
Nat. Hazards Earth Syst. Sci., 12, 1159–1171, 2012
www.nat-hazards-earth-syst-sci.net/12/1159/2012/
doi:10.5194/nhess-12-1159-2012
© Author(s) 2012. CC Attribution 3.0 License.

Natural Hazards
and Earth

System Sciences

Assessing precipitation distribution impacts on droughts on the
island of Crete

A.-E. K. Vrochidou 1 and I. K. Tsanis1,*

1Department of Environmental Engineering, Water Resources Management and Coastal Engineering Laboratory, Technical
University of Crete, Greece
* on research leave: Department of Civil Engineering, McMaster University, Hamilton, Canada

Correspondence to:I. K. Tsanis (tsanis@hydromech.gr)

Received: 24 November 2010 – Revised: 15 February 2012 – Accepted: 29 February 2012 – Published: 25 April 2012

Abstract. Precipitation records from 56 stations on the is-
land of Crete (Greece) revealed that areal mean annual pre-
cipitation is of a strong orographic type and its magnitude de-
creases in west-east direction by as much as 400 mm on aver-
age. Amongst many parameters that influence precipitation,
the elevation and longitude were the most important and pro-
vided the highest spatial correlation. It was found that during
the year with minimum precipitation, the precipitation short-
age was greater at high elevations while the precipitation ex-
cess during the year with maximum precipitation was greater
in the western part of the island. The assessment of the spa-
tial and temporal distribution of droughts was carried out
with the aid of the Spatially Normalized Standardized Pre-
cipitation Index (SN-SPI) for the period 1974–2005 in order
to compare drought conditions between neighbouring areas
of differing precipitation heights. The analysis showed that
severe droughts occurred around the year 1992–1993, with
a duration of up to 3 yr. Multiple linear regression (MLR)
modeling of precipitation in conjunction with cluster analysis
of drought duration exhibits the linkage between precipita-
tion, droughts and geographical factors. This connection be-
tween spatial precipitation distribution and geographical pa-
rameters provides an important clue for the respective spatial
drought pattern. The above findings on the spatio-temporal
drought distribution will update the current drought manage-
ment plans by developing more precise drought warning sys-
tems.

1 Introduction

The geographical distribution of precipitation depends on
various parameters that include topography, orientation of
topography and aspect, direction of wind and continental-
ity (Naoum and Tsanis, 2003). Several studies deal with
the variability of precipitation, analysing the relationship

between mean annual precipitation and geographical factors
(Basist et al., 1994; Guan et al., 2005; Harris et al., 1996;
Naoum and Tsanis, 2004), and finding significant increas-
ing relations between these characteristics. A common belief
that precipitation amounts increase with elevation was then
adopted, thereby proving that the mountainous environment
is prone to extreme and frequent precipitation events (Alla-
mano et al., 2009). Naoum and Tsanis (2003) studied the
spatio-temporal rainfall characteristics on the island of Crete
for a range of 12–50 yr and found that the rainfall-elevation
correlation was significant. Drogue et al. (2002) used an op-
erational software called PLUVIA, which distributes point
measurements of monthly, annual and climatological rainfall
to regularly spaced grid cells through a multiple regression
analysis of rainfall versus morpho-topographic parameters
derived from a digital elevation model. According to Wotling
et al. (2000), a Gumbel rainfall distribution was performed
by using a stepwise regression adjusted to rainfall records
across Tahiti and an approximation of the pluviometric risk
was provided.

The study of weather patterns associated with precipita-
tion events can serve as a reliable early warning system and
a non-structural approach for drought mitigation. It is known
that storm events are often associated with the development
of low-pressure systems (Koutroulis et al., 2010). Over the
Mediterranean these systems originate from three main di-
rections, which can be roughly distinguished as west (W),
southwest (SW) and northwest (NW). According to Barry
and Chorley (2003), depressions that enter the Mediterranean
from the Atlantic Ocean (W source) and baroclinic waves
from the Atlas mountain range (SW source) influence 9 %
to 17 % of the low-pressure systems, respectively. The re-
maining 74 % form at the lee of the Alps and Pyrenees (NW
source). Each class effects of this weather classification are
mentioned in literature (Barry and Chorley, 2003) and are
well documented.
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Furthermore, the definition of relationships between fac-
tors can be assessed through clustering methodology, which
is the process of grouping the data into classes or clusters
so that objects within a cluster have high similarity in com-
parison to one another, but are very dissimilar to objects in
other clusters. Clustering of time series has received consid-
erable attention in recent years as it is a fundamental task
in data mining. In literature, various clustering methods
have been used in time series: hierarchical clustering (Oates
et al., 1999), K-medoids clustering (Kalpakis et al., 2001),
nearest neighbour clustering (Zhang et al., 2004), and self-
organizing maps (Fu et al., 2001). Amongst all clustering
algorithms, K-means clustering has become the most well-
known and commonly used partitioning clustering method,
because it works well for finding spherical-based clusters in
small- to medium-sized databases in hydro-meteorological
studies (Chavoshi and Soleiman, 2009; Soltani and Modar-
res, 2006; Ouyang et al., 2010). Hayward and Clarke (1996)
made a statistical analysis of mean monthly rainfall in the
Freetown Peninsula, performing division of the gauges with
clustering, regarding their orientation. Additionally, multiple
regression with the parameters of latitude and the distance
from the sea was applied, providing various results for both
groups of rain gauges.

