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Abstract. The time dynamics of seismicity of Aswan area
(Egypt) from 2004 to 2010 was investigated by means of
the (i) Allan Factor, which is a powerful tool allowing the
capture of time-clusterized properties of temporal point pro-
cesses; and the (ii) detrended fluctuation analysis, which is
capable of detecting scaling in nonstationary time series. The
analysis was performed varying the depth and the magnitude
thresholds. The 2004–2010 Aswan seismicity is character-
ized by significant three-fold time-clustering behaviors with
scaling exponents∼0.77 for timescales between 104.16 s and
105.14 s, ∼0.34 for timescales between 105.14 s and 106.53 s,
and∼1 for higher timescales. The seismic interevent times
and distances are characterized by persistent temporal fluc-
tuations for most of the magnitude and depth thresholds.

1 Introduction

A marked temporal stochastic point process describes events
occurring randomly in time (Cox and Isham, 1980) marked
by the intensity of the events, and is completely defined by
the set of the time occurrences. Such representation was used
in modelling several and diverse point processes, like earth-
quakes (Telesca and Lovallo, 2009; Telesca et al., 2009a, b),
lightning (Telesca et al., 2005), starquakes (Telesca, 2005),
solar flares (Telesca, 2007), and also some human and social
disasters (Telesca and Lovallo, 2006).

A fractal point process displays power-law form in several
of its relevant statistics with related scaling exponents, in-
dicating that the represented phenomen contains clusters of

points over a relatively large set of timescales (Lowen and
Teich, 1995). A fractal point process is, then, characterized
by time-clustering behavior, contrarily to homogeneous Pois-
sonian processes, whose density of the event occurrences is
nearly constant through time. Generally, in order to capture
the main characteristics of the time dynamics of a process,
the power spectral density (PSD) is the first method to be
used because it furnishes information on the frequency dis-
tribution of the process power, which is the physical quantity
characterizing a process. By using the Fourier transform, the
PSD can be calculated by means of the coefficients of the
Fourier transform. The PSD allows detection of periodic or
scaling behavior. Periodicities can be revealed by spike-like
variations in the PSD, while a power-law shapef −α reveals
that the process is scaling; the power-law exponent, also
called the scaling exponent, conveys qualitative and quan-
titative information about the type and strength of the tem-
poral fluctuations governing the process. If the scaling ex-
ponent is approximately zero for a wide range of frequency
bands, the PSD is approximately flat and the process is a
realization of a white noise process, characterized by com-
pletely random fluctuations, independence and uncorrelation
among all its values as well as absence of any kind of mem-
ory phenomenon. If the scaling exponent is negative, the
PSD behaves as an increasing function of the frequencyf ;
this indicates that the high-frequency temporal fluctuations
are predominant. In this case the process is negatively cor-
related or antipersistent. The antipersistence is a dynamical
property of a process in which an increase (decrease) of the
process in one period is very likely followed by a decrease
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(increase) in the next period. The process appears very alter-
nating and very irregular. If the scaling exponent is positive,
the PSD behaves as a decreasing function of the frequency
f ; this indicates that the low-frequency temporal fluctuations
are predominant, and the process appears smoother than the
white noise. In this case the process is positively correlated
or persistent. The persistence characterizes those processes
in which an increase (decrease) of the process in one period
is very likely followed by a increase (decrease) in the next
period. The process appears very regular. Antipersistent pro-
cesses are governed by feedback negative mechanisms, while
persistent processes by positive ones (Cuomo et al., 2000).

It is clear from the above description that the determina-
tion of the spectral characteristics of a process allows one
to know deeply about the underlying governing mechanism.
If the calculation of the PSD is straightforward for a time-
continuous process by means of the Fourier transform, the
evaluation of the spectral properties of a point process, like
an earthquake sequence, cannot be directly performed; yet
such evaluation is important if one wants to get more insight
into its dynamics.

