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Abstract. This case study deals with a rock face monitoring
in urban areas using a Terrestrial Laser Scanner. The
pilot study area is an almost vertical, fifty meter high cliff,
on top of which the village of Castellfollit de la Roca is
located. Rockfall activity is currently causing a retreat of
the rock face, which may endanger the houses located at its
edge. TLS datasets consist of high density 3-D point clouds
acquired from five stations, nine times in a time span of
22 months (from March 2006 to January 2008). The change
detection, i.e. rockfalls, was performed through a sequential
comparison of datasets. Two types of mass movement
were detected in the monitoring period: (a) detachment of
single basaltic columns, with magnitudes below 1.5 m3 and
(b) detachment of groups of columns, with magnitudes of
1.5 to 150 m3. Furthermore, the historical record revealed
(c) the occurrence of slab failures with magnitudes higher
than 150 m3. Displacements of a likely slab failure were
measured, suggesting an apparent stationary stage. Even
failures are clearly episodic, our results, together with the
study of the historical record, enabled us to estimate a mean
detachment of material from 46 to 91.5 m3 year−1. The
application of TLS considerably improved our understanding
of rockfall phenomena in the study area.

1 Introduction

A rockfall, which is a fragment of rock detached by sliding,
toppling or falling, falls along a vertical or sub-vertical cliff
and proceeds down slope by bouncing, rolling or sliding
(Varnes, 1978). Minor scale rockfalls (up to several hundred
cubic meters) are the most frequent type of landslide on
steep slopes in mountain areas (Copons and Vilaplana,
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2008), marine cliffs (Rosser et al., 2005b) and rock faces.
Magnitude, frequency, spatial location and velocity of the
rockfalls are the main parameters for a rockfall hazard
assessment (Varnes, 1978).

The possibility of acquiring datasets of the terrain surface
with a high accuracy and high spatial resolution, either using
laser, optical or radar sensors mounted on terrestrial, aerial
or satellite equipment are currently opening up new ways
to visualize, model and interpret Earth surface processes.
Ground-based sensors, e.g. Terrestrial Laser Scanners (TLS),
obtain their maximum resolution on surfaces perpendicularly
oriented to the beam incidence angle, such as mountainous
rock faces, marine cliffs, etc. TLS is one of the most promis-
ing remote sensing techniques for rock slope characterization
and monitoring because of its capability to accurately acquire
dense three-dimensional (3-D) coordinates of the terrain
(e.g. Biasion et al., 2005; Bauer et al., 2005; Oppikofer
et al., 2008). A recent review of these techniques can be
found in SafeLand Deliverable 4.1 (2010) and Jaboyedoff et
al. (2010). TLS is currently being used by different groups in
the monitoring and hazard assessment of slope movements.
Its main applications in the field of rock slope studies concern
the characterization of 3-D discontinuities (Jaboyedoff et al.,
2007; Sturzenegger and Stead, 2009) and change detection,
e.g. rockfalls (Rosser et al., 2005a; Lim et al., 2006; Abellán
et al., 2010), rock avalanches (Dunning et al., 2009) and
soil slides (Teza et al., 2007; Monserrat and Crosetto, 2008;
Prokop and Panholzer, 2009). Recent studies highlight the
applicability of TLS to the estimation of the retreat rates of
different rock slopes: Rabatel et al. (2008) quantified the
volume of the main rockfalls on the east face of the Tour
Ronde, Mont Blanc massif; Oppikofer et al. (2008) discussed
the movement of various blocks and the final collapse of a
rock spur on the eastern flank of the Eiger peak (Swiss Alps);
Lim et al. (2009) studied the erosion rates of a rocky coastal
cliff at Staithes, North Yorkshire (UK) and the influence
of environmental variables during a two year monitoring
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Fig. 1. (a)Location of the village and the basaltic formation at Castellfollit de la Roca (Garrotxa Volcanic Field, NE Spain).(b) Perspective
view with indication of the scanned rockface.(c) Synthetic stratigraphic sequence modified from Pallı́ and Trilla (1976). Thickness∼ 45 m.
See Table 1 for a description of the geological levels (from A to I).(d) Panoramic view of the north face of the basaltic formation at
Castellfollit de la Roca. Houses located on the edge of the cliff are visible.

period. Finally, Dewez et al. (2009) analyzed the erosion
rates on a 700-m long coastal chalk cliff in Normandy.
We provide here a case study of the application of TLS
technology to the monitoring of a basaltic rock face, at the
top of which the village of Castellfollit de la Roca is located
(Catalonia, Spain, Fig. 1a). The interest of this study lies in
the application of this technique in urban areas since little
has been published before on this topic (e.g. Pieraccini et al.,
2006).