Precipitation constitutes the most important key factor for
the occurrence of droughts and will allow for a better un-
derstanding of the drought occurrence process. Drought is
a recurrent climatic feature that is frequent in the Mediter-
ranean region, one of the most vulnerable areas concerning
the future precipitation extreme conditions, since it lies in
the transitional zone between Northern Africa and Southern
Europe. A large number of studies are included in the inter-
national literature on examining the effectiveness of various
drought indices regarding detection and monitoring drought
events and regional drought analysis (Ali and Lebel, 2009;
McKee et al., 1993; Palmer, 1965; Rumman et al., 2009).
Among the developed drought indices, Standardized Precip-
itation Index (SPI), Palmer Drought Severity Index (PDSI)
and Reconnaissance Drought Index (RDI) are the most com-
monly used.

Several studies have been performed for the application of
the SPI. Especially in the area of Crete, Tsakiris and Vange-
lis (2004) concluded that the eastern part of the island suffers
more frequently from droughts, according to a method based
on the estimation of the SPI and its use for characterizing
drought. A digital terrain model, based on spatial distribu-
tion utilizing a grid analysis and a simple computer calculat-
ing process, was used and it was deduced that the proposed
procedure could be easily applied to an area of mesoscale
dimensions. It was concluded that a significantly persis-
tent drought occurrence was noted during the period 1987
to 1994, while distinct drought events were observed in the
years 1973–1974, 1976–1977, 1985–1986 and 1999–2000.
Additionally, Tsakiris et al. (2007) estimated drought areal
extent for eastern Crete using the SPI and RDI, and deduced

that the driest year during the examined period from 1962–
1963 to 1991–1992 is 1989–1990.

The selection of the most appropriate drought index was
carried out, according to previous studies. Tsakiris et
al. (2007) concluded that SPI and RDI give comparable re-
sults. However, discrepancies occur due to the fact that RDI
uses an additional meteorological determinant (PET) apart
from precipitation. The PDSI, on the other hand, is very
complex, spatially variant, difficult to interpret, and tempo-
rally fixed. The application of the SPI index covers a sig-
nificant part of many studies that have been carried out over
the last decades (Bonaccorso et al., 2003; Loukas and Vasil-
iades, 2004; Wu et al., 2007). Nevertheless, Vicente-Serrano
and Begueria (2003) point out that drought indices are not
as useful in identifying spatial patterns of drought risk since
they are based on standardized or normalized shortages in re-
lation to “average conditions”, which relate to a given station
and a given period.

Although SPI is widely used for assessing drought occur-
rence, there are some limitations in providing relative infor-
mation when applied for different regions (at the river basin
scale). In its original form it provides a local measure of
drought, which as such is not necessarily suitable for com-
parisons across space and time. As a result, the frequency
of drought spells is about the same for all stations no matter
if they lie in extremely arid or extremely rainy regions, even
though the rainy sites may receive several times more rain
than the arid sites. In this context, Dubrovsky et al. (2009)
applied the relative drought indices (rSPI and rPDSI), which
are calibrated using a reference weather series as a first step,
which is then applied to the tested series.

A similar approach for the creation of a modified index
based on the SPI was realized by Koutroulis et al. (2011).
The Spatially Normalized-SPI (SN-SPI) is a variant of the
SPI and allows the comparison between watersheds with dif-
ferent mean annual precipitations. After the normalization,
the index smooths the extreme conditions and makes it pos-
sible to compare stations by taking into account the spatial
character of precipitation. In this paper, the SN-SPI was rec-
ommended as a drought index for the calculation of drought
climatology for the island of Crete in Greece, because it
is spatially normalized for improved assessment of drought
severity (Koutroulis et al., 2011). The fundamental virtue of
this index consists of its capacity for compacting and unify-
ing spatial information, reducing it to a common language.

The objective of this study is to assess drought events over
Crete at both the spatial and temporal scale and connect them
with precipitation variability. More specifically, the compre-
hension of the evolution of this climatic phenomenon and
identification of important drought episodes are provided, of-
fering extra reliability to the results via the innovative use of
multiple methods. Moreover, the connection between spa-
tial precipitation and weather systems orientation will be of
great interest as they comprise a significant clue for the char-
acterization of droughts according to the respective spatial
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pattern. Determining precipitation variability and its spatial
extent and therefore drought risk periods and areas for the
island of Crete, can be used as basic but effective drought
mitigation and risk management planning. At the same time,
this kind of information may be used to support a simplified
drought alert system.

2 Methodology

2.1 The SPI

In the present paper, the SPI is used for assessing drought oc-
currence in Crete. The index offers the advantage of assess-
ing drought conditions over a wide spectrum of time scales,
while comparison between dry and wet periods on differ-
ent locations is possible. Moreover, it is based on precipi-
tation alone, so that a drought could be assessed even if other
meteo-hydrological data are not available (Bonaccorso et al.,
2003).

There is a general agreement about the fact that the SPI
computed on shorter time scales (3 or 6 months) describes
drought events that affect agricultural activities, whereas the
longer ones (12, 24 or 48 months) it describes the effects of
precipitation deficit on different water resources components
such as soil moisture, streamflow, groundwater, and reservoir
storage. In this paper, the longest time scale (48 months) is
set in the calculation of the SPI.

The SPI index was developed by McKee et al. (1993). In
its original version, precipitation for a long period at a station
is fitted to a gamma probability distribution, which is then re-
quired to be transformed into a normal distribution such that
the mean SPI value equals zero. The index values are then
the standardized deviations of the transformed precipitation
totals from the mean. The gamma distribution is defined by
its frequency or probability density function:

g(x) =
1

βα0(α)
xα−1e−x/β for x > 0 (1)

whereα is a shape parameter (α > 0), β is a scale parameter
(β > 0), x is the precipitation amount (x > 0) and0(α) is the
gamma function.

