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Abstract. The coastal zone is a complex environment in
which a variety of forcing factors interact causing shoreline
evolution. Coastal managers seek to predict coastal evolu-
tion and to identify regions vulnerable to erosion. Here, a
Bayesian network is developed to identify the primary factors
influencing decadal-scale shoreline evolution of European
coasts and to reproduce the observed evolution trends. Sensi-
tivity tests demonstrate the robustness of the model, showing
higher predictive capabilities for stable coasts than for erod-
ing coasts. Finally, the study highlights the need to update
and expand large-scale coastal data sets, particularly by in-
cluding local scale processes and anthropogenic impacts.

1 Introduction

The evaluation of coastal vulnerability has received increas-
ing attention in recent years due to observations of coastal
erosion, pressure from coastal urbanization, and increased
concerns about the impacts of sea-level rise and climate
change (Nicholls et al., 2007). In a review of physical coastal
vulnerability studies,Cooper and McLaughlin(1998) con-
cluded that the majority of these studies were designed to im-
prove local coastal management or to characterize the poten-
tial future response to climate change or sea-level rise (e.g.
Nicholls and Klein, 2005; Nicholls and de la Vega-Leinert,
2008; Hinkel and Klein, 2009).

Evaluating coastal evolution on large spatial scales and
incorporating the effects of a variety of factors requires
integrating knowledge of coastal landforms and processes
(Finkl, 2004; Pearson et al., 2005). Coastal vulnerability in-
dices have been developed to aggregate factors such as sea-
level rise, coastal elevation, historical shoreline movement,

geology, geomorphology, wave height, tide range, beach
slope, vegetation, and coastal defenses (e.g.Gornitz et al.,
1994; Shaw et al., 1998; Coelho et al., 2006). However, one
challenge is to evaluate the relative importance of each factor.

The objective of the current study is to make statistical
predictions of European shoreline evolution with a Bayesian
network (BN) approach and to identify the most important
factors contributing to the predictions. The BN approach has
been used in a variety of different applications, from stud-
ies of artificial intelligence to ecological systems (Berger,
2000), and recent work has applied this approach in the
coastal domain (Hapke and Plant, 2010; Gutierrez et al.,
2011; Plant and Holland, 2011). The current article, fol-
lowing Gutierrez et al.(2011), presents the construction of
a BN model (Sect.2) evaluating European shoreline evolu-
tion trends (Sect.3), the derived model and its sensitivity
(Sect.4), and a summary of the study implications (Sect.5).

2 Bayesian network design

The BN approach is based on the application of Bayes’ the-
orem (Bayes, 1763), which relates the probability (p) of an
event (Fi) to the occurrence of another event (Oj ):

p(Fi |Oj ) = p(Oj |Fi)p(Fi)/p(Oj ). (1)

In this study, a BN was constructed using six variables
(Fig. 1) similar to those used in previous coastal vulnerabil-
ity studies (e.g.Thieler, 1999; Coelho et al., 2006; Gutier-
rez et al., 2011). The causal relationships (black arrows,
Fig. 1) were predetermined based on physical knowledge
of coastal systems. The geology, mean significant wave
height (Hs), relative sea-level rise rate (SLR), and mean tidal
range impact the geomorphology through the erodibility of
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Fig. 1. Bayesian network: the black arrows indicate causal relation-
ships linking the forcing factors (gray) and the response variable
(coastal evolution, black).

the sediments and underlying substrata, wave action caus-
ing sediment transport, and profile adjustments to the current
mean sea level. Additionally, all five factors are also consid-
ered to impact directly the coastline evolution.

3 Data

The coastal database developed during the EUROSION
project1 divided the European coastline into segments with
uniform geology, geomorphology, and shoreline evolution
characteristics. They estimated shoreline evolution using
available maps, reports, aerial photographs, and observa-
tions to calculate trends over a five to ten-year period. The
database also includes offshore wave, tide, and relative sea-
level rise data. The wave and tidal data were calculated from
ARGOSS databases. Relative sea-level rise estimations were
made by extrapolating values estimated from tide gauge data
by Douglas et al.(2001) andLambeck et al.(1998).

