
Nat. Hazards Earth Syst. Sci., 11, 487–500, 2011
www.nat-hazards-earth-syst-sci.net/11/487/2011/
doi:10.5194/nhess-11-487-2011
© Author(s) 2011. CC Attribution 3.0 License.

Natural Hazards
and Earth

System Sciences

Verification of surface minimum, mean, and maximum temperature
forecasts in Calabria for summer 2008

S. Federico1,2

1ISAC-CNR, UOS of Lamezia Terme, Lamezia Terme (CZ), Italy
2CRATI, Rende (CS), Italy

Received: 5 July 2010 – Revised: 26 November 2010 – Accepted: 17 December 2010 – Published: 16 February 2011

Abstract. Since 2005, one-hour temperature forecasts for
the Calabria region (southern Italy), modelled by the Re-
gional Atmospheric Modeling System (RAMS), have been
issued by CRATI/ISAC-CNR (Consortium for Research and
Application of Innovative Technologies/Institute for Atmo-
spheric and Climate Sciences of the National Research Coun-
cil) and are available online atmeteo.crati.it/previsioni.html
(every six hours). Beginning in June 2008, the horizontal
resolution was enhanced to 2.5 km. In the present paper,
forecast skill and accuracy are evaluated out to four days for
the 2008 summer season (from 6 June to 30 September, 112
runs). For this purpose, gridded high horizontal resolution
forecasts of minimum, mean, and maximum temperatures
are evaluated against gridded analyses at the same horizontal
resolution (2.5 km).

Gridded analysis is based on Optimal Interpolation (OI)
and uses the RAMS first-day temperature forecast as the
background field. Observations from 87 thermometers are
used in the analysis system. The analysis error is introduced
to quantify the effect of using the RAMS first-day forecast
as the background field in the OI analyses and to define the
forecast error unambiguously, while spatial interpolation (SI)
analysis is considered to quantify the statistics’ sensitivity to
the verifying analysis and to show the quality of the OI anal-
yses for different background fields.

Two case studies, the first one with a low (less than the
10th percentile) root mean square error (RMSE) in the OI
analysis, the second with the largest RMSE of the whole pe-
riod in the OI analysis, are discussed to show the forecast per-
formance under two different conditions. Cumulative statis-
tics are used to quantify forecast errors out to four days. Re-
sults show that maximum temperature has the largest RMSE,
while minimum and mean temperature errors are similar. For
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the period considered, the OI analysis RMSEs for minimum,
mean, and maximum temperatures vary from 1.8, 1.6, and
2.0◦C, respectively, for the first-day forecast, to 2.0, 1.9, and
2.6◦C, respectively, for the fourth-day forecast.

Cumulative statistics are computed using both SI and OI
analysis as reference. Although SI statistics likely overesti-
mate the forecast error because they ignore the observational
error, the study shows that the difference between OI and SI
statistics is less than the analysis error.

The forecast skill is compared with that of the persistence
forecast. The Anomaly Correlation Coefficient (ACC) shows
that the model forecast is useful for all days and param-
eters considered here, and it is able to capture day-to-day
weather variability. The model forecast issued for the fourth
day is still better than the first-day forecast of a 24-h per-
sistence forecast, at least for mean and maximum tempera-
ture. The impact of using the RAMS first-day forecast as the
background field in the OI analysis is quantified by compar-
ing statistics computed with OI and SI analyses. Minimum
temperature is more sensitive to the change in the analysis
dataset as a consequence of its larger representative error.

1 Introduction

This paper investigates the performance of the high-
resolution (2.5 km horizontal resolution) operational fore-
cast of minimum, mean, and maximum temperatures issued
by CRATI/ISAC-CNR for the Calabria peninsula (Southern
Italy, Fig. 1). Temperature forecasts are produced daily by
the Regional Atmospheric Modeling System (RAMS; Cotton
et al., 2003). The model horizontal resolution was enhanced
from 6 to 2.5 km in June 2008 and this paper shows the fore-
cast performance from 6 June to 30 September 2008 (112
runs out of 117 days because the forecast was not available
for 5 days).
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Figure 1: a) Calabria features cited into the text; b) Calabria region and its position in the 

central Mediterranean; c) Black-filled circles are the stations of the regional network. Grey 

shading shows the orographic height (m). 

Fig. 1. (a)Calabria features cited into the text;(b) Calabria region and its position in the central Mediterranean;(c) Black-filled circles are
the stations of the regional network. Grey shading shows the orographic height (m).

The orography of Calabria is complex for three main rea-
sons (Fig. 1a): the sea-land contrast; mountain peaks with
elevations greater than 1000 m near the shoreline (<10 km);
and, considerable variability of terrain height as a function of
location.

