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Abstract. This study attempts to achieve real-time rainfall-
inundation forecasting in lowland regions, based on a syn-
thetic potential inundation database. With the principal
component analysis and a feed-forward neural network, a
rainfall-inundation hybrid neural network (RiHNN) is pro-
posed to forecast 1-h-ahead inundation depth as hydrographs
at specific representative locations using spatial rainfall in-
tensities and accumulations. A systematic procedure is pre-
sented to construct the RiHNN, which combines the mer-
its of detailed hydraulic modeling in flood-prone lowlands
via a two-dimensional overland-flow model and time-saving
calculation in a real-time rainfall-inundation forecasting via
ANN model. Analytical results from the RiHNNs with var-
ious principal components indicate that the RiHNNs with
fewer weights can have about the same performance as
a feed-forward neural network. The RiHNNs evaluated
through four types of real/synthetic rainfall events also show
to fit inundation-depth hydrographs well with high rain-
fall. Moreover, the results of real-time rainfall-inundation
forecasting help the emergency manager set operational re-
sponses, which are beneficial for flood warning preparations.

1 Introduction

Establishing a database of potential inundation maps is a con-
ventional non-structural measure for flood hazard mitigation
in many countries. Government agencies in countries such
as the USA, Japan, the UK and Taiwan have adopted flood
maps as references to set up non-structural strategies in com-
prehensive flood management (Cabinet Office, 2003; Mur-
phy, 2003; Lowe, 2003; Chen et al., 2006). In Taiwan, the
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National Science and Technology Center for Disaster Reduc-
tion (NCDR) has applied the database of potential inundation
for emergency managements (Yen et al., 2006). The NCDR
provides the Central Emergency Operational Center, Taiwan,
with an inundation map during the typhoon period. This is
one of the four potential inundation databases selected and
approximated to the flood extents and depths of 150 mm,
300 mm, 450 mm or 600 mm of total rainfall in 24 h (Chen
et al., 2006). However, these potential inundation databases
as flood maps are produced by assuming that the distribution
of spatial rainfall is uniform. Under the influence of spa-
tial rainfall on flood prediction, a bias in the estimation of
parameters making physical interpretation difficult may lead
to overestimation of extreme flows without considering spa-
tial variability (Arnaud et al., 2002). Spatial rainfall distribu-
tion needs to be addressed to improve the rainfall-inundation
forecasting accuracy in emergency response operations.

The potential inundation database provides flood mapping
information to increase awareness of those areas that could
be flooded in certain conditions. It helps the emergency man-
agers set the operational responses as non-structural mea-
sures for flood mitigation, such as allocating rescue re-
sources, evacuating residents, or the specific transport route
to shelter. A local county government in Taiwan has an emer-
gency response time that normally takes from 2 to 3 h to re-
spond to flooding (Chen et al., 2006). Various approaches
have been adopted for flood inundation calculation via hy-
draulic or hydrological models based on data from real-time
rainfall records. For modeling the inundation extent of a
flood event in the lowlands, a two-dimensional (2-D) hy-
drodynamic model can describe hydraulic details with high
accuracy in inundation depth and extent on the floodplain
(Cunge et al., 1980; Wasantha Lal, 1998; Hsu et al., 2000,
2002; Bates et al., 2003; Yu and Lane, 2006; Hsieh et al.,
2006; Chen et al., 2006; Guo et al., 2007).
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Artificial neural networks (ANNs) have become an at-
tractive inductive approach in hydrological forecasting be-
cause of their flexibility and data-driven learning in build-
ing models, as well as their tolerance of inputs with error
and time-saving calculation in real-time models (Thirumala-
iah and Deo, 1998; Kisi and Kerem Cigizoglu, 2007). Al-
though many studies have applied different ANNs to achieve
the prediction and forecasting of various water resource as-
pects (Maier and Dandy, 2000; Toth et al., 2000; Bodria
andČerḿak, 2000; Kim and Barros, 2001; Wei et al., 2002;
Pan and Wang, 2004; Kerh and Lee, 2006; Sahoo and Ray,
2006; Sahoo et al., 2006; Dawson et al., 2006; Kisi and
Kerem Cigizoglu, 2007; Chau, 2007; Chen and Yu, 2007;
Goswami and O’Connor, 2007; Pan et al., 2008), few inves-
tigations have utilized ANNs to achieve rainfall-inundation
forecasting, which is essential to providing real-time flood
warning information in emergency responses, as stated pre-
viously. An algorithm must be developed to perform real-
time calculations for inundation forecasting as fast as it re-
ceives the observed rainfall records. However, a 2-D hydro-
dynamic model with a huge number of computational grids
cannot satisfy the requirements of real-time calculations for
emergency responses owing to time-consuming computa-
tions in the wide areas of the lowlands. Hence, ANNs
are adopted to forecast 1-h-ahead inundation based on rain-
fall data at densely populated high-inundation-potential lo-
cations. To elaborate compact models, principal component
analysis (PCA) is applied to extract useful information from
rainfall data, and is merged with feed-forward neural net-
works as rainfall-inundation hybrid neural networks here.
Moreover, the lack of sufficient training data is overcome
by constructing a synthetic potential inundation database cre-
ated by a 2-D overland-flow model as one procedure of the
ANN model construction.

