain-
fall was recorded in July (Fig. 5). Similar trends were ob-
served forD and I ; for I the maximum was observed in
November. On the other hand,T decreased from Septem-
ber to the minimum in January and then increased up to the
August peak.

The ranges of the rainfall indexes (P , D, and I ) were
fairly similar: the minimum varied from−55 to −34, the
peak ranged from 45 to 50, and the range varied from 83 to
104. The yearly index ofT was narrower as it varied from
−6 to 12 (range equal to 18). Due to the frequent occurrence
of both single-flood years and years with hundreds of floods,
the range of IF was one order of magnitude greater than the
rainfall indexes. Figure 6 shows the yearly time series ofF

and climate indexes and their linear trends. TheF trend was
positive (the angular coefficient of the straight regression line
trend,aF , was 0.188); the trend was statistically extremely
significant (p < 0.001) on the basis of the Mann-Kendall test.
A second-order polynomial trend line highlighted two dif-
ferent trends: from 1880 to 1971 the trend increased and
thereafter the slope slightly decreased until 2007.
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Fig. 4. Map of selected gauges (dots) and contour lines of the mean annual values of precipitation (A, mm), wet days(B), precipitation
intensity (C, mm day−1), and temperature (D, ◦C).
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cipitation intensity (I ), and temperature (T ).

The IP trend slightly decreased throughout the period (aIP
was−0.062) even if it showed a low statistical significance
(p < 0.1). The II trend was almost constant and not statisti-
cally significant, while the ID trend was decreasing (aID was
equal to−0.105) and statistically significant (p < 0.05).

Presently, it is well known that the temperature trend is
increasing on both regional and global scales, so it is not
surprising that the IT trend was positive (aIT was 0.024).
The detected temperature trend was statistically significant
(p < 0.05).

Previous research has highlighted that the decreasing rain-
fall trend of the period from autumn to winter, in which the
floods were concentrated, was higher than the annual trend
(Brunetti et al., 2004; Polemio and Casarano; 2008; Polemio
and Petrucci, 2010). The availability of rainfall for runoff,

in terms of actual rainfall, was further reduced because of
the increasing evapotranspiration due to the positive trend of
temperature observed in each season.

The trend of daily rainfall in Calabria for the period 1923–
2006 was discussed by Brunetti et al. (2011) and the annual
trend of high-daily rainfall classes (percentiles 90, 95, and
99 %) was statistically significant and very negative or de-
creasing (in some areas the decrease in these classes was
greater than 20 % throughout the whole period). The an-
nual trend of low-daily rainfall classes was positive, even
if statistically significant only in some areas. The discus-
sion of short-duration rainfall trend presented by Brunetti
et al. (2011) is consistent with the knowledge acquired on
monthly data: rainfall was decreasing, and this was due to a
decreasing trend of both wet days and high-rainfall wet days.
The combined effect of these trends with the trend ofI, de-
fined as the average rain amount per wet day, was almost
negligible.

Thus, the results on climate trend presented in this work
are consistent with the knowledge previously acquired on
the whole country, for southern Italy and for the Calabria
region. In addition, the above-mentioned studies analysed
shorter study periods than those used in our work, where the
beginning of the study period was moved about forty years
backwards. Even with a longer study period, the results were
confirmed.
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Fig. 6. Linear trend and time series of floods (F ) and yearly indexes
of precipitation (IP), wet days (ID), precipitation intensity (II), and
temperature (IT). The linear trend is the grey line in each diagram;
a polynomial trend line, shown in black, is added forF .

3.3 Cross-analysis and discussion

In terms of mean hydrologic year, a very good correlation
is mainly observed between floods and precipitation inten-
sity and secondly between floods and rainfall and wet days.
The correlation between floods and temperature is inverse
and particularly significant between February and November
(Fig. 5).

Moving to monthly values, the time series of the in-
dexes ILm, IPm, IDm, IIm, and ITm were calculated for
m = 1,2,3,6, and 12. For the sake of brevity, some statis-
tical values of these time series are summarised in Table 2
(for m equal to 1 and 3).