Positive SPI values denote greater than median precipita-
tion whereas negative values denote less than median pre-
cipitation. Periods with drought conditions are represented
by relatively high negative deviations. Specifically, the
“drought” part of the SPI range is arbitrarily divided in four
categories; mildly dry (0> SPI> −0.99), moderately dry
(−1.0> SPI> −1.49), very dry (−1.5> SPI> −1.99) and
extremely dry conditions (SPI< −2.0). A drought event is
considered to start when SPI value reaches−1.0 and ends
when SPI becomes positive again (McKee et al., 1993).
Thresholds of the SPI for drought characterization are pre-
sented in Table 1.

Table 1. Thresholds of SPI for drought characterization.

SPI value Category

2 or more Extremely wet
1.5 to 1.99 Very wet
1 to 1.49 Moderately wet
0 to 0.99 Mildly wet
0 to−0.99 Mildly dry
−1 to−1.49 Moderately dry
−1.5 to−1.99 Very dry
−2 or less Extremely dry

2.2 The SN-SPI

The objective of the new modified SPI is the potent compar-
ison of drought events among different areas with different
mean annual precipitations at different times. The procedure
includes the normalization of SPI values through the incor-
poration of the precipitation values. The calculation of the
SN-SPI is based on a two-step procedure. The first step is
the normalization of the SPI index according to the relative
average precipitation, based on a set of coefficients (ai,bi)
that satisfy:

P̄i

P̄all
= ai (2)

P̄all

P̄i

= bi (3)

whereP̄i is the mean monthly precipitation for each water-
shedi, andP̄all the mean monthly precipitation for all water-
sheds. Givenai andbi , SPI′i for each watershedi is calcu-
lated through

SPI′i = SPIi ×ai if SPIi > 0 (4)

SPI′i = SPIi ×bi if SPIi < 0 (5)

With the above procedure SPIi , time series of each water-
shedi are modified properly in order to include the infor-
mation of relative average precipitation among all the water-
sheds of the study area, resulting to the corresponding SPI′

i

time series. The second step includes the rescaling of SPI′

i

in order to meet the scale of SPIi , based on the coefficientsc
andd estimated through

max(SPIi)

max(SPI′i)
= c (6)

min(SPIi)

min(SPI′i)
= d (7)

where max(SPIi) is the maximum SPI value of all water-
sheds, min(SPIi) is the minimum SPI value of all watersheds,
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max(SPI′i) the maximum modified SPI value of all water-
sheds, and min(SPI′

i) the minimum modified SPI value of all
watersheds. Givenc andd, the SN-SPI calculation is defined
by

SN−SPIi = SPI′j ×c, if SPI′i > 0 (8)

SN−SPI′i = SPI′j ×d, if SPI′i < 0 (9)

Koutroulis et al. (2011) examined the sensitivity of the SN-
SPI to the variability of basin scale precipitation based on
the example of three hypothetical watersheds with different
mean annual precipitation.

2.3 Multiple linear regression (MLR)

The method of analysis used is the method of least squares
(LS), which is simply a minimization of the sum of the
squares of the deviations of the observed response from the
fitted response (Naoum and Tsanis, 2003). This involves the
initial assumption that a certain type of relationship, linear in
unknown parameters, holds. With precipitation being the de-
pendent (response) variable, the model function is of a speci-
fied form that involves both the predictor variables (elevation
and longitude) and the parameters. Interaction effects be-
tween the variables also can be considered. The unknown pa-
rameters are then estimated under certain other assumptions
with the help of available data so that a fitted equation is ob-
tained. While the equation might be physically meaningless,
it may, nevertheless, be extremely valuable for predicting the
values of some variables from knowledge of other variables,
perhaps under certain stated restrictions (Draper and Smith,
1998). The general form of the final model is

P = bo +b1x1+b2x2 (10)

whereP is precipitation (mm yr−1), x1 is elevation (m) and
x2 is longitude (km).

2.4 Cluster analysis

Cluster analysis is a multivariate method that aims to clas-
sify a sample of subjects (or objects) on the basis of a set of
measured variables into a number of different groups such
that similar subjects are placed in the same group. K-means
clustering (McQueen, 1967) comprises a prototype-based,
partitional clustering technique that attempts to find a user-
specified number of clusters (K), which are represented by
their centroids. The algorithm first selects initial cluster cen-
ters (essentially this is a set of observations that are far apart
– each subject forms a cluster of one and its center is the
value of the variables for that subject). Each object is as-
signed to its “nearest” cluster, defined in terms of the dis-
tance to the centroid and after the formation of the centroids
of the clusters, the distance from each object to each centroid
is re-calculated moving observations to the “nearest” cluster

once again. (Tan et al., 2006). This process is repeated un-
til the criterion function converges and the centroids remain
relatively stable, forming permanent clusters (Struyf et al.,
1997). The algorithm aims at minimizing the sum of squared
Euclidean distances, forn data points andk centroids, im-
plicitly assuming that each cluster has a spherical normal dis-
tribution:

F =

k∑
j=1

n∑
i=1

|x
j
i −cj |

2 (11)

where |x
j
i − cj |

2 (squared Euclidean distance) is a chosen

distance measure between a data pointx
j
i and the cluster cen-

tercj , and represents an indicator of the distance of then data
points from their respective cluster centers.