This work attempts to enhance the accuracy of real-time
inundation forecasting for lowland regions based on a syn-
thetic potential inundation database. The algorithm com-
bines the merits of detailed hydraulic modeling in flood-
prone lowlands via the 2-D overland-flow model and time-
saving calculation in real-time applications via ANN mod-
els. Accordingly, the depth and duration of flood inunda-
tion, which is crucial information for real-time emergency
response operations, can be assessed. A brief description of
the methodologies adopted includes hybrid neural networks
and the 2-D overland-flow model in Sects. 2 and 3, respec-
tively, which is followed by a four-step procedure of build-
ing a rainfall-inundation hybrid neural network (RiHNN) in
Sect. 4. The model is applied to the 19 representative in-
undation locations in central western Taiwan for 1-h-ahead
forecasting, and evaluated by 5 criteria in Sect. 5. The per-
formances of various model structures and the influence of
training data are analyzed and discussed in Sect. 6. Final
remarks and overall assessment of the investigation are pre-
sented in Sect. 7.

2 Hybrid neural networks

The ANNs are massively parallel distributed processors
made up of simple processing units, which have a natural
propensity for storing experiential knowledge and making
it available for use. It resembles the brain in two respects:
knowledge is acquired by the network from its environment
through a learning process; interneuron connection strengths,
known as synaptic weights, are used to store the acquired
knowledge (Haykin, 1999). According to the manner of the
adjustment to a synaptic weight by various data-driven learn-
ing algorithms, ANNs are classified into supervised and un-
supervised neural networks. Based on the structures of the
connections between neurons, ANNs are grouped into feed-
forward and recursive neural networks (Pan et al., 2007). As
shown in Fig. 1, the ANN developed here is a multi-hidden-
layer feed-forward neural network with two different types
of learning algorithms described as follows.

2.1 BP layer

The ANNs developed here aim to build the relation between
rainfall and inundation that can substitute for traditional,
time-consuming, numerical inundation models during the ty-
phoon period, and the type of ANNs used in this study falls
into the most popular class, that of the layered feed-forward
network using the BP algorithm as a supervised ANN. The
BP algorithm uses the conjugate gradient back-propagation
with Fletcher-Reeves updates that can train any network as
long as its weights, net input, and activation functions have
derivative functions (Scales, 1985). The inputs are the ob-
servations and accumulations of the present and past-22-h
rainfall of each rain gauge in the study area, and the out-
puts are the 1-h-ahead water depths at each representative
inundation location. The formulas for the rainfall-inundation
feed-forward network are shown in Eqs. (1) and (2).

Hm(t) = f1


N∑
n

LAG∑
lag=0

W1
m,n·(lag+1) ·Rn(t − lag)

+

N∑
n

LAG∑
lag=0

W1
m,(LAG+1)·N+n·(lag+1)

· CRn(t − lag)+b1,m

,

m = 1,...,M, (1)

Ok (t +1) = f2

(
M∑
m

W2
k,m ·Hm(t)+b2,k

)
,

k = 1,...,K, (2)

where lag is past lag hour;Rn (t-lag) is the rainfall intensity
(mm h−1) of then-th rain gauge at timet-lag; CRn(t-lag) is
the cumulative rainfall (mm) of then-th rain gauge from time
t to t-lag;N is the number of rain gauges; LAG is the length
of time delay (h);W l

i,j is the weight between thei-th neuron
of thel-th layer and thej -th neuron of thel+1-th layer;bl,j
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Fig. 1. Block scheme of the rainfall-inundation hybrid neural network. Each block represents a layer of neurons whereN , M, J , andK

denote the number of neurons,I , in each layer;N , M, andK also denote the number of rain gauges, principal components, and inundation-
representative locations, respectively.

is the bias of thej -th neuron of thel +1-th layer;Hm(t) is
the output of them-th hidden neuron at timet ; Ok(t) is the
output of thek-th output neuron at timet ; f1 andf2 are the
continuous log-sigmoid function and the linear function, re-
spectively, as the activation functions. Although the number
of input neurons (dimension of the input vectors) increases
with the increase of rain gauges, the components of the rain-
fall inputs are highly correlated (redundant).

2.2 PCA layer

With three effects, the principal component analysis pro-
poses an effective procedure for reducing the dimension of
the input vectors: the orthogonality of the components of the
input vectors (uncorrelation between each other), the sort of
the resulting orthogonal components (principal components)
with the largest variation come first, and the elimination of
those components that contribute the least to the variation in
the input set (Jolliffe, 1986). Therefore, the correlation of the
input data of the training sets can be written as follow:

Corr = correlation

([
Ri,j

CRi,j

])
, i = 1,···,(LAG +1) ·N,

j = 1,...,training sets, (3)

whereR is the matrix of rainfall intensities of training in-
puts;CR is the matrix of cumulative rainfall of training in-
puts;Corr is the correlation matrix of input data. Then the
following equation recognized as the eigenvalue problem can
be solved by linear algebra:

Rq = λq, (4)

where the associated values ofq andλ are called the eigen-
values and eigenvectors of the correlation matrixR, respec-
tively. Let the corresponding eigenvalues be arranged in de-
creasing order:

λ1 > λ2 > ...> λM > ...> λ2·(LAG+1)·N , (5)

whereλ1 = λmax, M is the number of principal components
determined while

M∑
m=1

λm

2·(LAG+1)·N∑
m=1

λm

·100%

= percentage of explained variance≥ threshold. (6)
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Hence, theM principal components can be calculated via the
following equation:

Pm(t) =

N∑
n

LAG∑
lag=0

q ·

m,n·(lag+1)Rn(t − lag)

+

N∑
n

LAG∑
lag=0

q ·

m,(LAG+1)·N+n·(lag+1)CRn(t−lag),

m = 1,···,M. (7)

Furthermore, the linear combination of principal component
analysis can be considered a part of ANNs as the weights of
an unsupervised ANN that evolves a hybrid neural network
model as shown in Fig. 1.