A good correlation between the monthly flood number and
the selected variables was observed (Fig. 5). The peaks for
P , D, andI were reached between November and December,
as forF . In statistical terms, it was useful to determine the
cross-correlation coefficient CCl betweenF andP , D, and
I ; the lagl = 1,2,.... CC0 was equal to 0.91, 0.82 and 0.91
for P , D, andI , respectively. The correlation withT was
weaker and negative (CCT= −0.58), which was reasonable.
For each variable, CC decreased asl increased and became
statistically not significant forl > 3. Thus, in terms of mean
hydrological year, the variability of the flood number was
mainly described by precipitation and progressively less by
precipitation intensity, wet days, and temperature.

Analysis of the yearly time series confirmed the results for
the mean monthly values (Table 3). In this case, the results
were statistically identical if eitherF (defined as the yearly
total number of floods in each cell of the region) or IF were
considered. CC0 decreased from 0.44 to 0.19 for IP and II,
respectively. The correlation with IT was low and not signif-
icant. For each variable, CC decreased asl increased. IP was
highly correlated with ID and II; this result should be con-
sidered if a forecasting model forF is defined using IP, ID,
and/or II as independent variables.

A deeper discussion of the annual variability highlights a
rough relationship between flood recurrence and the succes-
sion of wet and dry periods. A clear example was observed
in the fifties, during which both an anomalous high value of
floods and high values ofP andD were observed (Figs. 2
and 6). This relationship is less evident in other periods, as
in the thirties or in the first decade of the twenties century, a
dry period. Disaggregating the whole period, the more sig-
nificant parameters for the flood occurrence variability seem
P andD.

In any case, theF (or IF) linear trend could not be justified
by the trends of IP, ID, II, and IT (Fig. 6). In fact, the com-
bined effects of: (a) decreasing precipitation and wet days,
(b) the nearly constant precipitation intensity, and (c) the in-
creasing temperature trend could not have caused an increase
of floods in an area characterised by a semi-arid and temper-
ate climate. It seems that in Calabria, the climate trend may
have resulted in climatic conditions that were unfavourable to
increases in flood occurrence. When the polynomialF trend
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Table 2. Statistics of the monthly time series of floods (F) and the indexes of floods (IF), precipitation (IP), wet days (ID), precipitation
intensity (II), and temperature (IT).m: 1-month time series, 3m: 3-month time series.

F IF IP ID II IT

m 3m m 3m m 3m m 3m m 3m m 3m

Minimum 0 0 −100 −100 −100 −88 −100 −84 −100 −96 −35 −24
Mean 1 4 11 11 0 0 3 3 −1 −1 1 0
Maximum 99 130 4246 2890 393 217 287 164 271 132 40 25
Min. date many many many many many 8/1931 many 8/1902 7/1883 8/1902 12/1991 2/1929
Max. date 10/1953 11/1953 9/2000 9/2000 8/1888 8/1899 8/1995 5/1883 9/2000 9/2000 3/2001 3/2001

Table 3. Cross-correlation coefficient (lag= 0) of yearly time se-
ries of floods (F) and of indexes of floods (IF), precipitation (IP),
wet days (ID), precipitation intensity (II), and temperature (IT).

F IF IP ID II IT

F 1
IF 1 1
IP 0.44 0.44 1
ID 0.22 0.22 0.66 1
II 0.19 0.19 0.52 −0.09 1
IT 0.10 0.01 0.00 −0.39 0.34 1

was considered, we could distinguish two periods, defined as
fold trend: the earlier, from 1880 to 1974, showed increas-
ing floods, while the period from 1974 to 2007 showed a
slight decrease in floods. This recent decreasing trend could
have been due to the effect of less (or at least not increas-
ing) hazardous climatic conditions noted and/or the result of
the increasing awareness of floods risks. However, this sec-
ond contribution should be verified using analyses finalised
to verify 1) if flood vulnerability was either reduced or sta-
bilised by the effect of mitigation works, and (2) if better land
use practices have been recently implemented. The analysis
of the yearly time series was repeated and the yearly mov-
ing averages of each parameter were calculated for 2, 3, 5,
and 10 yr. The results obtained were quite similar, and the
correlation coefficients decreased as the number of years in-
creased. This was observed for each index with the exception
of T , for which the coefficient increased.

The minimum number of floods per decade was observed
in the last decade of the nineteenth century, which could have
been related to low values of both rainfall and rainfall inten-
sity (the 10-yr moving average showed the lowest values of
IP and II in 1895). The peak flood number observed in the
1950s seemed justifiable considering the very high precipita-
tion and number of wet days observed. It is possible to deter-
mine CCm for the monthly time series of IF with the monthly
time series of each index (Table 4). The peak was observed
for m = 12 months, except for ID. It should be noted that the
correlation with temperature was very low, while CCm, for
each couple of parameters, showed very low variability.