Therefore, appropriate statistical methods have to be ap-
plied, and first of all appropriate descriptions of the point
process have to be considered. A point process can be rep-
resented in two ways: (1) using the interevent interval series,
or (2) forming its relative counting process. In the first repre-
sentation, the time series is formed by the ruleTi = ti+1− ti ,
whereti indicates the occurrence time numbered by the index
i. In the second representation, the time axis is divided into
equally spaced contiguous counting windows of durationτ

to produce a sequence of counts{Nk(τ)}, whereNk(τ) rep-
resents the number of events falling into thek-th window of
durationτ . The durationτ of the window is called counting
time or timescale. The latter approach considers the earth-
quakes as the events of interest and assumes that there is an
objective clock for the timing of the events. The former ap-
proach emphasizes the interevent intervals and uses the event
number as an index of the time.

Both representations allow us to apply several statistical
techniques to an earthquake sequence. In particular, in this
study we will use the Allan Factor (AF) to analyze the time
dynamics of earthquakes represented by counting processes,
and we will then use the detrended fluctuation analysis to
analyze the seismic interevent intervals and interdistances of
one of the most interesting reservoirs in the world, the Aswan
area, where reservoir-induced as well as tectonic earthquakes
have occurred. The scientific and practical importance of in-
vestigating possible mechanisms related to the dynamics of
influence of high dam water reservoirs on local earthquakes
generation is very challenging. Since the middle of the past
century, reservoir-induced seismicity has been observed at
many reservoirs and their geological, hydrological and phys-
ical features are still subjects of intense investigations (Durá-
Gómez and Talwani, 2010). Dynamical aspects of the seis-
mic problem, along with the application of advanced time se-

ries tools, are less investigated (Peinke et al., PEPI, 156/1-2,
130-142, 2006; Matcharashvili et al. 2008; Telesca, BSSA,
2010).

The Aswan area

We analyzed the seismicity of the Aswan area (Egypt), which
represents one of the most interesting seismic areas in the
world due to the possible reservoir-related earthquake trig-
gering mechanisms linked with the loading/unloading oper-
ations of the Lake Nasser (Fig. 1). The data from 5 October
2004 to 31 December 2010 were extracted from the Bulletin
of the Egyptian National Seismological Network (ENSN),
compiled by the National Research Institute of Astronomy
and Geophysics, Helwan, Cairo (Egypt) (4189 events).

Aswan hosts the largest dam in Egypt, “The high Dam”,
which is 111 m high, a crest length of 3830 m and a vol-
ume of 44 300 000 cubic meters, impounds a reservoir, Lake
Nasser, that has a gross capacity of 169 billion cubic meters.
Of the Nile’s total annual discharge, some 74 billion cubic
meters of water have been allocated by treaty between Egypt
and The Sudan, with about 55.5 billion cubic meters appor-
tioned to Egypt and the remainder to The Sudan. Lake Nasser
backs up the Nile about 320 km in Egypt and almost 160 km
farther upstream (south) in the Sudan (Latif, 1984), making
the high dam one of the largest dams in the world and Nasser
lake one of the largest reservoirs in the world as well.

Aswan area is known to be seismically active since the
occurrence of the November 1981 Aswan earthquake (Mw =

5.8). Detailed geological and geophysical surveys in the area
confirm the existence of a few active faults to the southwest
of the Aswan High Dam (e.g. Kalabsha, Khor El-Ramla and
Kurkur faults) (Woodward-Clyde Consultants, 1985; Abou
Elenean, 1997; Abou Elenean, 2003). The seismic activity
in this area might be related to both tectonic activities along
these active faults and/or reservoir-induced seismicity due to
the Nasser Lake.

Regional seismological network was established in 1982
around the northern part of the Naser Lake to monitor earth-
quake activity. Seismological studies have shown that the
majority of the local earthquakes appear to be concentrated
at the intersection of the E-W and the N-S faults. This inter-
section is considered a convenient location for stress accu-
mulation (Talwani, 1989). Generally, the overall faulting dis-
placement in this zone is strike-slip with small normal com-
ponent. The N-S faults have a low degree of seismic activity
compared with the E-W faults. Woodword-Clyde Consul-
tants (1985) related the existence of the E-W faults to small
differential spreading rates in the northern Red Sea to the
north and south of a zone between 22◦ and 24◦ north.
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Fig. 1. Seismicity of the Aswan area (Egypt) from 2004 to 2010.