All of these physiographic factors cause distinct micro-
climates and responses to specific weather patterns. Due to
the sea-land contrast, a sharp temperature gradient develops
across the shoreline and differences of several degrees can
be reported between two stations located near the coast and
few kilometres inland (Simpson, 1994). It is well known that,
when a cold pool develops, differences of several degrees can
be reported by two close stations located in a mountain gap
and along an adjacent ridge (Myrick et al., 2005; Mass et al.,
2003).

These issues have been investigated for Calabria from a
climatic perspective (Colacino et al., 1997; Federico et al.,
2009) and for case studies (Federico et al., 2008). These
studies show the multitude of local climates that characterize
the region, as well as the different impact of specific weather
patterns in different locations.

It is often assumed by forecast evaluators that observa-
tion errors are small enough that comparing forecasts directly
with observations can assess forecast accuracy. Nevertheless,
observations can develop systematic errors under particular
weather conditions due to position, exposure, and instrumen-
tal errors (Myrick and Horel, 2006). Even supposing a per-

fect instrument, that is, with no observational errors, position
is an important issue for regions with complex orography be-
cause the model forecast is defined as the average value of
the meteorological parameter over the grid box, and is repre-
sentative of the expected conditions inside the grid box. For
example, suppose there is a station located by the sea (lets
say 500 m inland) and its observations are compared with the
model forecast for the corresponding grid box. If the grid
box contains a portion of sea and a portion of land, the fore-
cast temperature is the weighted average of the value over
land and water (weights are equal to the fraction of the area
inside the grid box covered by each patch). The two tem-
peratures, depending on meteorological conditions and time
of the day, can differ by several degrees, thus directly com-
paring the forecast with the observation over-penalizes the
forecast.

To cope with this issue the forecast is compared with anal-
yses, which are a fundamental part of the CRATI/ISAC-CNR
operational temperature forecast because they are used not
only for forecast verification, but also as initial data in several
agro-meteorological applications (a few of these are avail-
able online athttp://meteo.crati.it/agrometereologia.html).1

As reviewed by Kalnay (2003) and as reported in Myrick

1Currently the end users of the temperature forecast are the
Regional Agency for Environmental Protection (www.cfcalabria.it)
and small enterprises interested in the local forecast (farmers and
Information and Communication Technology sector).
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Table 1. RAMS model setting. NNXP, NNYP and NNYZ are the
number of grid points in the west-east, north-south, and vertical
directions. Lx(km), Ly(km), Lz(m) are the domain extension in
the west-east, north-south, and vertical directions. DX(km) and
DY(km) are the horizontal grid resolutions in the west-east and
north-south directions. CENTLON and CENTLAT are the geo-
graphical coordinates of the grid centres.

First grid Second grid Third grid

NNXP 85 70 68
NNYP 85 70 110
NNZP 30 30 30
Lx(km) 2520 517.5 167.5
Ly(km) 2520 517.5 272.5
Lz(m) 16 300 16 300 16 300
DX(km) 30 7.5 2.5
DY(km) 30 7.5 2.5
CENTLAT 41.5 39.2 39.0
CENTLON 12.5 16.5 16.3

and Horel (2006) “the goal of objective analysis is to mini-
mize the difference between analyses and the unknown truth
over a large sample of analyses, given the errors of both the
observations and background field from which analyses are
derived.”

This study does not address the forecast value for a spe-
cific application of interest to a specific end-user. It assesses
the overall forecast performance for the purpose of strate-
gic planning (the administrative verification forecast; Mason
and Weigel, 2009; Joliffe and Stephenson, 2003; Murphy,
1993; Brier and Allen, 1951). In particular: (a) cumulative
statistics for the bias and root mean square errors (RMSE) are
employed to assess the forecast error out to four days, and;
(b) the skill of the RAMS forecast is compared by means of
the Anomaly Correlation Coefficient (ACC) against those re-
lated to the persistence forecast, which is supposed to have
good performance in summer because the Central Mediter-
ranean is characterized by fair and stable weather during this
season.

The paper is divided as follows: Sect. 2 provides details
of the observations and objective analysis; Sect. 3 examines
two case studies to show how the analysis corrects the back-
ground field in two different cases and also provides cumula-
tive measure-oriented statistics for assessing common fore-
cast tendencies and forecast errors; and Sect. 4 provides con-
clusions.

2 The objective analysis

2.1 Observation dataset and background field

The observation dataset consists of minimum, mean,
and maximum temperature from 87 thermometers (Fig. 1)

Fig. 2. The three RAMS domains.

provided by the Regional Agency for Environmental Pro-
tection of Calabria (ARPACAL). The average minimum dis-
tance between two thermometers is 10 km, which is assumed
to be the resolution of the database. The spatial distribu-
tion of the 87 thermometers is rather homogeneous and cov-
ers both mountains and lowlands.