From a geomorphological point of view, rockfalls cur-
rently constitute the main failure mechanism at the rock face.
The rockfall and hence the rock face retreat could pose an
important risk to houses located on the edge of the cliff.
The aims of the study are: (a) to detect and characterize
rockfalls during the monitoring period through a comparison
of sequential TLS datasets; (b) to establish a cliff retreat rate.
Moreover, a metre scale crack was detected parallel to the
rock face (Fig. 1c). This crack constitutes the detachment
area of a probable rock slab. As a consequence, the following
aim was added to the previous list: (c) to determine the rate
of crack opening during the TLS monitoring period.

1.1 Study area

The village of Castellfollit de la Roca is located at the
top of a Quaternary basaltic formation bounded by two
scarps (see Fig. 1a). The Rock face is currently one of the

main geomorphological highlights of the Natural Park of
the Garrotxa Volcanic Field (GVF). This basaltic elevation
is located between two rivers: river Fluvià towards the
north and river Turonell towards the south. The basaltic
formation is made up of two lava flows (Table 1 and Fig. 1c):
the upper lava flow (units A, B, C, and D, Table 1) and
lower lava flow (units E, F, and G). Dating these flows
using the K-Ar method yielded ages of 192000±25000 and
217000±35000 years BP, respectively (Donville, 1973; ICC
et al., 2007). These units are linked by an irregular deposit
formed by pyroclasts and a paleosoil (Pallı́ and Trilla, 1976;
Mallarach and Riera 1981). Table 1 gives a description
of the different layers from the viewpoints of geology and
engineering geology (modified form Pallı́ and Trilla, 1976;
Mallarach and Riera, 1981; Martı́ et al., 2000; Mascort et al.,
2004; ICC et al., 2007).

1.2 Historical inventory of rockfalls

Table 2 shows the historical record in the 30 years prior to the
monitoring period: 1976–2006. According to the historical
record and monitoring campaigns, mass movements in the
study area can be classified as follows:

1. Detachment of single columns (Fig. 2a). The magnitude
of this type of event is characterized by volumes
below 1.5 m3. As discussed below, our results show a
frequency higher than that in the historical record.
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Table 1. Main geological and geomechanical characteristics of the stratigraphic sequence.

Lithological units Thickness Geological description(1) Geomechanical description(2)

(A)

U
pp

er
la

va
flo

w

8∼ 10 m Basalts. Massive structure. Partially weathered and transformed into soil
in the upper part (Ros et al., 1996). A weakening
of the geomechanical properties and an increase
in porosity is to be expected.

(B) 8∼ 10 m Basalts. Columnar jointing: Discontinuities result from contraction upon
hexagonal pattern. cooling of the lava flow, giving rise to single

(C) 5 m Basalts. Wavy prismatic structure. columns. These discontinuities control
(D) 5 m Basalts. Columnar jointing: the stability of the blocks. Overhanging parts

hexagonal pattern (same as unit B). may affect the local stability of the rock face.

(P)

P
al

eo
-s

oi
l 0.5∼ 1.5 m Irregular layer of clays and pyroclasts Weakness unit (low mechanical properties).

in the lower part. The upper part contains Pyroclasts are not cemented together.
a paleosoil and unconsolidated sediments. Furthermore, the paleosoil in the upper

part is unconsolidated. In this layer,
porosity is higher than in other layers.

(E)

Lo
w

er
la

va
flo

w

3∼ 4 m Basalts. Wavy prismatic structure. Same as B, C and D units.
In some areas also with
a radial structure.

(F) Basalts. Lenticular structure. High weathering. Discontinuities
control the stability of the blocks.
Overhanging parts may affect the local
stability of the rock face.

(G) 1.5 m Basalts. Prismatic layer of short columns.

(H)

F
lu

vi
al – Quaternary fluvial deposits Weakness unit

prior to lava flows. (low mechanical properties).
The erosion of the river may

(I) Bedrock – Bedrock formed by Eocene sandstone. affect global stability because
of undermining phenomena.

(1) Composition, texture, structure, etc.(2) Mechanical behaviour, porosity, weathering, etc. Vegetation is scattered at all the lithological units and some cracks are filled with clay.

Crack opening due to vegetation could be a conditioning factor. Rainfall and pos./neg. variations of temperature are relatively frequent in the study area. As a result, crack opening

by gelifraction seems to be a relatively common process.

2. Detachment of a group of columns with a magnitude of
1.5 to 150 m3 (Fig. 2b). This type of failure may involve
dozens of columns and may affect different units. The
historical record shows 2 events in the last 30 years.

3. Rock slab failures with magnitudes higher than 150 m3

(Fig. 2c). Two slab failures occurred in the last 30 years.