2 Methods

2.1 The Allan Factor

The Allan Factor (AF) (Allan, 1966) is related to the variabil-
ity of successive counts, useful to detect the event clustering
in a point process. Dividing the whole observation period
in nonoverlapping windows of durationτ , called timescale,
we count the number of events falling in each k-th window
and we form the counting process Nk(τ ). The AF is defined
as the variance of successive counts for a specified counting
time τ divided by twice the mean number of events in that
counting time

AF(τ ) =
< (N

(τ )
k+1−Nk(τ ))2 >

2< Nk(τ ) >
. (1)

This measure reduces the effect of possible nonstationarity
of the point process, because it is defined in terms of the
difference of successive counts (Viswanathan et al., 1997).
Varying the timescaleτ allows producing a relationship be-
tween AF(τ) andτ , useful to detect scaling behavior in the
sequence.

The AF of a fractal point process varies with the counting
time τ with the power-law form:

AF(τ ) = 1+

(
τ

τ1

)α

(2)

with 0< α <3 over a large range of counting timesτ (Lowen
and Teich, 1995).τ1 is the so called fractal onset time for the
AF and is estimated as the crossover timescale between the
Poissonian (where AF assumes values near unity) and scaling
behavior.

2.2 The Detrended Fluctuation Analysis

The detrended fluctuation analysis (DFA) was proposed by
Peng et al. (Peng et al., 1995), and it avoids spurious detec-
tion of correlations that are artifacts of nonstationarity that
often affects experimental data. The methodology operates
on the time seriesx(i), wherei=1,2,...,N andN is the length
of the series. Withxave we indicate the mean value

xave=
1

N

N∑
k=1

x(k). (3)
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The signal is first integrated

y(k) =

k∑
i=1

[x(i)−xave]. (4)

Next, the integrated time series is divided into boxes of equal
length,n. In each box a least-squares line is fitted to the data,
representing the trend in that box. They coordinate of the
straight line segments is denoted byyn(k). Next we detrend
the integrated time seriesy(k) by subtracting the local trend
yn(k) in each box. The root-mean-square fluctuation of this
integrated and detrended time series is calculated by

F(n) =

√√√√ 1

N

N∑
k=1

[y(k)−yn(k)]2. (5)

Repeating this calculation over all box sizes, we obtain a re-
lationship betweenF(n), that represents the average fluctu-
ation as a function of box size, and the box size n. IfF(n)

behaves as a power-law function ofn, data present scaling:

F(n) ∝ nd . (6)

Under these conditions the fluctuations can be described by
the scaling exponentd, representing the slope of the line fit-
ting log[F(n)] to log(n). For a white noise process,d=0.5.
0.5< d <1.0 indicates the presence of persistent long-range
correlations, meaning that a large (compared to the average)
value is more likely to be followed by a large value and vice
versa. 0< d <0.5 indicates the presence of antipersistent
long-range correlations, meaning that a large (compared to
the average) value is more likely to be followed by a small
value and vice versa.

3 Results

The analysis was performed on the seismic sequences with
magnitude m≥ 1.2 and depth h≤ 15 km. The lower limit for
the magnitude represents the completeness magnitude of the
series during the investigated period.

We applied the Allan Factor (AF) method to identify
and quantify time-clustering in the sequence of the earth-
quakes. Figure 2 shows the AF of the seismic sequences
recorded in the Aswan area for timescalesτ from 10 s to
about 3 yr; the upper timescale approximately corresponds
to the 1/10 of the entire period (higher timescales would
lead to misleading results for the poorer statistics). Start-
ing from τ1 >104.16 s (∼4 h), the AF curve reveals visible
power-law behavior. In particular, the AF curve is char-
acterized by three different timescale regimes, with three
different scaling exponents, separated by three different
crossover timescales:τ1=104.16 s, τ2=105.14 s (∼1.6 days)
andτ3=106.53 s (∼40 days). Fromτ1 to τ2 the AF increases
with a power-law with scaling exponentα1=0.77±0.04;
betweenτ2 and τ3 with scaling exponentα2=0.34±0.05,