The algorithm was applied with the use of the MATLAB
R2011b package, which also provides a graphical display of
the silhouette plot; the silhouette width [s(i)] was recom-
mended by Kaufman and Rousseeuw (1990) as a quality in-
dex allowing to select the number of clusters and validate the
effectiveness of the analysis. The silhouette width of thei-th
object is defined by

s(i) =
bi −ai

max{ai,bi}
(12)

wherea(i) is the average distance to other elements in the
cluster andb(i) the smallest average distance to other clus-
ters.a(i) is interpreted as how well matchedi is to the cluster
it is assigned (the smaller the value, the better the matching).
An s(i) close to one means that the data is appropriately clus-
tered. If s(i) is close to negative one, then the correspond-
ing data is probably in the wrong cluster. Ans(i) near zero
means that the elements are on the border of two natural clus-
ters.

3 Study area and data description

The island of Crete is located in the southeastern part of the
Mediterranean region and it is well known that it comprises
an area that has been characterized as one of the most drought
prone areas of Greece (Fig. 1). The island covers an area of
8336 km2; the mean elevation is 460 m and the average slope
is 22.8 %. Crete is divided into four prefectures, namely from
west to east: Chania, Rethymnon, Heraklio and Lassithi. The
mean annual precipitation is estimated to be 750 mm, which
varies from east – 440 mm (Ierapetra – elevation: 10 m) to
west – 2118 mm (Askifou – elevation: 740 m) and the poten-
tial renewable water resources reach 2650 Mm3.

The actual water use is about 485 Mm3 yr−1. The main
water use in Crete covers irrigation, with a high percentage
of 83.3 % of the total consumption. The domestic use, in-
cluding tourism, covers 15.6 % and the industrial use 1 % of
the total consumption (Region of Crete, 2002). The eastern
and southern parts are more arid than the west and north-
ern parts, as there is higher precipitation in the northwestern
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Fig. 1. Area of study, 56 stations used in MLR and 18 representative stations for SPI Crete, Greece.

coastal areas and lower in the southeastern part of the island,
a fact that confirms regional variations in water availability
(Chartzoulakis et al., 2005). There are significant effects
when the uneven spatial and temporal precipitation distri-
butions of Crete, although common in many Mediterranean
areas, are related to intensive agricultural activities and the
tourism industry (Tsanis and Naoum, 2003).

Monthly precipitation data was compiled by the WRDPC
service (Water Resources Department of the Prefecture of
Crete) for 56 precipitation stations (Fig. 1). The stations
mainly cover the eastern part of the island, which has a
higher level of agricultural activity than the western part. The
gauges were located at elevations that ranged from sea level,
in the prefecture of Iraklion (central Crete), to 905 m a.s.l, in
the prefecture of Lassithi (eastern Crete) (Region of Crete,
2009). These data cover a thirty (30) year time period for
each month of the hydrological year (September to August),
from 1974 to 2005.

In order to simplify calculations, a relative coordinate sys-
tem was defined by locating an origin (0,0) at the lower
left corner of the island at latitude 3 800 000 m and longi-
tude 461 000 m. GGRS87-Greek Geodetic Reference Sys-
tem 1987 was the coordinate system used. AllY coordi-
nates employed in the regression were hence the result of
subtracting 3 800 000 from the original latitudes of the dif-
ferent stations and dividing by 1000 to obtain latitudes in
km. Similarly, allX coordinates were derived by subtracting
461 000 from the original longitudes of the different stations
and dividing by 1000 to obtain longitude values in km. This
manipulation of coordinates was important when perform-
ing the regression analysis. Large numbers for latitude and
longitude could result in small values for model parameters
(bi) and any small error could result in significant changes
in the model output. It is then more practical to put all vari-
ables into approximately the same order of magnitude to en-
sure that they receive appropriate weighting in the multiple
regression analysis.

Geographic Information System (GIS) technology, rep-
resented by the commercial package ArcView GIS 10,
was used to provide the tools for spatial data manage-
ment and to generate maps, including the Digital Eleva-
tion Model (DEM). DEM comprises the source of spatially
gridded data developed by the Greek Army Geographical
Service, with a cell size of 30 m, resulting in a grid of
8723 columns and 3304 rows.

4 Results and discussion

Two parameters (elevation and longitude) were adopted to
perform simple linear regression individually for 55 stations.
The station of Askifou was excluded from this method in or-
der to obtain more reasonable results, as Askifou (with el-
evation 740 m) exemplifies a special case of a region with
orographic precipitation. The island was divided into three
parts (northern, south-central and eastern), so as orientation
of topography factors was taken into account. Upon examin-
ing the correlation between precipitation and elevation, tak-
ing into consideration the three parts, it was found that the
regression plot for all stations justifies the positive correla-
tion (Fig. 2a). The plot based on elevation provided a more
physically meaningful interpretation of the effect of this vari-
able on precipitation; the presence of the orographic effect at
high elevations. On the other hand, further analysis covering
the parameter of longitude showed that there is a negative
trend between the aforementioned parameter and precipita-
tion (Fig. 2b). The noticeable downward gradient of precipi-
tation from one part to another denotes statistical evidence of
the geographical factor. In other words, the decrease of pre-
cipitation is responsive to longitude increasing. It is then ver-
ified that topographic and geographic factors determine the
spatial association in precipitation variations. More specifi-
cally, the precipitation magnitude decreases in west-east di-
rection and increases in elevation by as much as 400 mm.
Previous studies that tested statistical models relating annual
precipitation to elevation or longitude (Naoum and Tsanis,
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Fig. 2. (a) Elevation versus mean annual precipitation plot and
(b) Longitude versus mean annual precipitation plot for Crete.