Table 4. Cross-correlation coefficient of monthly time series of
monthly index of floods (IF) with indexes of precipitation (IP), wet
days (ID), precipitation intensity (II), and temperature (IT) with
variablem-month (m = 1,2,3,6, and 12).

m IP ID II IT

1 0.26 0.13 0.21 −0.01
2 0.36 0.20 0.26 0.00
3 0.36 0.18 0.24 0.02
6 0.39 0.18 0.21 0.05

12 0.40 0.20 0.19 0.07

4 Conclusions

A method to characterise the statistical relationship between
flood occurrences and climatic parameters has been defined
and tested on an extensive Italian region. The method is
based on a comparative analysis of historical data on floods
and climatic indexes obtained by elaborating all available in-
strumental measurements.

The huge amount of data required to characterise the cli-
matic trend of the region was synthesised in a series of in-
dexes used in the comparative analysis of the trends of cli-
matic parameters and flood occurrences. These indexes made
it easier to study the considered phenomena, which showed
significant spatial and temporal variability, and helped to de-
fine a methodological approach based on the typical tools of
time series analysis. This approach eliminated any signifi-
cant effects of gaps in the climatic series.

The analysis of the monthly time series highlighted the
main role of precipitation, wet days, and, secondly, precipi-
tation intensity on flood occurrence.

The climatic and flood analyses showed: (a) a decreasing
trend of precipitation and wet days, (b) the almost constant
value of precipitation intensity, (c) the increasing trend of
temperature, and (d) a linear trend of floods significantly in-
creasing. It was notable that the decreasing trend of rainfall
was due to both the decrease in the number of wet days and
the amount of rainfall that occurred in the higher rainfall fre-
quency classes.
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The trends of the climatic variables cannot justify the in-
crease in flood occurrence. On refining the analysis of the
flood trend, two periods were distinguished (fold trend): the
earlier, from 1880 to 1974, showed increasing floods, while
the later, from 1974 to 2007, showed a slight decrease of
floods.

Due to both the regional distribution of population and the
river network characteristics, flood damage affected the ter-
minal tracks of both fiumaras and rivers. Damaged elements
are mainly cultivated fields, rural settlements, transportation
networks, and seaside villages and towns.

When the relationship between climate and floods was
analysed in terms of a straight linear trend of floods, the con-
clusion was that despite the trends of the climatic parameters
were unfavourable to increases in flood occurrence, floods
were not decreasing. Nevertheless, the interpretation based
on the fold trend seems more realistic; the change in flood
trend, observed roughly in the seventies, could be consistent
with climatic changes discussed on a wider scale. According
to Polemio and Casarano (2008), the climate trend in south-
ern Italy seems due to a clear discontinuity in the time series
which can be observed roughly starting from 1980. Addi-
tionally, Conversi et al. (2010) highlighted a regime shift dur-
ing the 1980s, from atmospheric, hydrological and ecological
points of view, that was linked to the Northern Hemisphere
climate and affected the whole Mediterranean Sea.

At the same time, it can be hypothesised that the flood
trend change was partially due to an increasing awareness of
floods risks, even if quantitative data concerning the changes
that happened in previous decades in the region would need
to be gathered to prove this hypothesis. Moreover, in south-
ern Italy there are numerous examples of short periods char-
acterised by decreases in flood damage following imple-
mentation of protective efforts (Petrucci and Polemio, 2007;
Polemio, 2010), although these periods ended more or less
abruptly due to the improvident utilisation of flood-prone ar-
eas because of the progressive decline of community flood
awareness in the absence of damaging floods.

More efforts will be necessary to take into account the ef-
fects of main atmospheric mechanisms by highlighting the
effective contribution of rain events due to frontal systems
and convective storms. At the same time, a deeper character-
isation of the temperature effect on net rainfall and the role of
antecedent conditions on floods should be investigated. Any
possible effort will be pursued to reduce existing difficulties
in moving towards an effective daily or hourly approach to
the analysis of climatic time series, considering the intrinsic
difficulty in improving the temporal accuracy of historical
flood data. In addition, deeper investigations should be pur-
sued to refine the analysis using regionalisation criteria.
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