Rockfall events in the study area are poorly documented:
there are few data on back analysis of prior events (Mallarach
and Mirabell, 1976; Pallı́ and Trilla, 1976; Ros et al.,
1996; Culebras, 2002), magnitude-frequency relationships,
conditioning and triggering factors as well as susceptibility
assessment (Asensio et al., 2010). Population surveys were
conducted to confirm the low frequency of great magnitude
rockfalls during the last 50 years. The combination of the
historical record (Table 2) and the population surveys is
referred to as along-term approachbelow.

1.3 Conditioning and triggering factors

The role of conditioning factors such as joint pattern,
lithology and morphology of the cliff is discussed as follows:
(a) the pre-existing columnar joint pattern played a key role
in the geometry of the detached blocks. Evidence for this
was provided by the rockfalls detected regardless of their
size. The influence of the meso-scale structure, i.e. columnar
pattern, in the macro-scale morphology of the rock face
was also observed: the mean orientation of the rock face
corresponds to the mean orientation of the facets of the
basaltic columns; (b) the different layout and composition of
each of the lithological units described in Table 1 also played
an important part in the evolution of the rock face. Two
of the levels described in Table 1 were identified as weak
levels: pyroclastic level and fluvial deposits. The erosion
and/or weathering of these levels create an overhang in
the upper levels, affecting their stability, as in the case of
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Table 2. Historical record of rockfalls in the 30 years prior to our study. Modified from Asensio et al. (2010).

Date of Location Volume∗ Damage Triggering References
the rockfall (souce area)

Feb 1976 Area of concavity 960 m3 Any damage. Continuous rainfall. Palau (1976);
of the North face, Undercutting of Mallarach and
lower part. the toe of the slope. Mirabell (1976)

Sep 1976 Area of concavity 1500 m3 Structural damage to Area destabi- Pallı́ and
of the North face, the porch of a house. lized by Trilla (1976);
central and upper the previous Mallarach and
part of the rock face. rockfall. Mirabell (1976)

1977 Unknown. 5 m3 No severe damage. Unknown. Mallarach and
Mirabell (1976)

Nov 1995 Area of concavity 50 m3 Structural damage to Heavy rainfall. Ros et al. (1996)
of the North face, the porch of a house.
upper part.

Mar 2001 Single column failure 1 m3 No damage. Unknown. Culebras (2002)
in the central part of
the North face.

Feb 2005 SE part of 1 m3 No damage. Heavy rainfall. Population survey
the rock face. conducted by

RISKNAT
research group.

Jan/Feb 2006 2 single columns 2–3 m3 No damage. Heavy rainfall.
in the SE part of (1–1.5 m3 each)
the rock face.

∗ The volumes indicated in this table were roughly estimated from scar dimensions by the aforementioned authors.

Fig. 2. Type of rockfall according to its volume:(a) detachment of single columns (volume below 1.5 m3); (b) detachment of a group of
columns (volume from 1.5 to 150 m3); (c) likely slab failure (volume higher than 150 m3). The picture in Fig. 2b was taken by Llorenç
Planagum̀a.
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the interconnected rockfalls that occurred in February and
September 1976 (Table 2). The former rockfall was preceded
by a great magnitude event in the lower part of the slope;
(c) the morphology of the cliff may affect the local stability
of the rock face, e.g. the protruding parts of the slope are
likely to collapse.

Regarding triggering factors: (a) the role of precipitation
in the rockfalls in the last 30 years was observed by earlier
works (Ros et al., 1996; Pallı́ and Trilla, 1976). Although no
direct relationships between climatic variables and rockfall
occurrence are discussed in our research, a crack opening
due to an ice wedge could be a relatively common process;
(b) another triggering factor may be the erosion of the
scree deposits and/or of the lower part of the rock face in
extraordinary floods (i.e. 1 in 100 years). The maximum
curvature of the rock face corresponds to the meander, i.e.
the concave part of the river (Fig. 1), where there is more
fluvial erosion. This hypothesis may be supported by the
fact that the two main mass movements of the historical
record (Table 2) took place in this area; (c) finally, the study
area is located in a moderate seismic area. Despite its low
recurrence, seismicity could also be regarded as a triggering
factor, e.g., a destructive earthquake (intensity = IX) with
the epicentre located 15 km away, caused 85 fatalities at the
village of Castellfollit de la Roca occurred on 2 February
1428 (Olivera et al., 2006).