2004) showed that the best results were obtained were both
elevation and longitude.

Therefore, simple and multiple linear regressions were
used to study the level of association between the two vari-
ables for a thirty year period, from 1974 to 2005 (Table 2).
The database of precipitation was used to generate and apply
the regression models. The regression equations were pro-
duced for the 55 stations, representing the whole island. Sim-
ple linear regression was carried out considering just eleva-
tion as a explanatory variable and the additional independent
variable of longitude was introduced in order to construct
a more efficient model. The coefficient of determination
(R2) was used to determine the adequacy of the regression
equation. The regression analysis showed that 1989–1990
represents the year with the minimum precipitation amount
(499 mm) and 2002–2003 was the year with the maximum
precipitation amount (1423 mm); moreover, an average year
was taken into account (1978–1979, 902 mm). TheR2 varied
between 9 % and 42 % for the one-variable model (maximum
in 2004–2005) while a range ofR2 23 % to 53 % was ob-
tained for the two-variable model (maximum in 1974–1975).
The R2 values significantly increased when longitude was
added to the model, a fact that comprises a possible sign of
model improvement.

Subsequently, the regression analysis was carried out for
the three subareas (northern, south central and eastern parts)
for the three representative years (Table 3). The relationship
between precipitation and elevation was not as strong for the
whole island (55 stations) as it was for individual parts, es-
pecially the eastern part for all years assessed, except 2002–
2003. This was attributable to the relatively high elevations
of stations in this part, which was likely to result in a higher
association than the other parts (R2 up to 79 % for 1989–
1990). Developing separate regression equations and still

Table 2. Simple and two-variable linear regression for 55 stations,
regarding each year of 1974–2005. The years 1989–1990 and 2002–
2003 are in bold as years with the minimum and maximum precipi-
tation amount, respectively.

Years b0 b1 b2 R2 Extracted
precipitation

(mm)

1974–1975 555.39 0.58 38 % 834
795.89 0.57 −1.70 53 % 832

1975–1976 728.52 0.56 23 % 996
1045.06 0.54 −2.23 39 % 995

1976–1977 422.99 0.52 21 % 672
652.21 0.51 −1.62 31 % 671

1977–1978 807.58 0.99 38 % 1283
1196.40 0.97 −2.74 51 % 1281

1978–1979 572.08 0.68 40 % 902
704.94 0.68 −0.94 43 % 901

1979–1980 633.64 0.67 27 % 958
797.29 0.67 −1.15 31 % 957

1980–1981 703.19 0.64 29 % 1014
1073.96 0.63 −2.61 49 % 1012

1981–1982 680.11 0.58 23 % 958
1091.89 0.56 −2.90 48 % 956

1982–1983 452.91 0.55 28 % 719
672.12 0.54 −1.55 37 % 718

1983–1984 627.88 0.59 35 % 911
854.07 0.58 −1.59 46 % 910

1984–1985 695.33 0.62 34 % 993
901.37 0.61 −1.45 42 % 992

1985–1986 432.43 0.39 23 % 619
620.85 0.38 −1.33 34 % 618

1986–1987 778.09 0.48 12 % 1012
918.45 0.48 −0.99 14 % 1011

1987–1988 525.55 0.73 31 % 875
689.26 0.72 −1.15 35 % 875

1988–1989 515.68 0.46 21 % 736
750.35 0.45 −1.65 33 % 735

1989–1990 354.84 0.30 23 % 499
503.14 0.29 −1.05 36 % 498

1990–1991 521.82 0.36 21 % 697
642.24 0.36 −0.85 25 % 696

1991–1992 590.59 0.49 16 % 828
847.79 0.48 −1.81 25 % 827

1992–1993 421.71 0.36 16 % 597
693.86 0.35 −1.92 34 % 596

1993–1994 504.21 0.58 31 % 785
768.15 0.57 −1.86 44 % 784

1994–1995 566.77 0.70 31 % 903
601.28 0.70 −0.24 32 % 903

1995–1996 688.61 0.61 29 % 980
925.34 0.60 −1.67 39 % 979

1996–1997 635.13 0.64 17 % 943
1077.78 0.62 −3.12 34 % 941

1997–1998 543.22 0.73 29 % 897
821.98 0.72 −1.96 39 % 896

1998–1999 648.11 0.43 9 % 856
1099.23 0.42 −3.18 29 % 854

1999–2000 424.11 0.37 16 % 605
690.94 0.37 −1.88 33 % 604

2000–2001 578.34 0.62 24 % 876
978.52 0.60 −2.82 46 % 875

2001–2002 632.34 0.63 17 % 934
843.34 0.62 −1.49 21 % 933

2002–2003 1050.17 0.77 18 % 1423
1552.64 0.76 −3.54 35 % 1421

2003–2004 656.62 0.57 23 % 933
714.85 0.57 −0.41 23 % 933

2004–2005 499.13 0.65 42 % 811
615.34 0.64 −0.82 45 % 810
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using elevation and longitude as the predictor variables for
the three divisions of Crete, the analysis provided even more
descriptive models.