2.3 Four-layer feed-forward neural network

The hybrid neural network applied here is a four-layer feed-
forward neural network with 2·(LAG +1) ·N , M, J , andK

neurons in input layer, PCA layer, BP layer, and output layer
where LAG,N , M, J , andK denote, respectively, the quanti-
ties of time lags, rain gauges, principal components, neurons
in BP layer, and representative inundation locations. The
process can be formalized into a set of simple algebraic equa-
tions. For any hidden neuronj , the level of activityIl+1,j can
be described by the following equation:

Il+1,j = fl

(∑
i

W l
i,j Il,i +bj

)
, (8)

wherefl is the activation function of thel-th layer as the lin-
ear, continuous log-sigmoid, and linear functions in 1st to 3rd
layers, respectively;Il,i is the activity level generated from
the i-th neurons in thel-th layer;W l

i,j represents the weight
from thei-th neurons in thel-th layer to thej -th neurons in
the l +1-th layer, andbj is the weighted bias, like a thresh-
old of the opposite sign, associated with thej -th neurons
in the l + 1-th layer. The activation functions in PCA and
output layers are linear combinations that calculate a layer’s
output from its net input while the hyperbolic tangent sig-
moid function is selected as the activation function in the BP
layer. Based on the connections with weights between neu-
rons, each neuron computes its output response through the
weighted sum of all its inputs according to its activation func-
tion and the data flows in one direction through the hybrid
neural network: starting from external inputs (rainfall infor-
mation) into the input layer (the predictors), that are transmit-
ted through the PCA layer in which the rainfall information
is transformed into principal components, and then passed to
the BP layer for perceiving the output layer from which the
external outputs (predictions of water depths at the specific
representative inundation locations) are obtained.

3 2-D overland-flow model

With geographical information including topography, land
cover, and soil type, surface overland flow processes can
be appropriately described by the 2-D overland-flow model,
known as the diffusive-wave model, which is based on non-
inertia surface flow dynamics in rural areas (Wasantha Lal,
1998; Hsu et al., 2000; Hsieh et al., 2006). Although the
hydrodynamic equations, 2-D shallow water equations, de-
scribe more detailed hydraulic phenomena (Lai et al., 2005,
2010; Guo et al., 2008), the simplified form of the overland-
flow model neglecting inertial terms still regarding the back
water effect is physically applicable to simulate shallow
water in floodplains with availability of various land uses
(Vongvisessomjai et al., 1985; Bates et al., 2003). Accord-
ing to the performance of various numerical schemes, the al-
ternating direction explicit (ADE) scheme shows the advan-
tage of relatively short computational time with sufficiently
high accuracy (Yen et al., 1989; Wasantha Lal, 1998). The
model can attain effective prediction of flood inundation pro-
cesses with respect to various land uses and spatial digital el-
evation model (DEM) data (Hsu et al., 2002; Yu and Lane,
2006). Therefore, the 2-D overland-flow model with the
ADE scheme in the finite difference framework is adopted
here.

Assuming that the inertial terms of the shallow water
equations are negligible compared to gravitation and friction
terms, the 2-D overland-flow model becomes:

∂Q

∂t
+

∂

∂x
F (q)+

∂

∂y
G(q) = B(q) , (9)

whereQ = [h,hu,hv]T is the vector of variables;F(q) =[
0,gh2/2,0

]T
andG(q) =

[
0,0,gh2/2

]T
are the flux vectors

in the x- and y-directions, respectively;h is the water depth;
u andv are the depth-averaged velocity components in the
x- and y-directions, respectively;g is the acceleration due to
gravity. The source term vectorB(q) in Eq. (9) is described
by the following equation:

B(q) =
[
qL,gh(Sox−Sfx)−uqL,gh

(
Soy−Sfy

)
−vqL

]T
, (10)

whereqL is the rainfall intensity or pumping capacity per
unit area;Sox = −∂zb/∂x and Soy = −∂zb/∂y are the bed
slopes in the x- and y-directions, respectively;zb is the bed
elevation;Sfx andSfy are the friction slopes in the x- and y-
directions, respectively. The Manning formula is adopted to
estimate the friction slopes, which are defined as (Chow et
al., 1988):

Sfx =
un2

m

√
u2+v2

h4/3
, Sfy =

vn2
m

√
u2+v2

h4/3
, (11)

wherenm is Manning’s roughness. Since the two-step ADE
is employed, Eq. (9) is solved by the finite difference method
to allow an initial condition with zero water depth and veloc-
ity. The detailed description can be found elsewhere (Chang
et al., 2000; Hsu et al., 2002).
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4 Procedures of building a rainfall-inundation hybrid
neural network

Generally, 2-D models of flood inundation are calibrated and
validated based on observed inundation extent and maximum
water depths through survey. However, the measurements
of inundation extent and maximum water depths are limited.
Most 2-D inundation models have been limited to model cali-
bration against a single flood event, and therefore do not fully
test the models’ predictive power (Horritt and Bates, 2002).
Although aerial imagery and satellite-derived data have been
adopted to model calibration and validation, the quality of
those data are still limited by the clear weather during aerial
photographing. Bates and De Roo (2000) also noted the
differences between the aerial imagery and satellite-derived
data sets and the likely errors associated with each of these
sources, subsequently leading to a significant degree of un-
certainty in inundation extent observations (Romanowicz et
al., 1996; Werner et al., 2005). As well as the inundation ex-
tent, the inundation-depth hydrographs are essential for cali-
bration due to the need to assess the time and depth of the in-
undation peak during real-time rainfall-inundation forecast-
ing.

Since mass observed hourly inundation-depth hydro-
graphs are not available for the RiHNN training, the neu-
ral network is trained by a synthetic potential inundation
database generated from the 2-D overland-flow model. The
procedure for building the hybrid neural network has four
steps as illustrated in Fig. 2.

