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Abstract. The results of the application of an unsupervised
learning (neural network) approach comprising a Self
Organizing Map (SOM), to distinguish micro-earthquakes
from quarry blasts in the vicinity of Istanbul, Turkey, are
presented and discussed. The SOM is constructed as a
neural classifier and complementary reliability estimator to
distinguish seismic events, and was employed for varying
map sizes. Input parameters consisting of frequency and time
domain data (complexity, spectral ratio, S/P wave amplitude
peak ratio and origin time of events) extracted from the
vertical components of digital seismograms were estimated
as discriminants for 179 (1.8 < Md < 3.0) local events.
The results show that complexity and amplitude peak ratio
parameters of the observed velocity seismogram may suffice
for a reliable discrimination, while origin time and spectral
ratio were found to be fuzzy and misleading classifiers
for this problem. The SOM discussed here achieved a
discrimination reliability that could be employed routinely in
observatory practice; however, about 6% of all events were
classified as ambiguous cases. This approach was developed
independently for this particular classification, but it could
be applied to different earthquake regions.

1 Introduction

Neural networks (NN) are one of the popular recent
mathematical/computational alternative techniques that have
been applied to seismic event classification problems (Taylor
et al., 1989; Falsaperla et al., 1996; Tiira, 1999; Del
Pezzo et al., 2003; Scarpetta et al., 2005; Yildirim and
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Horasan, 2008; Kuyuk et al., 2009). NN learning algorithms
can be categorized into three groups with respect to the
type of feedback to which the learner has access. These
are: (1) supervised learning, (2) reinforcement learning
and (3) unsupervised learning. Unsupervised learning
is distinguished from the others in that the learner is
given only unlabeled examples. Unsupervised learning
models include factor analysis, principal component analysis
(PCA), mixtures of Gaussians, independent component
analysis (ICA), hidden Markov models, state-space models
(Ghahramani, 2004), adaptive resonance theory (ART) and
many variants and extensions, but the SOM is the most
commonly used algorithm. In particular, for large-scale high-
dimensional data sets, a SOM allows a sensitive visualization
of the data by vector quantization and dimension reduction.
Based on the relatively simple SOM representation, further
processing, such as clustering or feature grouping, can be
achieved. Numerous methods exist in the literature for
the discrimination of different typologies of seismic events
(Gitterman et al., 1999; Joswig, 1990). In the seismological
context, recent studies have reported that the SOM may
offer a promising alternative classification method (Musil
and Plesinger, 1996; Allamehzadeh and Mokhtari, 2003;
Esposito et al., 2007).

In this study, the SOM method is applied to the
discrimination of earthquakes (EQs) and quarry blasts (QBs)
recorded by three seismic stations (ISK, CTT, HRT) in
Istanbul and its vicinity. The research area is located
in the Marmara region, northwest Turkey (Fig. 1). The
local MARNET network, which is operated by the Kandilli
Observatory and Earthquake Research Institute (KOERI) in
order to monitor and record the earthquakes in the Marmara
Region, was founded in 1976. These stations do not only
record earthquakes, but also record quarry blasts.
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 Fig. 1. Location map of earthquakes (filled gray colored circles) and quarry blasts (filled black colored stars) in the vicinity of Istanbul. ISK:
broad-band station (open triangle), CTT and HRT: short-period (filled triangles) stations, and quarries (open boxes). The sites of the main
quarries (I: Gaziosmanpasa: Cebeci and Kemerburgaz, II: Catalca, III: Omerli and IV: Gebze-Hereke) were determined from satellite data
(Musaŏglu et al., 2004) and field observations. MMF: Main Marmara Fault, CS: Cınarcık Segment of the MMF (Horasan et al., 2009).

The tectonic processes forming the Sea of Marmara and
its surrounding area are controlled by the North Anatolian
Fault Zone (NAFZ). NAFZ is a dextral strike-slip fault zone,
extending from the Karliova region to the Gulf of Izmit along
Anatolia, and south of Thrace as the Ganos Fault (Şengör et
al., 1985; Barka and Kadinsky-Cade, 1988). Many micro
and macro tectonic earthquakes have occurred due to the
NAFZ and its segments in the vicinity of Istanbul. A few
areas of quarrying are in operation in Istanbul and its near
surroundings: Gaziosmanpasa (Cebeci and Kemerburgaz),
Çatalca, Omerli, Gebze-Hereke (Musaoğlu et al., 2004).
Quarrying areas are illustrated in Fig. 1.