Results reported by Naoum and Tsanis (2003) demon-
strated that, for a typical dry year, the island of Crete would
receive up to 800 mm of precipitation; for an average year,
precipitation has a range between 800 and 1100 mm and fi-
nally for a wet year, the island would receive precipitation
greater than 1100 mm. Based on these values, the range
of elevation–precipitation gradient (b1) is 0.26–0.49, 0.72–
0.96 and 0.5–1 mm m−1 for minimum, maximum and aver-
age precipitation years, respectively. The range of longitude-
precipitation gradient (b2) for a minimum precipitation year
is −2.03 to 0.23 mm km−1, −8.20 to−0.86 mm km−1 for a
maximum precipitation year and−3.23–0.93 mm km−1 for
an average year. In brief, the results show that there is a gen-
eral increase in the coefficient of determination from the one-
variable equation to the two-variable equation for all years
under study.

Following the multiple linear regression method, Table 4
summarizes the precipitation characteristics of 55 stations.
There is clear indication that in terms of average values, the
south-central part experienced 5 % less mean annual precip-
itation than the eastern part and 23 % less than the north-
ern part. During the year 1989–1990, the south-central part
was characterized by 7 % and 29 % less precipitation than the
eastern and northern part, respectively. It is also confirmed
that during 2002–2003 the eastern part received 13 % and
24 % less precipitation than the south-central part and north-
ern part. After merging both south-central and eastern parts,
considering the low difference percentages, there is obvious
statistical evidence of the decreasing longitude-precipitation
gradient. However, differences between stations with differ-
ent elevations relate to the orographic effect, so stations with
high elevation represent higher precipitation values.

Multiple linear regression results are graphically demon-
strated with the generation of maps in GIS. Each cell of the
grid represents a precipitation value according to the pro-
duced regression models and the DEM. Figure 3a indicates
the spatial distribution of precipitation for a long-term 30-yr
average, obtained by the multiple linear regression method.
Taking into account the minimum precipitation year 1989–
1990, the precipitation shortage was derived from the differ-
ence between the precipitation of a 30-yr average at each cell
and the precipitation of the year 1992–1993 at each cell as
well (Fig. 3b). Considering the maximum precipitation year
2002–2003, the precipitation excess was the result of the dif-
ference between the precipitation of a 30-yr average at each
cell and the precipitation of the year 2002–2003 (Fig. 3c).
During 1989–1990, the mean annual precipitation was af-
fected by elevation less than the mean annual precipitation
of the 30-yr average, as shown in Table 3 (bmin

1 < b
long−term
1 ).

This explains the fact that the precipitation shortage for the
“dry” year was greater at high elevations. Contrarily, for the

(b)

(a)

(c)

Fig. 3. Spatial distribution of(a) precipitation for a long-term aver-
age of the period 1974–2005,(b) precipitation shortage concerning
the year 1989–1990 and(c) precipitation excess concerning the year
2002–2003.

“wet” year, elevation affected more the mean annual precipi-
tation (bmax

1 > b
long−term
1 ). The downward gradient of precip-

itation from west to east was weaker for the “dry” year when
compared to the 30-yr average (|bmin

2 | < |b
long−term
2 |). On the

other hand, during the “wet” year, precipitation decreased at
a higher rate from west to east (|bmax

2 | > |b
long−term
2 | > |bmin

2 |)

and as a result the precipitation excess was higher in the west-
ern part. This denotes that the orographic effect was stronger
during the wet year in the western part of Crete.

Regarding the spatial distribution of flood events over
Crete (1990–2007), 66 % of them were reported for west-
ern Crete region, while the rest of the 34 % were reported
for eastern Crete (Koutroulis et al., 2010). The east to west
precipitation gradient can be attributed to the regional NW
to SE dominant meteorological atmospheric patterns and the
higher elevation and steepest slope morphology of western
Crete in comparison to the eastern region of the island.

Long period characteristics, represented by 48-month time
scale values of SN-SPI, were calculated for six (6) repre-
sentative stations in order to provide an overview of pro-
longed drought occurrences in relation to the factor of eleva-
tion and longitude during the period 1974–2005. The results
of drought analysis on the island of Crete during this period
show a definite tendency towards prolongation and greater
severity of drought episodes. Figure 4 illustrates the drought
conditions of two representative stations in the north-western
part of Crete. The period 1988–1997 was recorded to be
a period of drought for both stations, with a greater inten-
sity in Kalives. It is rather obvious that the sensitivity of
precipitation variability is depicted in the index results. The
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Table 3. Simple and linear regression for Crete and its parts for different years. The highestR2 values are in bold.

Spatial extent Number of stations b0 b1 b2 R2

Min precipitation year 1989–1990 Crete 55 354.84 0.30 – 23 %
55 503.14 0.29 −1.05 36 %

north 17 609.29 0.26 −1.36 26 %
south-central 20 555.68 0.26 −2.03 35 %
eastern 18 231.35 0.49 0.2379 %

Max precipitation year 2002–2003 Crete 55 1050.17 0.77 – 18 %
55 1552.64 0.76 −3.54 35 %

north 17 1656.06 0.72 −3.98 17 %
south-central 20 2034.33 0.85−8.20 51 %
eastern 18 1012.87 0.96 −0.86 39 %

Average precipitation year 1978–1979 Crete 55 572.08 0.68 – 40 %
55 704.94 0.68 −0.93 43 %

north 17 982.88 0.81 −3.23 64 %
south-central 20 733.76 0.50 −1.78 49 %
eastern 18 323.59 1.00 0.9470 %

Long-term 1974–2005 Crete 55 609.33 0.55 – 29 %
55 850.16 0.54 −1.70 41 %

north 17 1040.35 0.68 −3.30 49 %
south-central 20 1030.50 0.48−3.90 42 %
eastern 18 599.00 0.72 −0.35 67 %