4.1 Step 1: validate the 2-D overland-flow model

The ground elevation contour lines of 50 m and the levees are
defined as the close boundaries, based on DEM and the hy-
draulic structures of the study area. The lateral inflows, nor-
mal to the close boundary, are set to zero since the levees are
assumed to be high enough to prevent river overflow flood-
ing. The pumping station is assumed to work normally at
full capacity, and treated as a sink in numerical simulations.
Manning’s roughness in the model is generally estimated by
applying the land use information, which is set tentatively at
0.07, 0.06 and 0.07 for commercial, residential and industrial
areas, respectively (Hsu et al., 2000). The validation of the
2-D overland-flow model is determined from the simulated
results and surveyed data of the inundation extent.

4.2 Step 2: select representative inundation locations

During the flooding emergency response operations, deci-
sion makers always focus on specific representative inunda-
tion locations where people live or work. These comprise
only a part of all inundation areas shown by potential inunda-
tion maps. Hence, representative locations should be densely
populated urban areas in which inundation frequently occurs.
The representative locations are selected from the surveyed

records, land use, satellite imagery and the potential inun-
dation map resulting from 10-yr return-period rainfall event.
These are the areas which commonly suffer apparent losses
in the flood-prone lowlands in Taiwan.

4.3 Step 3: build a synthetic potential inundation
database

The size of the training set affects the efficiency of the learn-
ing algorithm, and the variation of training significantly in-
fluences the performance of an ANN (Hagan and Menhaj,
1994; Foody et al., 1995). However, the lack of adequate data
sets of observed inundation extent, the survey of maximum
water depths, and inundation-depth hydrographs at the repre-
sentative locations is raised for training neural networks for
rainfall-inundation relation. A synthetic potential inundation
database based on the calibrated 2-D overland-flow model
provides adequate hourly rainfall-inundation synthetic data
for training, validation and test sets.

This work employs hourly observed rainfalls of histori-
cal typhoons and storms of each rain gauge to generate four
types of real/synthetic rainfall events, namely original rain-
fall data, original cumulative rainfalls with a design hyeto-
graph pattern, a modified cumulative rainfall with original
hyetograph pattern, and a modified cumulative rainfall with
a design hyetograph pattern. The synthetic hourly rainfall
data of each rain gauge is weighted to every grid as the rain-
fall intensity inputs for the 2-D overland-flow model. Conse-
quently, the synthetic hourly rainfall-inundation data at each
representative inundation location can be obtained from the
synthetic potential inundation database generated by the 2-D
overland-flow model.

4.4 Step 4: establish the RiHNN

The numbers of neurons in the output and input layers of
the RiHNN can be determined according to the representa-
tive inundation locations selected in step 2 and rain gauges
as illustrated in Fig. 1. Based on a specific percentage of
relative variance explained, the number of principal compo-
nents is determined through principal component analysis of
the hourly rainfall data of training set to reduce the size of
the input neurons as the PCA layer shown in Fig. 2. With
the validation set as a threshold for avoiding over-training,
the BP algorithm is adopted to train the part of model from
the PCA layer to the output layer based on the training set.
The neurons in the BP layer are determined by trial and er-
ror. Consequently, the test set is employed to evaluate the
performance of the RiHNN after the training process stops.
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Fig. 2. The systematic procedure of building a rainfall-inundation hybrid neural network.

5 Applications

5.1 Description of the study area and events

The study area is Yunlin County, which is located in central
western Taiwan, and has an area of 1291 km2 bounded by the
Jhuoshuei River in the North, the Beigang River in the South,
and the Central Range in the East. Yunlin county frequently
suffers inundation hazards during the summer monsoon sea-

son (May–October) and is subject to high mean annual pre-
cipitation (1400 mm). With high resolution and precision de-
rived in 2004 from aerial photographs, the topographic data
obtained from the Ministry of Interior, Taiwan, provide a
spatial resolution of up to 5 m horizontal and 10 cm vertical
DEM. Figure 3 shows the topography descending from east
to west, illustrated by different elevation zones. The study
area was divided into five control sub-areas with five auto-
matic rain gauges using the Thiessen method: Hou-An-Liao,
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Fig. 3. The location and topography of Yunlin county, Taiwan and the 19 representative inundation locations.

Fig. 4. The control areas with five automatic rain gauges of Yunlin using the Thiessen method.

Bao-Zhong, Bei-Gang, Xi-Luo, and Da-Pu, as illustrated in
Fig. 4. The 24-h design hyetograph pattern of the all rain
gauges refers to the official handbook for hydrological design
(Cheng et al., 2001) as shown in Fig. 5. Frequency analysis
was performed to obtain 24-h cumulative rainfall for various
return periods, which are listed in Table 1. Based on the de-
sign hyetograph pattern in Fig. 5, the 24-h cumulative rainfall
in Table 1 was allocated for hourly design hyetograph. As an
example, Fig. 6 illustrates the potential inundation map for

10-yr return-period rainfall produced by the 2-D overland-
flow model. Based on historical data from surveys of inun-
dation extent and depth, 19 representative inundation loca-
tions were chosen as the hot spots to which early warning
information should be provided for emergency response, as
shown in Figs. 3 and 6. Because the representative inunda-
tion locations 16, 18 and 19 are selected for further discus-
sion in Sect. 6.3, Fig. 3 also shows the three areas encircled
by a white line.
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Fig. 5. The 24-h design hyetograph pattern for all rain gauges in
Yunlin (Cheng et al., 2001).