Currently, quarrying regularly contaminates the seis-
mograms recorded by the KOERI, National Earthquake
Monitoring Center (NEMC) seismic network. Accurate dis-
crimination between explosions in quarries and earthquakes
is important for analyzing active tectonic and seismic risk
of the region. Recorded explosions in the catalogues can
mislead scientists interpreting the active tectonics and can
lead to erroneous results in the analysis of seismic hazards
in the study area (G̈okaşan et al., 2002). Therefore, it is
important to distinguish QBs from EQs in the KOERI NEMC
seismicity catalogs.

The aim of this study was to apply one of the unsupervised
learning methods (in this case, SOM) for discriminating QBs
from tectonic EQs. It was found that the SOM technique
could be employed successfully using four discriminants for
classifying seismic events such as micro earthquakes and
quarry blasts.

2 Data and methods

Investigations performed by Horasan et al. (2006) around
Istanbul revealed that the number of events with magnitude
Md < 3 between 1995 and 2007 was affected by the
following two factors: (1) contamination of the seismicity
catalogs with blasts regularly created in quarries at certain
time intervals every day, and (2) the existence of imprecisely
reported seismic events with duration magnitude less than 3
in the seismicity catalogs (Horasan et al., 2009). From the
results of preliminary work, three factors needed to be taken
into consideration when deciding which methods are to be
used for the discrimination of QBs from EQs in the study
area.

First, utilization of satellite images may not be accurate
since the locations of quarries, especially in the western
part of the study area, are along the recently defined active
fault zone (Fig. 1) suggested by Gökaşan et al. (2002).
Second, utilization of the statistical distribution of seismic
events during daytime and night time hours (Wiemer and
Baer, 2000) may not be accurate since the seismic events
with magnitude less than 3 were not precisely reported by
KOERI NEMC for the study area. Third, information is
missing regarding the locations of QBs, blasting times and
the number of blasts from quarries, since these data have
not been reported to KOERI, NEMC on a regular basis; a
completely quarry blast-free seismicity catalog is therefore
not possible.
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In this study, four parameters widely used in literature
(amplitude peak ratio, power ratio, spectral amplitude ratio
and origin time) are considered (Pomeroy et al., 1982;
Bennett and Murphy, 1986; Baumgardt and Young, 1990;
Wüster, 1993; Gitterman et al., 1998; Wiemer and Baer,
2000). The vertical components of the digital velocity
seismograms (recorded by Istanbul, ISK, Catalca, CTT,
and Hereke, HRT, stations) of seismic events with duration
magnitude (Md) between 1.8 and 3.0 (KOERI, NEMC) that
occurred between 2001 and 2004 are used. Out of a total
of 179 seismic events, 16 were recorded at Catalca, 71 at
Gaziosmanpasa, 48 at Hereke and 44 at Omerli (Fig. 1). The
data (complexity, spectral ratio, S/P amplitude peak ratio)
used in this study were obtained from Horasan et al. (2006)
with the support of the Bogazici University Research Fund
(Project No: 05T202).

The four parameters investigated in the analysis are
defined as follows:

1. Complexity (C) is the ratio of integrated powers of
the seismogram in the selected time windows (t1 = 2 s;
t2 = 4 s; to is the onset time of the P-wave).C can be
expressed as follows (Arai and Yosida, 2004):

C =

∫ t2

t1

a2(t)dt

/∫ t1

t0

a2(t)dt (1)

The limits of the integrals ofC given in Eq. (1) were
determined by a trial-and-error approach to find the best
representativeC values for both blasts and earthquakes.
The integrals were computed separately for the ISK,
CTT and HRT seismic stations. The complexity has
a higher value for earthquakes because the S-wave
amplitude of the earthquake waveform is greater than
the P-wave amplitude.

2. Spectral ratio (Sr) is the ratio of integrated spectral
amplitudesa(w) of the seismogram in the selected
frequency bands (high frequency band,f1 − f2: 5–
10 Hz; low frequency band,f0 −f1: 1–5 Hz). Sr can
be written as (Gitterman and Shapira, 1993):

Sr=
∫ f2

f1

a(w)dw

/∫ f1

f0

a(w)dw (2)

The limits of integrals (f0, f1, f2) were determined by
comparing the spectra of quarry blasts with those of
earthquakes.

3. S/P ratio is the relative ratio of the amplitudes of
S-waves to those of P-waves. This parameter was
obtained from the P- and S-wave peak to peak amplitude
measurements of the seismograms using GURALP
visualization program Scream 4.3. The peak ratio of S-
to P-waves is smaller for quarry blasts, since the S-wave
amplitude of the seismogram is smaller than the P-wave
amplitude.