 33

0 1 2 3 4 5 6 7 8

0.0

0.5

1.0

1.5

2.0

τ
0
=10

3

α
3
=1.0

τ
3
=10

6.53

α
2
=0.34

α
1
=0.77

τ
2
=10

5.14

τ
1
=10

4.16

lo
g

1
0
(A

F
(τ

))

log
10

(τ) (s)

 original

 Poisson

 Shuffled

 653 
Fig. 2 654 

0.0 5.0x10
2

1.0x10
3

1.5x10
3

2.0x10
3

2.5x10
3

3.0x10
3

0.0

5.0x10
5

1.0x10
6

1.5x10
6

2.0x10
6

2.5x10
6

3.0x10
6

3.5x10
6

a)

in
te

re
v
e
n

t 
ti
m

e
 (

s
)

n

m>1.2

h<15Km

 655 
Fig. 3 656 

 657 

Fig. 2. AF of the seismic sequence recorded in the Aswan area
plotted in Fig. 1 and for m≥ 1.2 and depth h≤15 km. The blue
curve is the Poissonian 95 % confidence and the red curve is the
random shuffling 95 % confidence.

and for timescales higher thanτ3 with scaling exponent
α3=1.0±0.1. The cutoff timescale 104.16s can be considered
an estimation of the so-called fractal onset time (Thurner et
al., 1997) that indicates the lower timescale from which the
clustering behavior can be detected and quantified. The early
flatness up to about 103s indicates a Poissonian-like behav-
ior of the sequence for small timescales. The intermediate
timescale region between 103s and 104.16s can be considered
as a “transfer” timescale region between the two opposite
behaviors, from Poissonian to clusterized dynamics. In all
the three regimes, the value of the scaling exponent indicates
a clustering behavior of the sequence, which is stronger at
higher timescales and weaker at intermediate timescales. In
order to check the significance of such behavior and verify
that the obtained AF curve is significantly distinguished from
that obtained by a Poissonian process, we generated 1000
Poissonian sequences, characterized by identical mean inter-
vent time and identical number of events of the orginal se-
quence. To each simulated sequence the AF was applied. For
each timescale the 95th percentile among the AF values for
that timescale was calculated. The final 95 % confidence AF
curve was then given by the set of the 95th percentiles (blue
curve in Fig. 2). The AF curve is significantly different from
those obtained by the Poisson surrogates within the scaling
range; therefore, the scaling behavior of the seismic cluster is
significantly non-Poissonian. In order to check whether the
scaling behavior of the sequence is due to the shape of the
probability density function of the interevent times or to the
their orderings, we shuffled 1000 times the interevent inter-
vals, and for each shuffle we calculated the AF curve. The
95 % confidence AF curve for the shuffles was calculated as
above. Such curve (red curve in Fig. 2) is lower than the AF
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Fig. 3. Interevent time series of the sequence of the seismic events
with magnitude m≥ 1.2 and depth h≤ 15 km.
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Fig. 4. DFA results for the interevent time series shown in Fig. 6.

curve of the original sequence within the scaling range, and
this indicates that the scaling behavior is due to the specific
ordering of the interevent intervals.

We applied the DFA to analyze the persistent properties of
the seismic interevent times. Figure 3 shows, as an example,
the interevent (in seconds) time series of the sequence of the
seismic events with magnitude m≥ 1.2 and depth h≤ 15 km.
The AF and the DFA describe the time properties of the seis-
mic sequences, and are complementary statistical approaches
(Viswanathan et al., 1997). The first treats the earthquakes as
a point process, while the second treats it as a sequence of
interevent intervals; also, the scaling regions identified in the
AF and DFA curves cannot be matched exactly since the AF
is referenced to real time, while the DFA function is refer-
enced to interval number (Viswanathan et al., 1997). Nev-
ertheless, applying the relationship between interval-based

frequency (in cycles/interval) and the time-based frequency
(in cycles/s) (Teich et al., 2001)

fτ =
fn

< T >
, (7)

wherefτ indicates the time-based frequency,fn indicates
the interval-based frequency and< T > the mean interevent
time, we can find the relationship between the timescaleτ in
the AF statistics with the scalen in the DFA method as

n =
τ

< T >
. (8)

Applying Eq. (8), the crossover timescales identified in the
AF curve of Fig. 3 can be converted in event numbers; in par-
ticular, τ2 ∼105.14 s corresponds ton2 ∼2 andτ3 ∼106.53 s
corresponds ton3 ∼ 45.