2 Materials and methods

2.1 Terrestrial Laser Scanner

The remote sensing tool employed in this study is a TLS.
This instrument is also known as a Ground based LIDAR
(Light Detection and Ranging system). We used an ILRIS-3-
D model (Intelligent Laser Ranging and Imaging System),
from the Optech™ 2004–2006 series. Although this is a
well- known technique (see some examples of application
in Abellán et al., 2006; Oppikofer et al., 2008; Pesci et
al., 2009, etc.), its basic principles are discussed as follows.
The instrument mainly consists of a transmitter/receiver of
infrared laser pulses and a scanning device (internal system
of rotating mirrors). The laser beam is directly reflected by
the land surface, obviating the need for intermediate prism
reflectors. TLS shows a relatively very high data acquisition
speed (up to 10 000 points s−1) compared with conventional
surveying methods (e.g. total stations); more specifically, the
ILRIS-3-D model is able to acquire up to 2500 points s−1.
Range measurement (ρ) can be undertaken usingfirst or
last pulseof the return signal; the last pulse is the optimal
choice to obtain the return signal of the rock face (in place of
vegetation). The distance to an object is calculated using the
Time-Of-Flight (TOF) of the laser pulse (Eq. 1):

ρ = c ·(TOF/2) [Petrie and Toth, 2008] (1)

wherec = speed of light.

Spatial resolution is a main function of the point spacing
and spot dimension (Lichti and Jamtsho, 2006). The spot
dimension increases its value with the distance, through a
well know laser beam divergence process (Eq. 2). The
greater the spot dimension, the lower the accuracy is.

SD = ρ · tanα+a [Petrie and Toth, 2008] (2)

where α = angle of divergence (0.00974◦ for ILRIS-3-D);
a = initial beam size (1.2 cm for ILRIS-3-D); equation in any
consistent units ofSD andρ.

The origin of the Cartesian Coordinate System (P0 = 0, 0,
0) is set at the centre of the TLS instrument. Coordinates
of each point are acquired in a polar system (ρ: range;ϑ :
horizontal angle;ϕ:vertical angle). The binary file provided
by TLS was transformed into a Cartesian system (x, y,
z) using Parser v 4.3.5.4 from Optech™. As a result, a
Parametric Image Format (PIF) file was obtained.

In addition to the 3-D coordinates, the device is able to
acquire the value of intensity (I ) of instantaneous reflectance
of the land surface for an area equal to the spot dimension.
This parameter is defined as the amount of reflected signals
with respect to the emitted one. It primarily depends on the
range, angle of incidence, moisture, surface geometry and
object material. Its value is usually normalized on a 0–255
scale.

The accuracy of the measurement is a main function
of the range, reflectivity of the material (Voegtle et al.,
2008), complexity of the scanned surface (Abellán et al.,
2009) and angle of incidence (Lichti, 2007). Finally, since
the operating wavelength of the TLS Ilris 3-D (1535-nm
wavelength) is very close to water absorption bands in the
atmosphere, data acquisition during rainy or foggy days may
be inaccurate. We tested our device at different geological
sites and obtained a maximum range of around 600 m for
dry surfaces (e.g. Abellán et al., 2006, 2010; Vilajosana
et al., 2008). The technical characteristics supplied by
the manufacturer show high point accuracy (σ ∼ 0.7 cm) at
100 m (Optech, 2009). This parameter, which is estimated
by comparing two point clouds acquired consecutively, was
calculated from 1.5 to 1.7 cm (see Riera, 2008). This
discrepancy may be explained by a lower reflectivity of
the rock face, longer range and higher angles of incidence
than those tested by the manufacturer. Finally, a thorough
planning of the scanning campaign prior to fieldwork is
highly recommended: data acquisition may suffer from
occlusion and bias problems when the laser beam is parallel
to the orientation of the geological surface (e.g. Lichti, 2007;
Sturzenegger and Stead, 2009; Lato et al., 2010).

2.2 Data acquisition

The first dataset (referred to asreference point cloud, R0
below) was acquired in March 2006. The datasets were
acquired from five stations (portion of the scanned face,
perspective): (a) Station A (north face, frontal); (b) Station B
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Fig. 3. Images of the aligned TLS datasets:(a) left view: “–X axis”; (b) zenithal view: “+Z axis”;(c) frontal view: “–Y axis”. The position
of the Figs. 5 and 6 are indicated in Fig. 3a and c, respectively.

(north-east face, oblique); (c) Station C (east face, oblique);
(d) Station D (south-east face, frontal) and (e) Station E
(north-west, oblique). From these sites, occluded areas were
minimized, allowing for the alignment and merging in a
single file, creating a final 3-D model (Fig. 3). Since TLS
ILRIS-3-D is constrained by a 40×40◦ field-of view, seven
point clouds were necessary to cover the whole rock face.
The mean point spacing of the acquired datasets ranged from
4.5 to 5.5 cm. Each point of theR0 was defined as a node
for a Triangle Irregular Network (TIN) surface (*.pif file),
using a projection plane parallel to the cliff. This surface
will be referred to as thesurface of reference(S0) below.
Data acquisition was repeated 94, 186, 260, 368, 382, 443,
561, 662 days afterR0 (periods i, ii, iii, iv, v, vi, vii and viii,
respectively). Each of these TLS datasets is referred to as
data point cloud(D1, D2, D3...Dn) below.