Table 1. Fundamental descriptive statistical information about the
data and their ranges.

Complexity Spectral S/P Time
Ratio (hour)
(Sr)

Maximum 22.1300 9.3000 4.4660 23.0000
Minimum 0.2040 0.1500 0.0600 1.0000
Mean 2.4413 1.9191 0.9300 12.2849
Standard

3.7338 1.3643 0.8482 3.8457deviation

4. Time refers to the origin time of an event. The number
of seismic events in the quarries increased during the
day (7 a.m.–4 p.m. GMT, or 9 a.m.–6 p.m. LT), coinci-
dent with regular blasting hours of the quarries (Horasan
et al., 2009).

Table 1 shows statistical values of these parameters.

2.1 Self Organizing Map (SOM)

A SOM is in the competitive Artificial Neural Networks
(ANNs) category, has no hidden layer, and contains no non-
linear activation function. Therefore it is strictly linear
in its response (Kohonen, 1990). A SOM carries out
unsupervised learning with sets of unknown categorized
data and discovers classes by clustering inputs according to
various similarity criteria. Namely, competitive ANNs are
capable of discerning the common features or topology of
different input vectors without any subsidiary information.
Thus, methods like clustering or feature grouping can be
carried out easily using a SOM representation.

The SOM algorithm uses Euclidian metrics to measure
distances between vectors; thus, before training, input data
are firstly linearly normalized. Linear initialization and a
batch training algorithm are performed. Regression of an
ordered set of model vectorsϕi into the space of observation
vectorsk is executed by the following process:

ϕi(t +1) = ϕi(t)+0c(r),i (k(t)−ϕi(t)) (3)

where t is the step index, whereby the regression is
performed recursively for each presentation of a sample of
k. Index c (“winner”) is defined by the condition

‖ k(t)−ϕc(t) ‖ ≤‖ k(t)−ϕi(t) ‖ (4)

where 0c(r),i is the neighborhood function, a kind of
smoothing kernel that is time-dependent and with a location
dependent on the condition in Eq. (3). It is a minimizing
function of the distance between thei-th andc-th models
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(a) (b) (c)

(d) (e)

Fig. 2. SOM Visualization of predictions and data (7×7 map size). Component planes:(a) complexity,(b) spectral ratio (Sr),(c) S/P ratio,
(d) time and(e) map unit labels. In Fig. 1e QB and EQ represent quarry blasts and earthquakes, respectively. Unlabeled cells could not
clustered by the method. Five figures have connection by position; the hexagon in a certain position corresponds to the same map unit in
each figure. The lightness of the colors increases with indicator value. Two components, complexity and S/P ratio have a strong correlation
with the label node matrix.

on the map grid. The neighborhood function is taken as
Gaussian;

0c(r),i = α(t)exp
(
−‖ki −kc‖

2
/

2η2(t)
)

(5)

whereα(t) is the learning rate, which decreases with each
step, and is between 0 and 1.ki , kc are the vectorial locations
in the display grid andη(t) corresponds to the width of
the neighborhood function (Kohonen, 1997; Kohonen et
al., 1996). A MATLAB1 based SOM Toolbox developed
by the SOM Toolbox team, Laboratory of Computer and
Information Science (Helsinki University of Technology,
Finland) was utilized for analysis. Further information
can be obtained from the technical manual of the toolbox
(Technical manual, 2000).

3 Results and discussion

Parameters derived from time- and frequency-domain anal-
yses of the seismograms (amplitude peak ratio, power ratio,
and spectral amplitude ratio) were used for discrimination.
Discriminative parameters are illustrated in Fig. 2, where
component planes and corresponding map unit labels are
provided. The labels in hexagons of the label matrix show
the corresponding neuron. The units are very close to their
neighbors in the bottom-left corners of complexity, Sr and

1MATLAB software, ©1994–2010 The MathWorks, Inc.

S/P ratio. A border can also be seen between the top
2 neurons and the remainder for complexity and S/P ratio.
The map unit in the top-right corner has high values for
the same two parameters. Moreover, high values in the
top left corners were observed for time and for spectral
ratio. Visually, there is a strong correlation between the
classification of events with complexity and with S/P ratio.