Figure 4 shows the DFA results for the interevent time se-
ries shown in Fig. 3 for scales between 4 andN /4, whereN
is the length of the interevent time series. We fitted the fluc-
tuation curve in the two scaling regions: the first between 4
and 45, the second between 45 andN /4. These two scaling
ranges correspond approximately to the second and the third
timescale regions identified in the AF curve of Fig. 3. The
scaling exponent in the first scaling region is∼0.62 and the
one in the second scaling region is∼0.90, indicating persis-
tence. Using the relationship between the time-base spectral
exponentα and the DFA scaling exponentd (Buldyrev et al.,
1995)

d =
1+α

2
, (9)

the scaling exponents estimated in the AF curve are consis-
tent with those estimated in the DFA curve. From Eq. (9),
we derived1 = 0.67 andd2 = 1.0, which are close to the
values estimated from the DFA curve. The DFA does not
allow identification of the first AF timescale region (from
τ1 ∼104.16 s toτ2 ∼105.14 s), which is probably linked with
the swarm-like behavior of the seismicity at almost the mid-
dle of the observation period. The presence of different
scaling regions in the DFA was already found in Chen et
al. (2002), who analysed the effects on the DFA curve of
the superposition of different dynamics with distinct corre-
lations. It should be observed that due to Eq. (9), the range
[0, 1] of the scaling exponents estimated by the AF method
corresponds to the range [0.5, 1] of the scaling exponents
estimated by the DFA method; this should imply a better
discrimination of the scaling regions performed by the AF
method. However, when fitting the whole fluctuation func-
tion (dotted red line in Fig. 4), we get the scaling exponent
dT ≈0.75, which is approximately an average between the
two scaling exponents dT ,1 and dT ,2; therefore, we can also
use the slope of the line fitting the whole fluctuation function
to describe the average scaling behavior of the sequence.

In order to investigate the variation of the time-clustering
behavior with the threshold magnitude and threshold depth,
we applied the AF to the seismic sequences, varying the
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Fig. 5 662 Fig. 5. AF curves for changing threshold magnitude and depth.
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Fig. 6. Scaling exponents dT estimated by performing the DFA over
the interevent time series changing the threshold magnitude and the
threshold depth.

threshold magnitude from 1.2 to 2.5 with 0.1 step and the
threshold depth from 5 km to 15 km with 1 km step, with
timescale ranging from 10 s to 1/10 of the whole period of
each sequence. The results are shown in Fig. 5, and two dis-
tinct patterns are clearly evidenced, depending on the thresh-
old depth: for threshold depths h≤ 7 km the AF curves (red
in Fig. 5) show a Poissonian behavior; while for threshold
depths h≥ 8 km the AF curves (black in Fig. 5) show approx-
imately three scaling regions, similar to the AF curve shown
in Fig. 2. Such two-fold pattern does not depend on the
threshold magnitude but only on the threshold depth. This
indicates that shallower events tend to follow a Poissonian
dynamics.

We performed the DFA on the interevent time series, vary-
ing the threshold magnitude from 1.2 to 2.5 with 0.1 step and
the threshold depth from 5 km to 15 km with 1 km step. For

all the series the fluctuation function was calculated in the
timescale range between 4 andN /4, whereN is the length of
the series, and the scaling exponents were calculated as the
slope of the line fitting the whole fluctuation function. Fig-
ure 6 shows the scaling exponents dT changing the threshold
magnitude and the threshold depth; it is clearly visible that
for any threshold the series are persistent in time. In order
to evaluate the significance of the estimates of the exponents,
we generated 1000 shuffled series of any original sequence,
randomly permutating the interevent time series, as outlined
above (Telesca et al., 2003). Our aim was to test whether the
calculated estimates of the scaling exponents dT indicate a
significant correlated effect with respect to the uncorrelated
behavior displayed by the surrogates. Being dT is the scal-
ing exponent of the original sequence, letµT andσT indicate
the mean and the standard deviation of the scaling exponents
calculated for the shuffled sequences of the interevent. We
define the significance of our measure by the difference be-
tween the original and the mean surrogate value of the scal-
ing exponents, divided by the standard deviation of the sur-
rogate values (Theiler et al., 1992):