SN-SPI behaves in a similar way to the SPI; however, a sig-
nificant difference lies in the fact that the SPI is temporally
comparable, but the SN-SPI is spatio-temporally comparable
among different areas with different mean total annual pre-
cipitations. Obviously, the difference between the indices
appears mainly at the peaks of the time series. The SN-
SPI presents Palea Rumata as less dry during 1988–1997,
and Kalives as less wet during 1980–1985 and 1999–2004.
In the case of Palea Rumata (1267 mm), normalization took
place during dry conditions (1988–1997) whereas in Kalives
(742 mm) normalization was obvious during wet conditions
(1980–1985, 1999–2004). SN-SPI values present Palea Ru-
mata with mildly dry conditions and Petras with mildly wet
conditions during the aforementioned periods. Stated in the
simplest terms, the same SPI value occurs for different pre-
cipitation levels and, therefore, these stations cannot be com-
pared via SPI. On the other hand, different SN-SPI values
occur for different precipitation levels. The spatial pattern of
precipitation of Kalives indicates the correlation between the
low precipitation values of 1987–1989 and the SN-SPI nega-
tive peaks during 1991–1993 (as the 48-month index utilizes
the precipitation total for 48 months).

The south-central stations experienced a drought period
during 1988–1995, while Pompia was characterized by a
mildly dry period during 1999–2002 (Fig. 5). Normaliza-
tion took place for Gergeri during dry conditions and for
Pompia during wet conditions. The severe drought spell of
Pompia was a result of the low recorded precipitation during

1989–1990. Finally, as Fig. 6 shows, the eastern part of
Crete experienced the most long-term drought period (Sitia,
464 mm) that signs its beginning in 1990 and ends in 2003
with no intervals. It is important to stress that Agios Geor-
gios (1016 mm) had three drought periods and appeared the
aforementioned drought period 8 yr earlier (1982). There
was also a significant normalization for the wet periods for
both stations. The precipitation variability revealed very low
values for Sitia during the referring periods and a correspon-
dence between the lowest peak of the index and the precipi-
tation amount 48 months before. As a result, the additional
drought period at the southern and eastern part was justified
by the combination of the regional atmospheric patterns and
the morphological variability among different parts of the is-
land as stated by Koutroulis et al. (2010). Graphical exami-
nation of spatial evolution of drought confirms that the east-
ern part suffers more than the rest of the island from dry con-
ditions. Generally speaking, for the 30-yr period, there are
26 stations with downward precipitation trend, 24 followed
upward precipitation trend while 6 remained stable.

Similarities in time series of the SN-SPI across stations
have been identified through SN-SPI drought months (SN-
SPI< 0); this calculation comprised the main component for
k-means cluster analysis with the use of MATLAB R2011b.
The multiple correlation carried out, including the parame-
ters of elevation and longitude for 55 stations, resulted in the
generation of 2 optimum clusters (Fig. 7a). The definition of
the number of the clusters a priori is a process that follows
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Table 4. Characteristics of the stations used.

Part of Stations Mean annual Elevation Longitude Min prec. Max prec. Average year
Crete precipitation (m) (km) year 1989–1990 year 2002–2003 1978–1979 Mean

(mm) Mean Precipitation Mean Precipitation Precipitation

North Palea Rumata 1267 316 18.7 640 1738 1282
Suda 614 152 52 356 930 608
Kalives 742 24 53.9 519 1411 720
Mouri 1108 24 64.7 695 1985 969
Rethimno 670 5 82.2 493 1058 –
Kavousi 1000 580 93.2 498 2189 1062
Voleones 1238 260 91.9 716 1869 1149
Spili 1182 390 87 807 1811 1087
Vizari 778 310 102.3 519 841 773
Gerakari 1336 580 95.3 602 2330 1235
Anogia 1035 740 118.8 629 955 1220
Krussonas 990 500 128.3 688 1448 965
Iraklio 480 39 139.9 289 728 455
Finikia 775 40 139.5 475 1555 655
Metaksochori 749 430 142.1 486 1392 1130
Voni 775 330 152.6 439 1256 920
Profitis Ilias 816 380 139.3 518 1579 717
Average 915 300 100 551 1475 902

South-central Agios Kirillos 545 450 122 251 1224 602
Kapetaniana 711 800 133.1 352 1442 785
Lefkogia 863 90 79.8 458 1524 654
Melabes 782 560 97.4 541 1359 783
Agia Galini 623 20 101.7 365 1210 554
Vorizia 1183 520 116.2 588 2162 1058
Lagolia 573 140 110.7 345 1210 565
Zaros 844 500 120.8 417 1603 795
Agia Varvara 975 570 129.9 552 1500 937
Gergeri 907 450 123.5 465 1700 772
Partira 677 400 150.5 391 1156 633
Asimi 607 200 139 350 972 718
Vagionia 546 190 130 311 874 647
Tefeli 737 360 144.9 487 1333 744
Achentrias 715 680 151.4 459 1234 712
Kalivia 601 200 151.3 357 1055 603
Demati 480 210 156 196 987 537
Moroni 709 400 121.1 363 1340 710
Pompia 516 150 117.5 255 1135 414
Pretoria 547 225 143.7 325 919 511
Average 707 356 127 391 1297 687