In this study, the EUROSION data were preprocessed for
use in the Bayesian network. The offshore data were in-
terpolated alongshore to correspond to the coastline seg-
ments. Due to data quality issues, coastline segments des-
ignated as having man-made structures or lacking complete
data were removed. The geomorphology was divided into
four classes: rocky cliffs and platforms, erodible (e.g. chalk)
cliffs, beaches, and wetlands; the geology was divided sim-
plistically into two categories: hard and soft sediments (de-
pending on the erosion potential). The shoreline evolution
data were classified as eroding, stable, or accreting. The
continuous data variables were discretized by quantiles into
four bins. These observations were then used to calculate
the conditional occurrence probabilities of a given shoreline
evolution for each combination of variables using the Netica
software package (Norsys Software Corp., v4.16).

1Data and further details available from the European Environ-
ment Agency (http://www.eea.europa.eu/data-and-maps/data/)
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Fig. 2. The sum of the log-likelihood ratio (LR) for tests using be-
tween one and four variables. The horizontal dashed line indicates
the sum of the LR when all five variables are used.

4 Model performance

A predictive model was created by assigning to each combi-
nation of variables the event (erosion, stability, or accretion)
with the maximum probability (p), resulting in both a pre-
diction and a level of uncertainty (p ranges from 36 to 99 %).
No model prediction is made when no data are available or
when all events have the same probability. This simple model
correctly reproduces 65 % of the observations.

The log-likelihood ratio (LR) is a second way of estimat-
ing the model performace by measuring the improvement in
the prediction probability when using the model (Gutierrez
et al., 2011):

LR = log[p(Fi |Oj )] − log[p(Fi)]. (2)

The LR is positive when the updated prediction is greater
than the prior prediction, indicating that the updated distri-
bution is either more accurate (the distribution corresponds
to the observations) or more precise (the distribution is nar-
rower). The LR ratio is positive for approximately 70 % of
all observations in this study.

4.1 Sensitivity tests

The sensitivity of the BN was tested by comparing the per-
centage of correctly reproduced observations (Pcorr = 65 %)
and the percentage of observations with a LR greater than
zero (PLR>0 = 70 %) of the original model with model vari-
ations. In the first test, from two to ten bins were used
to discretize the continuous data.Pcorr ranged from 57 to
69 %, andPLR>0 ranged from 60 to 75 %, showing that the
model is relatively insensitive to the number of discretiza-
tion bins. A second test comparing different discretization
methods (quantiles, the mean plus or minus one to two stan-
dard deviations, and manual discretization) showed no sig-
nificant differences in the model results (Pcorr andPLR>0 var-
ied by approximately 5 %). A third set of tests evaluated the
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Fig. 3. Spatial distribution of (left) the difference between the Bayesian Network model “prediction” and the observations of coastal shoreline
evolution, and (right) the observed shoreline evolution.

significance of the predictions by randomizing the shoreline
evolution outcomes (eliminating any physical explanation of
the trends) and by creating an entirely randomized data set
(with the same range of values as the observations).Pcorr
dropped to 30 % and 10 %, andPLR>0 dropped to 25 % and
10 %, for these two tests, respectively, defining the signifi-
cance level of the model.

To evaluate the importance of each variable, individual
models were created using all combinations of between one
and four variables to predict the coastline evolution. The
model performance was compared by evaluating the sum of
the LR of each model. With a one-variable model, the LR
sum is greatest when using the geomorphology (by a factor of
three or four), and with two to four-variable models, the LR
sum decreases rapidly within each category when the geo-
morphology is excluded (Fig.2). In the one and two-variable
models, sea-level rise is the second most important variable,
with only slight differences between adding the wave height,
tide level, or geology.Pcorr only increases from 72 to 76 %
with two to five-variable models, and the relative increase in
the LR sum is small (Fig.2), suggesting that the BN can iden-
tify the most likely outcome with relatively few variables.
However, a reduction in the number of variables would also
decrease the outcome probabilities and thus the reliability of
the model.