2.3 Comparison of sequential TLS datasets

3-D temporal variations of the terrain were detected by com-
paring sequential datasets in accordance with the methodol-
ogy described in Rosser et al. (2005b) and Lim et al. (2006).
A brief description is as follows: (a) acquisition ofR0 (see
previous section); (b) construction of theS0; (c) acquisition
of D1, D2...Dn; (d) alignment of these datasets withS0;
(e) comparison betweenS0 and successiveDi and (f) cal-
culation of the differences for each period of comparison.

PolyWorks® v9.0 (InnovMetric) was the main software
used for the visualization, alignment and comparison of
the point clouds. The roto-translation parameters of the

alignment matrix (step d) were obtained in three stages:
(a) a preliminary registration was performed by a visual
identification of homologous points; (b) the alignment was
subsequently optimized using an Iterative Closest Points
(ICP) procedure (Chen and Medioni, 1992). Using this
algorithm, the differences between points were progressively
reduced by a minimization of a mean square cost function;
and (c) the final improvement was obtained by progressively
reducing the “search distance” parameter up to a few
centimetres. As a consequence, the meter scale changes (e.g.
rockfall) that occurred in the different intervals did not affect
the global alignment, alignment error being negligible. Apart
from the recorded metre scale rockfalls, the surface of the
rock face remained practically unchanged during the scan
comparison. The exact date of each event is an unknown
factor because of non-continuous data acquisition and the
absence of eyewitnesses.

The single point distances between theS0 and the sub-
sequentDi were computed in the IMInspect module of
PolyWorks® v.9 software using a conventional methodology
(data vs. reference comparison). Comparisons based on
“Shortest distance” methodologies reduced the values of
the real changes that took place, i.e. rockfalls. Hence, the
direction of comparison was defined as the normal vector of
the rock face at its central part. The differences (Difi) were
calculated for each point as shown in Eq. (3):

Dif i = Distance[SiP0] −Distance[S0P0] (3)

Part of the value of Difi is due to systematic (instrumental
and methodological) errors. The other part is due to
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“real changes” in certain parts of the slope, e.g. rockfalls,
vegetation growing, etc. With regards to the sign criteria,
we use positive values when thetime of flightof the laser
signal forDi is higher than that ofS0. As a result, positive
values correspond to a lack of material at a given point,
i.e. detachment of the material. Likewise, negative values
correspond to an increase in material, i.e. scree deposits,
or vegetation growth. This negative displacement may also
reflect the pre-failure deformation in a part of the slope (i.e.
Abellán et al., 2009, 2010). The volume of the main events
was calculated using the “surface to a plane” command of
the IMInspect module (PolyWorks). In line with Rosser et
al. (2005b), rockfalls with a volume under 0.001 m3 were not
considered in this study.

2.4 Assessment of the quality of the rock face modelling

The influence of angular resolution, i.e. density of points,
in the quality of thesurface of referencewas tested by com-
paring two point clouds acquired consecutively. Figure 4a
shows the percentiles of the error as a function of the density
of points. As expected, the lower the density of points, the
lower the accuracy of the comparison. The value of the 75th,
90th and 95th percentiles show similar values of the error
for a point spacing below 4.7 cm. As a result, no significant
improvements are obtained by increasing the density of
points. For this reason, the Optimal Point Spacing (OPS)
ranges from 4.5 up to 5.5 cm in the study area.

Figure 4b shows the histogram of the model comparison
in the same section, using a point spacing of 4.7 cm. This
histogram is characterized by a very high kurtosis, i.e.
the presence of infrequent extreme deviations. Assuming
a normal distribution, the dispersion of the 68% of the
population can be explained by the standard deviation
(1σ ) parameter. However, in accordance with the ASPRS
LiDAR Committee (2004), a normal distribution of error
cannot be assumed where the population does not fit a
normal/Gaussian distribution, as in the case of Fig. 4b.
Alternatively, the variance of the population was assessed
by means of the percentiles of the error. Two different
populations can be found in this histogram: (a) instrumental
error, corresponding to the error of 90% of the population,
i.e. between –3.04 and +2.99 cm (5th and 95th percentile,
respectively); (b) outliers: data artefacts that were mainly
found along the boundaries of the occluded parts of the
slope with respect to the TLS line-of-sight (LOS). These
data artefacts were quantified by the 99th percentile, i.e.
the error of 2% of the population was higher than 8.39 cm.
The morphology of the rock face plays an important role in
the magnitude and extent of these outliers: the greater the
complexity of the scanned surface, the higher the variance of
the measurement. In the study area, the outliers tended to
concentrate along the borders of the basaltic columns.