Since the DEM with high resolution and precision was
produced in 2004, this study has focused on the heavy rain-
fall events causing inundation disaster after 2004. Table 2
shows the 13 study events, comprising seven typhoons and
six storms. The maximum 24-h cumulative precipitations
of these five rain gauges were adopted to derive the major
flooding period of each event from the original rainfall data
in step 3 of Fig. 2. With an average close to 2400 mm, the
sum of 24-h cumulative precipitations of the five return pe-
riods from 20 to 200 yr permuted in the five rain gauges fell
between 2269 mm (Hou-An-Liao: 25 yr, Bao-Zhong: 50 yr,
Bei-Gang: 200 yr, Xi-Luo: 100 yr, and Da-Pu: 20 yr) and
2643 mm (Hou-An-Liao: 50 yr, Bao-Zhong: 100 yr, Bei-
Gang: 20 yr, Xi-Luo: 200 yr, and Da-Pu: 25 yr). To antic-
ipate more severe inundations by taking frequency analysis
into account, the sum of the 24-h cumulative precipitations
of five rain gauges was set to 2400 mm as the modified cu-
mulative rainfall for Types 3 and 4 in step 3 of Fig. 2. Con-
sequently, 52 synthetic inundation events, from each of the
four types of rainfall, were generated and employed to con-
struct the potential inundation database. Storm 04, Typhoons
Mindulle and Sepat were selected for generate 12 synthetic
inundation events as the test set according to the four types in
step 3 of Fig. 2, while others were classified into the training
set (36 events) and the validation set (4 events).

Table 1. Frequency analysis of 24-h cumulative rainfall of 5 rain
gauges in Yunlin: 1 – Hou-An-Liao, 2 – Bao-Zhong, 3 – Bei-Gang,
4 – Xi-Luo, and 5 – Da-Pu.

Return period 24-h cumulative rainfall
(year) (mm)

1 2 3 4 5

10 298.1 404.6 322.0 323.3 268.8
20 316.9 504.3 370.1 382.2 324.6
25 326.3 554.2 394.2 411.7 352.5
50 371.9 668.7 445.0 478.3 424.3

100 400.3 795.1 541.8 542.7 510.2
200 424.5 943.0 620.4 612.6 609.7

5.2 Criteria

The performances of the RiHNN were evaluated by five cri-
teria as follows:

1. Coefficient of efficiency, CE, is defined as

CE= 1−

N∑
n=1

[Iobs(n)−Isim(n)]2

N∑
n=1

[
Iobs(n)− Īobs

]2 , (12)

whereIsim(n) denotes the water depth (m) of the sim-
ulated inundation-depth hydrograph for time indexn,
andIobs(n) denotes the water depth (m) of the observed
inundation-depth hydrograph for time indexn during a
complete event periodN . The CE can range from−∞

to 1. An efficiency of 1 (CE = 1) corresponds to a per-
fect match of simulated inundation-depth hydrograph
to the observed data generated by the 2-D overland-
flow model. An efficiency of 0 (CE = 0) indicates that
the model predictions are as accurate as the mean of
the observed data, whereas an efficiency below zero
(−∞ < CE< 0) occurs when the observed mean is a
better predictor than the model. Briefly, a CE value
closer to 1 implies a better fit (Nash and Sutcliffe, 1970).

2. The error of maximum inundation depth, EIp (%), is
defined as

EIp =
Isim,p−Iobs,p

Iobs,p
·100%, (13)

where Isim,p denotes the maximum inundation depth
(m) of the simulated hydrograph, andIobs,p denotes
the maximum inundation depth (m) of the observed
inundation-depth hydrograph.
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Fig. 6. Inundation map under the 24-h design rainfall event with a 10-yr return period with 19 representative inundation locations.

Table 2. Information about the 13 events selected from Yunlin inundation history.

Event Name Date Max. 24-h cumulative precipitation Sum of 5 rain gauges
No. (mm 24 h−1) (mm h−1)

Bei-Gang Da-Pu Bao-Zhong Xi-Luo Hou-An-Liao

01 Typhoon Mindulle 2 Jul 2004 500.0 554.0 470.0 442.0 265.5 2231.5
02 Typhoon Aere 24 Aug 2004 75.0 268.0 72.0 198.0 78.5 691.5
03 Storm 01 10 Sep 2004 80.0 35.0 44.0 45.0 53.5 257.5
04 Typhoon Haima 11 Sep 2004 52.0 16.0 22.0 13.0 31.5 134.5
05 Typhoon Nanmadol 3 Dec 2004 69.0 102.0 60.0 75.0 58.5 364.5
06 Storm 02 9 May 2005 60.0 70.0 107.0 153.0 176.5 566.5
07 Storm 03 12 May 2005 129.0 300.0 209.0 164.0 53.5 855.5
08 Storm 04 14 Jun 2005 371.0 155.0 319.0 241.0 283.0 1369.0
09 Typhoon Haitang 18 Jul 2005 114.0 307.0 91.0 141.0 44.5 697.5
10 Storm 05 19 Jul 2005 169.0 178.0 97.0 131.0 77.5 652.5
11 Storm 06 20 Aug 2005 70.0 31.0 64.0 41.0 38.5 244.5
12 Typhoon Longwang 2 Oct 2005 30.0 79.0 29.0 27.0 26.5 191.5
13 Typhoon Sepat 18 Aug 2007 218.0 135.5 226.0 172.0 263.0 1014.5

3. Root mean square error, RMSE, is defined as

RMSE=

√√√√√ N∑
n=1

[Isim(n)−Iobs(n)]2

N
, (14)

where RMSE with same units as the quantity being es-
timated denotes the value by which an estimator differs
from the true value of the quantity being estimated. A
value of RMSE closer to 0 implies a better fit.