4.2 Predictive ability

In the previous examples, all of the observations (>17 000)
were used to determine the model probabilities, and the

model skill was evaluated by reproducing the observed
shoreline evolution. A more relevant test of a coastal man-
agement model is its predictive ability. Ten random samples
of varying percentages (0.5, 1, 5, 10, 20, 30, 50, 70, and
90 %) of the observations were used to determine the model
probabilities, and each model was then tested with the data
not used in the calibration. The overall results show little
variability in Pcorr andPLR>0 once the percentage of obser-
vations used to train the model exceeds 10 to 20 % of the total
number of observations, defining the minimum data require-
ment for constructing the BN.

4.3 Spatial distribution of results

The spatial distribution of the results highlights areas in
which the model is successful (Fig.3). By analysing the
modelled probability as a function of the input variables, the
highest probabilities are in areas with rocky cliffs or plat-
forms (with mostly stable shorelines), and the lowest proba-
bilities are in areas with wetlands (with eroding, stable, and
accreting shorelines). For example, the northern coast of the
United Kingdom shows regions with accurate model predic-
tions due to the stability of the rocky coastline, whereas re-
gions with pocket beaches and erodible cliffs are less well
predicted. The eastern coast of Sweden and western coast of
Finland are primarily undergoing accretion, and the model
reproduces accurate predictions at these sites due to the rela-
tive sea-level fall caused by post-glacial rebound. However,
the model over predicts erosion along the coast of Holland
and Belgium since the majority of the coastline is affected
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by coastal management policies and is primarily stable or
accreting (EUROSION, 2004). The French Atlantic coast-
line is primarily eroding, but the model was unable to predict
this trend, likely due to the importance of longshore transport
caused by oblique waves (Castelle et al., 2007). The model is
able to reproduce the stability observed along the coastline of
northern Spain and western Portugal but is unable to identify
the zones experiencing erosion. Finally, in the Mediterranean
Sea, the tide range, sea-level rise, and wave height are rather
small, and the geomorphology is the most variable. However,
the coastline shows significantly more variability in shoreline
evolution than in the broad categories of geomorphology, and
the model is unable to explain this variability.

The model reproduces better the evolution of stable coasts
(90 % correct predictions) than of accreting (68 %) or erod-
ing (47 %) coasts. The reduced predictive ability for eroding
coasts suggests that the variables in this model are insuffi-
cient for determining erosive behavior. Additional factors
that are important on local scales, such as coastal structures,
shoreline orientation, longshore transport, sediment budgets,
or other human impacts may significantly improve predic-
tions of sites experiencing coastal erosion.

5 Summary and conclusions

In summary, a predictive model using a BN accurately repro-
duced more than 65 % of decadal shoreline evolution trends
from the EUROSION database. By evaluating the model be-
haviour using from one to four variables, the geomorphology
was identified as the most important model parameter deter-
mining coastal evolution trends. In a study of the US Atlantic
Coast,Gutierrez et al.(2011) concluded that sea-level rise
was the primary model parameter affecting shoreline stabil-
ity, which encourages future study of the differences between
and the broad applicability of such predictive models.

Although the development of the BN model is limited by
data availability, the model demonstrates skill in predicting
shoreline evolution trends with a restricted set of variables,
with more successful predictions for stable shorelines than
for eroding shorelines. Future work requires the improve-
ment of the data quality as well as an increase in coastal
observations to update and expand existing databases. Fu-
ture BN models could benefit from the inclusion of addi-
tional model parameters such as alongshore transport, sed-
iment budgets, and the impacts of anthropogenic activities
(i.e. coastal structures, beach nourishments, etc.). The devel-
opment of BN models for coastal applications can enhance
knowledge about regional scale coastal evolution, as well as
provide a tool for estimating the future evolution of coast-
lines undergoing shifts in the wave regime or sea-level rise.
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