(a)

(b)

Fig. 4. Assessment of the quality of rock face modelling.(a)
Variance of the population assessed for different densities of points
through the percentiles of the error of the model comparison;(b)
probability distribution of the error of the model comparison using
a mean point spacing of 4.7 cm. The histogram is characterized by
considerable kurtosis and a poor resemblance to a fitted Gaussian
distribution (blue line). See text for a detailed explanation.

The most accurate results were obtained from Stations A
and D, respectively. Riera (2008) reported the accuracy
of the TLS point cloud for different geological layers and
sections of the rock face, finding out that the accuracy at
rock outcrops reached higher values than that obtained in
vegetated areas. Consequently, accuracy was improved by
the deletion of unexpected points (e.g. wires, birds, etc.)
together with manual removal of trees in the lower part of
the cliff (see Fig. 1d) and small bushes. In addition, it can
also be improved by filtering the areas similarly oriented to
the LOS (Lichti, 2007).
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Fig. 5. Comparison of the sequential TLS datasets. Each point of the 3-D point cloud is colour-coded in accordance with the changes
recorded during the period of comparison (September vs. December 2006). The failure of a single basaltic column and small changes in
vegetation are visible. Pre and post failure stages are visible on the left.

3 Results

3.1 Detachment of single columns

The detachment of single columns is the mass movement of
highest frequency and lowest magnitude in the study area.
The detachment of six basaltic columns was recorded in the
22-month monitoring period. The magnitude of each of these
rockfalls is below 1.5 m3. The geometry of these rockfalls
is controlled by the columnar joint pattern. Figure 5 shows
a sequential comparison of September and December 2006
TLS datasets in the southern part of the rock face. A single
column detachment is clearly visible in the middle of the
figure.

3.2 Detachment of a group of columns

A failure that affected a group of columns in the central
part of the rock face (Fig. 6a) was recorded in our research.
This event can be described as a combination of two
interconnected detachments:

1. The April 2007 rockfall (event i, Fig. 6b) is the event
of the highest magnitude during the monitoring period.
This figure shows a comparison of the sequential
datasets corresponding to 30 May 2007 and 13 April
2007. An irregular failure with maximum dimensions of

15-m height, 6 m width and 1.5 m thickness is observed
in the middle of the figure. Tens of basaltic columns
belonging to levels B, C and D (Fig. 1c) were mobilized.
The rockfall volume (50 m3) was calculated by volume
differences between pre and post failure surfaces. The
morphology of the cliff prior to the rockfall revealed
a protruding block partly supported by the pyroclastic
(P ) level. The geometry of the surface of detachment
is controlled by the columnar joint pattern. A period
of continuous rainfall (100 mm in 6 days) may have
triggered this rockfall.

2. A second event (event ii, Fig. 6c) took place in the
same area as the April 2007 rockfall, six to nine months
afterwards (October 2009–January 2010). This event
consisted of a few blocks from unit C (1.5 m3) in
addition to a single column from unit B (1.5 m3). As in
the case of the interconnected rockfalls of February and
September 1976, the origin of this event was interpreted
as a gravitational readjustment of the scarp after the
event of April 2007. As a result of these rockfalls, the
upper part of the slope lost part of its basal support.
Hence, the occurrence of a future event in this area is
likely.
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Fig. 6. (a) TIN surface of a part of the rock face where events i and ii took place;(b) comparison of the March and April 2007 datasets;
(c) comparison of the October 2007 and January 2008 datasets. Each point is colour-coded according to the changes during the period of
comparison. Colour scale indicates positive differences along the Y direction, e.g. rockfalls. Note that event ii is in the same area as event i.

3.3 Slab failures

No rock slab failures were recorded in the monitoring
period. However, the detection of a metre scale crack during
fieldwork (Fig. 2c) provided evidence of the occurrence
of an ongoing rock slab failure with an estimated volume
exceeding 500 m3. This section of the rock face was
monitored by TLS given the high vulnerability of the houses
located above the slab and on the edge of the cliff. The
results showed no significant pre-failure deformation in this

area during the 22-month monitoring period. This suggests
that the maximum value of the displacement is lower than the
instrumental error (95th percentile) by the time span of the
monitoring period, i.e. lower than 1.64 cm year−1 (3 cm in
22 months). Although this hypothetical displacement seems
currently stationary, its future reactivation cannot be ruled
out.
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4 Discussion

4.1 Critical review of the results

The use of TLS enabled us to better understand rockfall
phenomena of the rock face at Castellfollit de la Roca.
While established surveying methods (i.e. a total station,
extensometers, etc.) allow for the acquisition of millimetre-
level accuracy of a small number of control points, TLS
datasets consist in millions of points with a centimetre-
level accuracy. This complete coverage of the surface has
allowed for the morphological characterization of the rock
face, the location and volume of rockfalls (e.g. Lim et al.,
2006; Rosser et al., 2007) and the monitoring of a likely
rock slab failure. Some limitations were also encountered
in our research: (a) range measurements are erroneous in
the presence of water seepage when using TLS ILRIS-
3-D. These measurements were not considered; (b) the
instrumental and methodological errors could be higher
than the real displacement of the probable slab failure (see
previous section). The use of more accurate techniques,
e.g. extensometers, total stations or ground based radar, may
overcome this limitation; (c) the exact date of each rockfall
event is unknown because of discrete TLS measurements;
a continuous, real-time TLS record would have enabled
us to better understand the triggering factors, e.g. climatic
variables; (d) a longer monitoring period is needed to obtain
a more accurate record of large-scale events;