4. Mean absolute error, MAE, is defined as

MAE =

N∑
n=1

| Isim(n)−Iobs(n)|

N
, (15)

where MAE denotes a quantity that is adopted to mea-
sure the closeness of forecasts or predictions to the
eventual outcomes, and RMSE denotes the square root
of the second moment of the error. A value of MAE
closer to 0 implies a better fit.
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Table 3. The structures and performances of five RiHNNs (Models A∼E) and one feed-forward neural network (Model F).

1-h ahead Model A Model B Model C Model D∗ Model E Model F
forecasting

Input layer
(neuron no.) 230 230 230 230 230 230
PCA layer
(neuron no.) 6 10 20 49 80 –

Hidden layer
(neuron no.) 132 67 50 51 100 130

Output layer
(neuron no.) 19 19 19 19 19 19

Weight no. 4831 4329 6619 14 808 28 419 32 519

Explained
variance (%) 67.67 75.35 85.28 95.07 99.02 100.00

Status C V T C V T C V T C V T C V T C V T

CE 0.44 0.63 0.81 0.31 0.62 0.83 0.45 0.68 0.88 0.61 0.68 0.89 0.66 0.68 0.90 0.68 0.59 0.87
EIp (%) 63.14 38.33 23.77 26.75 19.43 1.77 42.16 11.42 7.20 10.35 2.51 4.13 13.24 2.88 5.56 17.44 11.29 5.69
RMSE (cm) 12.74 17.81 14.66 12.46 14.51 12.77 10.74 12.29 11.17 9.87 11.07 10.40 8.29 10.61 9.97 8.29 11.51 10.69
MAE (cm) 9.47 12.76 10.78 9.60 10.68 9.60 8.18 9.09 8.44 7.48 8.25 7.76 6.25 7.99 7.54 6.28 8.52 8.15
RMAE 0.42 0.36 0.24 0.39 0.32 0.21 0.36 0.31 0.19 0.35 0.27 0.18 0.31 0.26 0.16 0.31 0.29 0.18

Note: C is calibration set; V is validation set; T is test set. Model D∗ is the best model.

Fig. 7. Percentage of relative variance explained with different prin-
cipal components.

5. Relative mean absolute error, RMAE, is defined as

RMAE =
MAE

Īobs
, (16)

where Īobs denotes the mean of water depths (m) of
the observed inundation-depth hydrograph. A value of
MAE closer to 0 implies a better fit.

6 Results and discussion

6.1 Effect of principal component analysis

Principal component analysis reduced the dimension of neu-
rons in the PCA layer from 230 to less than 100, while the ex-
plained relative variance was almost 100%. Figure 7 dots the
five RiHNNs, plotted as Models A to E, with different num-
bers of principal components depending on specific thresh-
olds of 65%, 75%, 85%, 95% and 99% relative variance ex-
plained, respectively, and the feed-forward neural network
without the PCA layer, is denoted as Model F. The numbers
of neurons in input and output layers were fixed as 46·N

andK according to the numbers of rain gauges and specific
representative inundation locations, as indicated in Fig. 1.
The numbers of neurons in the PCA layer were determined
with the given relative variances explained as thresholds. The
numbers of neurons in the hidden layer were decided by trial
and error. The size of the structure of a RiHNN, including the
numbers of neurons in input layer, PCA layer, hidden layer,
and output layer, determined the required computer memory.
A RiHNN with a smaller structure is more efficient. Table 3
lists the structure and the performance of each RiHNN.

Table 5 shows the testing performances of each RiHNN
for the four types of real/synthetic rainfall events after train-
ing the RiHNNs well. Through the comparison between Ta-
bles 4 and 5, the performances of the four-type real/synthetic
rainfall events of test set were better than those of calibra-
tion set, because the events having the first three highest cu-
mulative precipitation (2231.5, 1369 and 1014.5 mm 24 h−1

in Table 2) were selected as the test set. The results in Ta-
ble 5 indicate that the five RiHNNs had similar performance
for most criteria, except that Model A clearly had the worst
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EIp of among the five models. The seventh to tenth prin-
cipal components improved the performance of RiHNN in
obtaining the peak inundation, while the first six principal
components contained less information about the inundation
peak, as indicated by the different numbers of neurons in the
PCA layers of the five RiHNNs in Table 3. Moreover, the
RMSE, MAE and RMAE values reveal that the RiHNNs not
only simulated events with the design hyetograph pattern bet-
ter than the events without it, but also simulated events with
higher rainfall better. While most RiHNNs had a CE value
over 0.8, Model D demonstrated its compact structure with
the superior performances in CE and EIp.

6.2 Spatial rainfall-inundation forecasting

Using the spatial precipitations of five rain gauges as inputs,
the best RiHNN, Model D, was employed to forecast 1-hour-
ahead inundation depths of the selected 19 representative in-
undation locations at the real-time base. Figures 8 and 9 il-
lustrate the scatter plots of the forecasting using Model D
and the synthetic inundation by a 2-D overland-flow model
for the selected locations based on 12 test events. The Ri-
HNN responded to the rainfall earlier than the 2-D overland-
flow model in order to catch the inundation jumping at the
beginning, as indicated by the output results at P05, P06,
P08∼ P15 and P17∼ P19. Figure 10 shows the hydrograph
of P18 as an example for discussion. This is because the
durations of inundations arising from 0 to 40 cm in most
selected locations were less than one hour, which is within
the calculation time interval of RiHNN. Nevertheless, most
forecasting results were close to the prefect fitting line af-
ter the initial jump in inundation, as revealed by the scatter
plots. Figures 10 and 11 show the rainfall-inundation pro-
cesses of Typhoon Sepat in Types 1 and 3 at representative
inundation locations P16, P18 and P19. In Fig. 10, the fore-
casting results were compared with survey data of Typhoon
Sepat (Type 1) at P18 and P19, which also validated the 2-D
overland-flow model adopted here. The mapping between
Figs. 4 and 6 indicates that P16 and P19 belong to the control
area of the Bei-Gang rain gauge, while P18 is in the control
area of the Hou-An-Liao rain gauge.