σT =
|dT −µT |

σT

. (10)

Then the p-value is calculated by means of the formula
pT =erfc(σT /

√
2) (Theiler et al., 1992); this is the probability

of observing a significanceσT or larger if the null hypothe-
sis (absence of any correlation) is true. Figure 7 shows the
p-values for the interevent time series changing the thresh-
old magnitude and depth; the higher p-values (indicating sta-
tistical similarity with the shuffles) generally are for larger
threshold magnitudes and smaller threshold depths. This in-
dicates that the scaling exponents dT are significantly higher
than those obtained by the surrogate uncorrelated sequences
for lower threshold magnitudes and higher threshold depths;
this implies that more intense and shallower events tend to
behave more likely as uncorrelated processes. This result
is in good agreement with those obtained applying the AF
method with changing threshold magnitude and depth.

We analysed the interdistance time series, which is the
time series of the mutual distance between successive events,
in order to investigate the temporal properties of the space
distribution of the seismicity. Figure 8 shows, as an exam-
ple, the interdistance time series, measured in degrees of arc
length, of the sequence of the seismic events with magnitude
m≥ 1.2 and depth h≤15 km. Figure 9 shows the DFA re-
sults for the interdistance time series shown in Fig. 9. The
series is persistent with scaling exponents dS approximately
0.75. This indicates that the seismic events tends to clus-
terize not only in time but also in space. The DFA was ap-
plied to the interdistance time series, varying the threshold
magnitude from 1.2 to 2.5 with 0.1 step, and the threshold
depth from 5 km to 15 km with 1 km step, similarly to the
interevent time series. Figure 10 shows the scaling expo-
nents dS changing the threshold magnitude and the threshold
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Fig. 7. p-values for the interevent time series changing the threshold
magnitude and depth.
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Fig. 8. Interdistance time series of the sequence of the seismic
events with magnitude m≥ 1.2 and depth h≤ 15 km.

depth; it is clearly visible that for any threshold the series
are persistent in space. We analysed the significance of the
exponents dS , similarly to that evaluated for the scaling expo-
nents dT , and Fig. 11 shows the p-values, which are generally
higher for larger threshold magnitudes and smaller threshold
depths. This indicates that the scaling exponents dS are sig-
nificantly higher than those obtained by the surrogate uncor-
related sequences for lower threshold magnitudes and higher
threshold depths, suggesting a tendency to uncorrelation for
more intense and shallower events.
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Fig. 9. DFA results for the interdistance time series shown in
Fig. 13.

4 Discussion

Time-clustering of a point process can be described by the
increase of occurrence frequency of events in a relatively
narrow time interval against the general low occurrence fre-
quency over a longer time span. Accordingly, it is consid-
ered as the opposite of temporal homogeneous Poissonian
behavior, in which the rate of occurrence of the events is
constant. The mechanisms responsible for time-clustering in
earthquakes might be related to triggering by the occurrences
of great or major earthquakes in neighboring segments, either
to the transfer of co-seismic dynamic or static stress or to
post-seismic relaxation of the stresses (Stein, 1999; Toda et
al., 1998; Harris, 1998; Gomberg et al., 1998; Freed and Lin,
1998; McCloskey et al., 2005). However, in some cases the
distance between two consecutive earthquakes is too large
to indicate stress interaction amongst the earthquakes, and
thus the time clustering of earthquakes could be due just to
chance, in which earthquake occurrence is almost simulta-
neous in two or more segments despite differences in the
earthquake cycle due to difference in the phase of strain ac-
cumulation, rheology, plate convergence rate, etc., in these
segments (Ambikapathy and Gahalaut, 2011). This effect
was also found in the analysis of the persistence of seismic-
ity of Umbria-Marche (Italy) by using the DFA (Telesca et
al., 2008). More than one scaling region, as we found in
the analysis of the Aswan seismicity, was found in several
other seismic areas worldwide. Generally, a two-fold time-
clustering behavior indicates the superposition of two time
dynamics, one related with the background seismicity (large
timescales) and the other linked with the aftershocks (inter-
mediate timescales) (Telesca et al., 2002). Similarly, the vol-
canic seismicity at Etna volcano, Sicily (Italy), has shown
the AF curve characterized by two scaling regions, with
scaling exponent 0.7 at intermediate timescales consistent
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Fig. 10. Scaling exponents dS estimated by performing the DFA
over the interdistance time series changing the threshold magnitude
and the threshold depth.