The results obtained by the long-term and short-term (i.e.
monitoring by TLS) approaches are discussed below:

Table 3a shows rockfall activity for the different types of
mass movements using a long-term approach (Sect. 1.2). As
regards the number of rockfalls, a similar number of small,
medium and large events were recorded, suggesting that the
frequency is not dependent on the magnitude, which appears
to be inconsistent with the inverse power law obtained in
many studies (e.g. Hungr et al., 1999; Malamud et al., 2004;
Lim et al., 2009). Furthermore, a period of recurrence of
17 years for the detachment of a single column does not
tally with our TLS results, indicating that there is clearly
insufficient temporal extent and spatial sensitivity within the
historical record. Table 3b shows rockfall activity for the
different types of mass movements based on the sequential
comparison of TLS datasets in the monitoring period. A
scale dependency of the number of events was obtained,
which is consistent with previous studies. However, this
approach suffers from an absence of time span, especially
for large scale rockfalls (higher than 150 m3).

Historical and TLS approaches have suffered from sys-
tematic errors in the estimation of rockfall frequency. The
historical approach suffered from a bias in the recording of
the phenomena: only rockfalls with a volume above a certain
value are normally recorded and/or detected by witnesses
(e.g. Hungr et al., 1999). By contrast, the results of the
TLS campaign were temporally biased: the low frequency of

medium and large scale rockfalls demanded a longer period
of study. As pointed out by Rosser et al. (2005a), comparison
between the high resolution contemporary monitoring and
the long term historic record may help to understand rockfall
rates and processes. Although the limitations discussed
above exist(magnitude biases), an attempt to combine both
approaches is discussed in the next section.

4.2 Combination of long-term and short-term
approaches

An attempt to quantify the recurrence and volume of
rockfalls during the last 50 years is discussed as follows (see
Table 4): (a) the recurrence of the small scale rockfalls was
assessed using a short-term approach, i.e. the TLS campaign;
(b) the recurrence of medium scale rockfalls was estimated as
a combination of long-term (i.e. historical record)/short-term
approaches. Its value ranged from 2 to 11 years: on the one
hand, one event was recorded during the monitoring period,
i.e. a period of recurrence of 1.8 years; on the other hand,
three events were recorded in 1976–2008, i.e. a period of
recurrence of 10.7 years; (c) the recurrence of the large scale
rockfalls was assessed based on the long-term approach. Two
events were recorded in the last 50 years, i.e. a recurrence
of 25 years. An error margin should be considered for the
following reasons: (a) rockfall is not a homogeneous and
continuous process; (b) the results are biased in the long-
term approach (small scale rockfalls are ignored); and (c) the
results using the TLS approach are of insufficient temporal
extent to represent the full range of failures that are expected
to occur (i.e., large scale events are biased).

Even failures are clearly episodic, the mean cliff retreat
rate was estimated assuming a detachment of material from
46 to 91.5 m3 year−1 (Table 4) and an area of the rock face
of ∼ 8000 m2.

4.3 Implications of the results

There are two vulnerable scenarios in the study area: the
lower and the upper parts of the cliff. Which phenomenon
represents the most severe threat to the population? Small
scale rockfalls account for 87–96% of these events (Table 4),
their effect on the total cliff retreat is much less, only from
4 to 6%. Nevertheless, large-scale rockfalls make up∼1%
of the events, their effect on the cliff retreat is much greater
(from 58 to 87%). No permanent vulnerable elements are
located at the base of the cliff: hence, the detachment
and propagation of the low magnitude and high frequency
rockfalls constitute a reduced risk in this area. In contrast,
the houses located on the edge of the cliff are more likely
to be damaged by large-scale rockfalls, as in the event of
September 1976 (Table 2). Subsequent efforts should be
focused on early detection of the most hazardous, i.e. events
of great magnitude (>150 m3).
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Table 3. (a)Long-term results based on historical record and population surveys. Time span: 50 years prior to this study.(b) Short-term
results based on a sequential comparison of TLS datasets. Time span: 22 months.