Since P16 was located in a locally-relative low place, as
shown in Fig. 12, the inundation-depth hydrograph gener-
ated by the 2-D overland-flow model reflected the accumu-
lation of the flood in both Figs. 10 and 11. Meanwhile, the
forecasting water depth indicated the increasing trend based
on the intensity and accumulation of precipitation in present
and past 22 h. Although a break occurred in the rainfall of
the Bei-Gang rain gauge between the 13th and 17th hour, the
forecasting inundation still obtained a peak following a drop
at the 16th hour. According to the experience of local people
in the study area, it was not easy to walk if the water was
deeper than 20 cm during inundation. Figure 12 shows the
inundation contours of 20 cm depth advancing with elapsed
time in 2007 Typhoon Sepat. The inundation contour demon-

Table 4. Performance of RiHNNs for the four types of rainfall in
calibration procedure.

Model Type 1 Type 2 Type 3 Type 4
(training)

C
E

A 0.17 0.11 0.70 0.87
B –0.01 –0.20 0.71 0.87
C 0.29 -0.11 0.80 0.91
D∗ 0.38 0.34 0.85 0.92
E 0.34 0.50 0.88 0.94

E
I p

(%
)

A 125.26 7.85 96.01 13.50
B 38.77 –14.45 72.14 7.61
C 84.24 20.47 48.49 3.16
D∗ 21.30 –4.70 21.82 –0.13
E 17.76 –0.57 28.25 3.39

R
M

S
E

(c
m

) A 10.74 7.41 19.94 14.90
B 9.71 7.73 19.42 13.78
C 9.42 7.01 15.23 11.92
D∗ 8.58 6.69 13.90 10.79
E 7.90 6.13 10.96 9.10

M
A

E
(c

m
) A 8.27 5.67 14.27 10.97

B 7.48 5.98 14.65 10.73
C 7.15 5.35 11.28 9.30
D∗ 6.71 5.25 10.13 8.15
E 6.03 4.69 8.09 6.89

R
M

A
E

A 0.68 0.48 0.31 0.18
B 0.58 0.48 0.31 0.18
C 0.56 0.47 0.24 0.16
D∗ 0.54 0.47 0.22 0.14
E 0.49 0.44 0.18 0.12

Note: Type 1 is original rainfall data.

Type 2 is design hyetographs amplified based on original cumulative rainfall.

Type 3 is original hyetographs amplified based on a modified cumulative rainfall.

Type 4 is design hyetographs amplified based on a modified cumulative rainfall.

D∗ is the best model.

strates that the surrounding lowlands near village including
the representative inundation location, P16, were inundated
over 20 cm following the 11th hour owing to overland flow.
P16 suffered inundation about one hour earlier than the vil-
lage area. Thus, residents in the village had 2 h to make emer-
gency responses for evacuation or transportation to shelter,
based on the 1-h-ahead forecasting by RiHNN.

Around P18 located south of the village, the shallow flow
was driven through by the topography effect from the east to
the west, as shown in Fig. 13. Based on the 2-D overland-
flow model, the peak rainfall at the Hou-An-Liao rain gauge
induced rising inundation at the 11th hour, and was released
slowly from east to west, while the second peak rainfall at
18th hour only caused the water depth to rise slightly in
Fig. 10. Due to the magnification of precipitation of Typhoon
Sepat in Fig. 11, the risen inundation induced by the peak
rainfall at the eighth hour was higher than that in Fig. 10, and
the bigger rainfall later caused the second inundation peak of
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Table 5. Performance of RiHNNs for the four types of rainfall in
test procedure.

Model Type 1 Type 2 Type 3 Type 4
(test)

C
E

A 0.70 0.76 0.85 0.91
B 0.75 0.84 0.81 0.91
C 0.82 0.88 0.89 0.94
D∗ 0.85 0.88 0.90 0.94
E 0.86 0.87 0.91 0.94

E
I p

(%
)

A 44.22 11.46 26.40 13.00
B 6.01 –1.84 1.95 0.95
C 16.51 5.57 6.55 0.17
D∗ 11.31 3.46 2.79 –1.05
E 8.95 0.48 10.08 2.74

R
M

S
E

(c
m

) A 15.41 13.90 16.71 12.60
B 13.67 10.72 15.31 11.38
C 12.44 9.46 13.11 9.68
D∗ 11.03 9.15 12.49 8.94
E 10.37 8.70 12.13 8.69

M
A

E
(c

m
) A 10.94 10.53 11.93 9.71

B 9.97 8.30 11.23 8.91
C 9.14 7.39 9.70 7.52
D∗ 8.16 7.02 9.15 6.71
E 7.76 6.70 8.90 6.78

R
M

A
E

A 0.34 0.27 0.21 0.14
B 0.31 0.22 0.20 0.13
C 0.29 0.20 0.17 0.11
D∗ 0.26 0.19 0.16 0.10
E 0.23 0.18 0.16 0.10

P18 in Fig. 11. The differences in the inundation-depth hy-
drographs generated by the 2-D overland-flow model demon-
strate that different cumulative rainfall would induce differ-
ent hydrograph patterns, even when the hyetograph patterns
were the same. Although the forecasting at P18 only re-
flected the changes of cumulative rainfall between Figs. 10
and 11 without modification of hydrograph patterns, the ris-
ing segment of inundation was still close to the inundation
generated by the 2-D overland-flow model, especially in
high-cumulative-rainfall events. The inundation contour in
Fig. 13 also indicates that inundation occurred P18, suffering
one hour earlier than that within the village area northwest
of P18. Hence, residents would have at least 2 h to make
emergency responses.