Eastern Kasteli 743 350 160.2 421 1200 873
Armacha 824 450 161.7 514 1290 898
Avdu 872 230 169.2 491 1739 1030
Kassanoi 582 320 159.1 380 893 576
Agios Georgios 1016 850 173.9 700 1137 –
Kalo Chorio 540 20 196.5 389 911 482
Malles 780 590 183.9 430 1234 920
Kapsaloi 743 10 165.7 208 780 –
Neapolis 810 240 184.8 477 933 890
Exo Potamoi 1425 800 178.6 731 2406 1592
Mithoi 584 200 184.2 311 945 594
Ierapetra 439 10 197 235 705 445
Pachia Ammos 592 50 203.8 301 1161 597
Stavrochori 803 325 215.9 435 907 936
Sitia 464 114 229.4 283 657 440
Maronia 670 150 228.8 425 1075 713
Katsidoni 914 480 233.1 510 1319 1173
Paleokastro 540 25 244.5 290 940 556
Average 741 290 193 418 1124 795
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(c)

(b)

(a)

Fig. 4. (a) Monthly precipitation time series for drought events
(b) 48-month time scale SN-SPI and(c) SPI for two representative
stations of north-western Crete based on the period 1974–2005.

the minimization of the average silhouette width after sev-
eral hypotheses (Fig. 7b). Then, the performance of multi-
ple runs, each with a different set of randomly chosen initial
centroids, led to the selection of the optimum set of clus-
ters. The cluster (1), which includes low elevations (31 sta-
tions) corresponds to a higher value of drought months (162)
in comparison with stations of high elevations (24 stations,
157 months, cluster 2), a fact that confirms the downward
gradient of drought appearance as the elevation increases.
The average silhouette width (0.72) indicates that a reason-
able structure has been found. There is clear indication that
cluster analysis results are connected to MLR results and jus-
tify the negative correlation between drought events and the
most important factor in the bivariate model of the precipita-
tion distribution, elevation.

(c)

(b)

(a)

Fig. 5. (a) Monthly precipitation time series for drought events
(b) 48-month time scale SN-SPI and(c) SPI for two representative
stations of south-central Crete based on the period 1974–2005.

5 Conclusions

Results of spatio-temporal precipitation analysis for the pe-
riod 1974–2005 for the island of Crete revealed valuable in-
formation within the context of drought occurrence. A posi-
tive rate between precipitation and elevation comprises a fact,
whereas a negative correlation lies between precipitation and
longitude. It is then deduced that amongst many topographic
and geographic factors, elevation and longitude strongly de-
termine the spatial association in precipitation variations.

The multiple linear regression method has been used to de-
velop correlations to estimate the spatial distribution of oro-
graphic precipitation for a complex territory such as that of
the island of Crete in Greece, using the parameters of eleva-
tion and longitude. The two-variable model is more reliable
and realistic, especially when dealing with a relatively small
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(c)

(b)

(a)

Fig. 6. (a) Monthly precipitation time series for drought events
(b) 48-month time scale SN-SPI and(c) SPI for two representative
stations of eastern Crete based on the period 1974–2005.

number of rain gauges. The coefficient of determinationR2

is lower when the one-variable model is used, whereasR2

is higher for precipitation when both dependent variables,
e.g. elevation and longitude, are used. Spatially, it was ob-
vious that precipitation is of orographic type (precipitation is
strongly correlated with elevation).

The SN-SPI was selected for the drought assessment as a
variant of the common tool of drought assessment SPI, but
represents a more suitable means of comparing drought con-
ditions between neighbouring areas of differing precipitation
heights, because the SN-SPI expands the meaning of the tem-
poral character of drought to its spatial relativity. It appears
that these new drought index values are reasonably compa-
rable in their local significance, both in space and time, in
contrast with SPI. The proposed methodology can evaluate
the precipitation deficit and thus can become a practical tool
for the assessment of regional drought events. Accordingly,
the SN-SPI was successfully evaluated in 6 representative
stations on the island of Crete for the period 1974–2005.
The SN-SPI analysis revealed that Crete has faced a main
drought period across the whole island and an additional

Fig. 7. Spatial separation of 55 stations using cluster analysis.
(a) Stations plot illustrating drought months as the dependent vari-
able and(b) silhouette plot of the clusters.

drought period at the southern and eastern parts. The ad-
ditional drought period at the southern and eastern part is
then justified by the combination of the regional atmospheric
patterns and the morphological variability among different
parts of the island. Cluster analysis confirmed the negative
correlation between drought events and elevation, a fact that
unifies the precipitation impact assessment on droughts. The
selected clustering method proved to be effective, giving the
opportunity to perform multiple runs until the optimum clus-
ter set was achieved.

The statistical tools that were used proved to be very effec-
tive in the evaluation of the spatio-temporal variability of pre-
cipitation and accordingly of drought on the island of Crete.
The combination of multiple methods, such as multiple lin-
ear regression, cluster and SN-SPI analysis offers a complete
study that could be used in the context of climate change im-
pact assessments.

Finally, the results signal an urgent need for the develop-
ment of strategic water management and preparedness plans
in all drought-prone areas in order to help mitigate most of
the effects. Water resources could be seriously affected by
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shorter rainy periods, with wide-ranging consequences for
local human societies and ecosystems. The impact of these
precipitation changes at the station level is required in order
to develop strategies in long-term water supply and demand,
and thus to attain sustainable water resource management.
A specific policy framework on droughts is provided by the
EU Water Framework Directive, which, in combination with
the presented methodology, could be used for assessing the
impact of climate change on water resources and, hence, for
developing strategies dealing with the predictability of the
phenomenon.

Edited by: R. Lasaponara
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