with the timescales of the eruptive episodes, and 0.2 at large
timescales describing the behavior of the background seis-
micity (Currenti et al., 2005). Single scaling region, in the
AF or DFA curve, are shown by seismic series, in which the
effect of the aftershocks is absent or negligible (Bohnestieh
et al., 2003).

Time-clustering is a property that seems to characterize
many natural processes. Forest fires are generally character-
ized by two-fold time-scaling behavior (mainly evident for
lower threshold burned areas) with a crossover at a timescale
of the order of days, separating the region of the lower
timescales with scaling exponent smaller than that of the re-
gion of higher timescales (Telesca and Lasaponara, 2006).
Two-fold time clustering behavior is also evidenced by light-
ning, but the scaling exponent for timescales lower than the
crossover is larger than that for the higher timescales, re-
vealing the intra-cluster (inside an individual thunderstorm)
and inter-cluster (among successive thunderstorms) time-
correlation properties of lightning (Telesca et al., 2005). Us-
ing an event-like structure for the rain (Peters et al., 2002),
where the rain events are defined as a sequence of non-zero
rain rates and the size of a rain event is defined as the ac-
cumulated water column during the event, the presence of
time-clustering dynamics for rain sequences with AF expo-
nents around 0.3–0.4 was shown (Telesca et al., 2005). Scal-
ing exponents ranging between 0.14 and 0.96 were found for
35 sequences of volcanic eruptions worldwide (Telesca et al.,
2002). Very recently, the time-clustering characteristics in
sequences of Italian landslides were analysed, revealing a
scaling exponent ranging between 0.3 and 0.5 (Witt et al.,
2010).

It is striking that many natural point processes are charac-
terized by scaling behavior with an exponent not exceeding

 37

1.2 1.4 1.6 1.8 2.0 2.2 2.4

14

12

10

8

6

threshold magnitude

th
re

s
h
o
ld

 d
e
p
th

0.5000

0.5437

0.5875

0.6312

0.6750

0.7187

0.7625

0.8062

0.8500

 676 
Fig. 10 677 

 678 

1.2 1.4 1.6 1.8 2.0 2.2 2.4

14

12

10

8

6

threshold magnitude

th
re

s
h
o
ld

 d
e
p
th

0

0.1125

0.2250

0.3375

0.4500

0.5625

0.6750

0.7875

0.9000

 679 
Fig. 11 680 

 681 

Fig. 11. p-values for the interdistance time series changing the
threshold magnitude and depth.

1.5–2.0. This would suggest that there should be a kind of
universality; and finding of the common dynamical charac-
teristics in terms of time-clustering, correlations and persis-
tence in all these diverse natural phenomena would be chal-
lenging.

5 Conclusions

The present paper deeply analyzes the time dynamics of the
seismicity observed in the Aswan area (Egypt) between 2004
and 2010. The time dynamics of the seismicity, investigated
by means of the Allan Factor, reveals a significant three-fold
time-clustering behavior. The persistence of the interevent
and the interdistance time series was analysed by means of
the DFA. Our results point out significant correlated struc-
tures in the seismicity of the area, mainly for lower magni-
tude thresholds and higher depth thresholds.
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