The inundation of P19 occurred after water filled up the
lower areas nearby, according to Fig. 14. The advance of
20 cm-deep contour lines demonstrates the rising of the in-
undation depth from lower to higher areas. Hence, the dif-
ferent cumulative rainfall with the same hyetograph pattern
between Figs. 10 (Type 1) and 11 (Type 3) induced not only
changes of peak inundation, but also differences in the hy-

drographs of inundation depth. The forecasting performance
of P19 indicated in Figs. 10 and 11 confirms that the fore-
casting is more accurate for high rainfall than that for slight
inundation, as discussed in Sect. 6.2. The RiHNN matched
not only the trend but also the peaking time of inundation for
Type 3 in Fig. 11, although the maximum inundation depth
was poor for Type 1 in Fig. 10. Moreover, P19 suffered in-
undation (see Fig. 14) about 2 h earlier than the village area
during Typhoon Sepat. The 1-h-ahead forecasting provided
by the RiHNN would give the residents about 3 h for emer-
gency responses.

From the above analyses, the RiHNN predicted 1-h-ahead
inundation depth acceptably at the representative inundation
locations through spatial rainfall information according to
Table 5 and Figs. 10 and 11. Accordingly, it may normally
take from 2 to 3 h for emergency managers of a local county
government in Taiwan to set the operational responses, as
mentioned previously. Based on the event study for the Ty-
phoon Sepat, the elapsed time of advancing 20 cm-deep in-
undation contour lines from the representative inundation lo-
cations (P16, P18 and P19) to the protected villages are about
2 to 3 h, which concludes that site selection of the distributed
representative inundation locations would have been benefi-
cial for real-time flood warning preparations.

7 Conclusions

This study presents a systematic flowchart for developing
a rainfall-inundation hybrid neural network (RiHNN) that
combines principal component analysis with a feed-forward
network to forecast the real-time 1-hour-ahead water depth of
inundation at distributed representative inundation locations
based on the spatial intensities and accumulations of ob-
served rainfall. For lack of surveyed inundation-depth hydro-
graphs in artificial neural network (ANN) training, the 2-D
overland-flow model was adopted to generate mass potential
inundation maps based on real/synthetic rainfall events. Al-
though building a synthetic potential inundation database is
time-consuming, a well-trained RiHNN that stores the char-
acteristics of inundation flows can respond to the specific
representative inundation locations in a real-time calcula-
tion during flood disasters. The proposed RiHNN combines
the merits of detailed hydraulics in flood-prone lowlands via
the 2-D overland-flow model and time-saving calculation via
ANN model.

Since principal component analysis (PCA) is embedded in
the PCA layer, the RiHNNs with various principal compo-
nents are compared with a feed-forward neural network. An-
alytical results indicate that RiHNNs obtain the same perfor-
mance as a feed-forward neural network with fewer weights.
Hence, this study proposes an efficient and compact Ri-
HNN with a 230-49-51-19 structure (see Table 3) to fore-
cast the inundations of 19 representative inundation locations
based on the rainfall records of 5 rain gauges. Moreover,
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Fig. 8. The scatter plots of the forecast by RiHNN (Model D) and the synthetic 

inundation by 2D overland-flow model for the P01~P12 representative 

inundation locations. 

Fig. 8. The scatter plots of the forecast by RiHNN (Model D) and the synthetic inundation by 2-D overland-flow model for the P01∼ P12
representative inundation locations.
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Fig. 9. The scatter plots of the forecast by RiHNN (Model D) and the synthetic 

inundation by 2D overland-flow model for the P13~P19 representative 

inundation locations. 

Fig. 9. The scatter plots of the forecast by RiHNN (Model D) and the synthetic inundation by 2-D overland-flow model for the P13∼ P19
representative inundation locations.

the capability of RiHNNs has been examined through four
types of real/synthetic rainfall events, and the performance
of rainfall-inundation forecasting via RiHNNs has been eval-
uated by five criteria. These evaluations reveal that RiHNNs
not only forecast inundation depths more accurately for the
event with design hyetograph pattern, but also fit inundation-
depth hydrographs with higher rainfall well.

The rainfall-inundation results demonstrate that 1-h-ahead
forecasting at the representative inundation locations does
help emergency managers set operational responses. For the
event study of Typhoon Sepat (2007), the elapsed time of ad-
vancing 20 cm-deep inundation contour lines from the rep-
resentative inundation locations (P16, P18 and P19) to the
protected villages are about 2 to 3 h, which is beneficial for
real-time flood warning preparations. Further study for the
algorithm of rainfall-inundation forecasting may be needed
to extend the distributed points to inundation extents.
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Fig. 10. The rainfall-inundation hydrograph of Typhoon Sepat (Type 1) in 2007. 
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Fig. 11. The rainfall-inundation hydrograph of Typhoon Sepat (Type 3) in 2007. 
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Fig. 12. Topography around P16 with the inundation contours of
20-cm depth advancing with elapsed time (by hour) in Typhoon
Sepat.

Fig. 13. Topography around P18 with the inundation contours of
20-cm depth advancing with elapsed time (by hour) in Typhoon
Sepat.

Fig. 14. Topography around P19 with the inundation contours of
20-cm depth advancing with elapsed time (by hour) in Typhoon
Sepat.
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