(a) Long-term approach

Magnitude Recorded rockfalls(1) Estimated recurrence Volume

<1.5 m3 3 43% ∼ 10 yr(2) 4.5 m3 (4) 0.1 m3 yr−1 (5) 0.3%
1.5–150 m3 2 28.5% ∼ 15 yr(2) 55 m3 (4) 1.8 m3 yr−1 (5) 3.6%

>150 m3 2 28.5% ∼ 25 yr(3) 2460 m3 (4) 49 m3 yr−1 (6) 96.1%

Total 7 100% – 2520 m3 50 m3 yr−1 100%

(b) Short-term approach

Magnitude Recorded rockfalls(7) Estimated recurrence(8) Volume

<1.5 m3 6 86% ∼ 0.3 yr 6 m3 (9) 3.3 m3 yr−1 (10) 11%
1.5–150 m3 1 14% ∼ 1.8 yr 50 m3 (9) 28 m3 yr−1 (10) 89%

>150 m3 0 0% – 0 m3 (3) 0 m3 yr−1 (10) 0%

Total 7 100% – 56 m3 (3) 31 m3 yr−1 (10) 100%

(1) Number of rockfalls from the historical record (see Table 2).(2) Time span of 30 years (historical record, Table 2) divided by the number of rockfalls.(3) Time span of 50 years

(historical record and surveys to population, see Sect. 1.2) divided by the number of rockfalls.(4) The volume was estimated using the historical record (see Table 2).(5) Calculated

as the total volume divided by a time span of 30 years.(6) Calculated as the total volume divided by a time span of 50 years.(7) Rockfalls recorded using a sequential comparison

of TLS datasets.(8) Time span (1.8 years) divided by the number of rockfalls.(9) Volume was calculated comparing TLS datasets.(10) Calculated as the total volume divided by a

time span of 1.8 years.

Table 4. Combination of short and long-term approaches: TLS monitoring campaign, historical record and population surveys. This table
attempts to quantify the recurrence and volume of the rockfalls in the last 50 years. The calculation of a “probability of occurrence” is beyond
the scope of this research.

Magnitude Estimated recurrence Estimated num. of rockfalls Estimated volume
(50 years)(4) (50 years)

<1.5 m3 0.25–0.35 yr(1) 140–200 87–96% 135–200 m3 (5) 2.5–4 m3 yr−1 (8) 4 – 6%
1.5–150 m3 2–11 yr(2) 5–25 3.3–11% 175–1375 m3 (6) 3.5–27.5 m3 yr−1 (8) 5–40%

>150 m3 20–30 yr(3) 1–3 0.7–1.3% 2000–3000 m3 (7) 40–60 m3 yr−1 (8) 58–87%

Total – 146–228 100% 2300–4575 m3 46–91.5 m3 yr−1 100%

(1) Assessed based on the results of the TLS monitoring campaign (see Table 3b) assuming an error margin of±20%. (2) Estimated as a combination of TLS and historical record

(see text).(3) Assessed based on the long-term approach (see Table 3a) assuming an error margin of±20%. (4) Calculated as the recurrence multiplied by a time span of 50 years.
(5) Calculated assuming a constant volume of 1 m3. (6) Estimated as a combination of TLS and historical record: the cumulated volume in a time span of 30 years was calculated as

105 m3, i.e. 175 m3 in 50 years.(7) Cumulated volume of the February and September 1976 events (Table 2).(8) Calculated as the total volume divided by a time span of 50 years.

A deformation of a few centimetres prior to the occurrence
of the April 2007 event was observed (Abellán et al., 2009).
Assuming that the most hazardous types of mass movements
in the study area, i.e. medium and large- scale rockfalls, are
usually preceded by slow displacements (e.g. Zvelebill and
Moser, 2001; Rose and Hungr, 2007; Abellán et al., 2010), a
TLS monitoring system could be used for the early detection
of rockfalls. Further research may provide a more accurate
estimation of the rate of cliff retreat by increasing the TLS
monitoring period.

5 Conclusions

High resolution and high accuracy TLS datasets have helped
us deepen our understanding of rockfall phenomena at
Castellfollit de la Roca. Two types of mass movement
were detected in the monitoring period: (a) detachment of
six basaltic columns, with a magnitude below 1.5 m3 and
(b) detachment of a group of columns, with magnitudes
of 50 m3. Moreover, the displacements of a likely slab
failure in the central part of the cliff were measured,
suggesting an apparent stationary stage (displacements lower
than 1.64 cm year−1). The long-term and TLS approaches
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suffered from a bias in the recording of the rockfall phenom-
ena. A combination of these approaches allowed us to better
estimate (a) the magnitude and frequency of the rockfalls in
the study area and (b) the mean annual rate of retreat. This
procedure has proven to be a valuable tool for rockfall hazard
assessment in urban areas.

Supplementary material related to this
article is available online at:
http://www.nat-hazards-earth-syst-sci.net/11/829/2011/
nhess-11-829-2011-supplement.zip.
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