The projection of the parameter set onto the subspace
spanned by its two eigenvectors with greatest eigenvalues is
shown in Fig. 3 for different map-sizes. The two labels have
been plotted such that red stars indicate earthquakes and blue
askterisks represent quarry blasts. The SOM grid has been
projected onto the same subspace. Neighboring map units
are connected with gray lines. Labels associated with map
units are also shown on nodes (neurons) as EQs and QBs.
The distrubition of the data set is compatible with the SOM.
Figure 3a, b, c, d, e and f corresponds to 6×6, 8×8, 10×10,
12× 12, 14× 14 and 20× 20 map sizes, respectively. As
the map-size is enlarged, the SOM algorithm adapts to the
distribution of the input data while the the number of nodes
without labels increases. Node density is boosted around
events with increments of map-size.

The four variables represented by bar charts for each map
unit (hexagons) in Fig. 4 are complexity, spectral ratio, S/P
ratio and time, respectively. For better representation, each
parameter was normalized by dividing by the maximum
value of each set. Color indicates the classes: red, green and
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(e) (f)

Fig. 3. SOM and projection of the seismic events onto the subspace spanned by its two eigenvectors with greatest eigenvalues for different
map-sizes. Red stars indicate earthquakes (EQs) and blue asterisks represent quarry blasts (QBs). Neighboring map units are connected with
gray lines. Labels associated with map units are also shown on nodes (neurons). Parts(a), (b), (c), (d), (e), (f) correspond to 6×6, 8×8,
10×10, 12×12, 14×14 and 20×20 map-sizes, respectively. As the map size is enlarged, the SOM algorithm adapts to distribution of the
input data.
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Fig. 4. Clustering results of the 7× 7 dimension SOM. Red,
green and black hexagons indicate earthquakes, quarry blasts
and unlabeled events. The bar charts in each map unit show
the normalized values of complexity, spectral ratio, S/P and
time, respectively. Bar chart values are correlated with event
discrimination. Values of the first and third bars, which indicate
complexity and S/P ratios, respectively, in red cells (earthquakes)
are higher than corresponding bars in green cells (quarry blast).

(a)

Fig. 5. Red stars indicate earthquakes and blue asterisks represent
the quarry blasts; gray lines show the connections between
neighboring map units. Red, blue and black circles located at
the nodes indicate earthquakes, quarry blast and unlabeled events,
respectively, and are classification results from the SOM.(a)
Scatter plot of four discrimanants in four dimensions; marker size
represents the forth component, time. Large markers indicate late
seismic activity. Parts(b), (c), (d) are the projections onto the
corresponding parameters (axes are log scale).

black hexagons indicate EQs, QBs and ambiguous events.
There were 49 nodes in the SOM. Three nodes could not
be distinguished by the algorithm, so the model yielded a
success rate of about 94%. Complexity and S/P ratio (first
and third bars) were higher for EQs, and lower for QBs.

Projections of the 3-D plot illustrated in the top left are
given in Fig. 5b, c, and d (logarithmic scale). The three

(b)

(c)

(d)

Fig. 5. Continued.

coordinates represent the first three variables and the size
of the marker shows the size of the fourth variable, time.
Red stars indicate EQs and blue stars indicate QBs. Circles
represent the map units (neurons) of the SOM. Nodes are
classified into two classes after training. Black circles
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indicate that the SOM could not decide whether the node
belongs to EQs or QBs. Earthquakes occurring in the
evenings are shown as larger stars. However, there was
no direct correlation between time and event discrimination.
Spectral ratio is a fuzzy parameter for this event as there was
no correlation for high/small values in Fig. 5b. However,
both spectral ratio and complexity were better discrimanants,
as there was a linear link as shown in Fig. 5c and d.

The SOM investigated here achieved a discrimination
reliability that could be employed in observatory practice;
however, about 6% of all events were classified as ambiguous
cases. The accuracy might improve with other preprocessing
strategies of data such Linear Prediction Coding, wavelet
techniques, etc. (Esposito et al., 2006).

4 Conclusions

The presence of quarries in an active seismic zone can
cause errors during the analysis of the distribution of micro
seismicity and the editing of seismic catalogs. This study
demonstrated that the SOM technique is able to discriminate
EQs from QBs using relevant data sets in the study
area. The SOM algorithm proposes a model that optimally
describes the domain of (discrete or continuously distributed)
observations. The model is organized into a consequential
two-dimensional order in which related models are closer to
each other in the grid than the more different models. Thus
the SOM is a kind of relationship graph, or a clustering
diagram. Its computation is a nonparametric, recursive
regression process. The data sets computed from the vertical
component of waveform (including EQs and QBs) were
recorded in Istanbul and its vicinity between 2001 and 2004
at three stations. From the results obtained, the proposed
SOM model appears to be an efficient tool for distinguishing
seismic events.
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