Data are quality controlled by the ARPACAL but, in this
study, considerable effort was spent to objectively evaluate
the dataset.

The objective methodology generates a time series for
each station (target station) and for each parameter (i.e., min-
imum, mean, and maximum temperatures) by interpolating
the records of the surrounding stations within a search ra-
dius of 40 km. The weight assigned to each interpolating
station is the square of the ratio between the temperature cor-
relation coefficient (computed between the interpolating and
the target stations) and its distance from the target station.
This functional form gave better performance compared to
inverse linear distance, inverse square distance, and Kriging.
If the difference between the interpolated value and the orig-
inal value is larger than the standard deviation of the target
station computed for the whole period, the interpolated value
replaces the original one. Less than 2% of the original data
were replaced for minimum and maximum temperature and
less than 1% of the original data were replaced for mean tem-
perature.

All the choices in the quality control process outlined
above are derived from a study that examines daily mini-
mum, mean, and maximum temperatures from 1994 to 2008
(unpublished work). This study follows a similar technique
to that reported in Federico el al. (2009) for precipitation.

www.nat-hazards-earth-syst-sci.net/11/487/2011/ Nat. Hazards Earth Syst. Sci., 11, 487–500, 2011
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The forecast is issued by the RAMS model (non-
hydrostatic), version 6.0. A detailed description of the
RAMS model is given in Cotton et al. (2003) while the fol-
lowing is a brief description of the model setup.

Three two-way nested domains with horizontal resolutions
of 30, 7.5, and 2.5 km are used (Table 1, Fig. 2). Thirty ver-
tical levels, up to 16 300 m in the terrain-following coordi-
nate system, are used for all domains. Levels are not equally
spaced: layers within the Planetary Boundary Layer (PBL)
are between 50 and 200 m thick, whereas layers in the mid-
dle and upper troposphere are 1000 m thick.

The Land Ecosystem-Atmosphere Feedback model
(LEAF, version 3) is used to calculate the exchange between
soil, vegetation, and atmosphere (Walko et al., 2000). LEAF
is a representation of surface features, including vegetation,
soil, lakes and oceans, and snow cover, and their influence
on each other and on the atmosphere. LEAF includes
prognostic equations for soil temperature and moisture for
multiple layers, vegetation temperature and surface water
including dew and intercepted rainfall, snow cover mass
and thermal energy for multiple layers, and temperature and
water vapour mixing ratio of canopy air. Exchange terms in
these prognostic equations include turbulent exchange, heat
conduction and water diffusion and percolation in the snow
cover and soil, long-wave and short-wave radiative transfer,
transpiration, and precipitation.

Non-convective precipitation is computed from explicit
prognostic equations for seven water categories: cloud par-
ticles, rain, pristine ice, snow, aggregates, graupel, and hail
(Walko, 1995). The explicit microphysics scheme is applied
to all model grids. Convective precipitation is parameterized
following Molinari and Corsetti (1985) who proposed a sim-
plified form of the Kuo scheme that accounts for updrafts
and downdrafts. The convective scheme is applied to the two
outer domains.

RAMS parameterizes the unresolved transport using K-
theory, in which the covariances are evaluated as the product
of an eddy mixing coefficient and the gradient of the trans-
ported quantity.

The turbulent mixing in the horizontal directions is param-
eterized following Smagorinsky (1963), which relates the
mixing coefficients to the fluid strain rate and includes cor-
rections for the influence of the Brunt-Vaisala frequency and
the Richardson number (Pielke, 2002). Vertical diffusion is
parameterized according to the Mellor and Yamada (1982)
scheme, which employs a prognostic turbulent kinetic en-
ergy.

A full-column, two-stream single-band radiation scheme
is used to calculate short-wave and long-wave radiation
(Chen and Cotton, 1983). The Chen and Cotton scheme ac-
counts for condensate in the atmosphere, but not whether it
is cloud water, rain, or ice.

Atmospheric initial and dynamic boundary conditions,
available every six hours at 1× 1 degree horizontal resolu-
tion, are derived from the 12:00 UTC Global Forecasting

System (GFS) run of the National Centres for Environmental
Prediction (NCEP; Sela, 1980, 1982). A four-dimensional
data assimilation technique is used to define the forcing at
the lateral boundaries of the five outermost grid cells of the
largest domain.

The RAMS model is run once a day at CRATI/ISAC-
CNR. The model output is stored hourly. The hourly out-
put is used to compute surface minimum, mean, and max-
imum temperatures over the RAMS grids. As discussed in
the introduction, the forecast is compared with Optimal In-
terpolation (OI) gridded analyses, to take into account the
subgrid-scale variability in weather and positional measure-
ment errors. Surface temperatures over the third RAMS do-
main for the first-day forecast are used as background in the
OI algorithm.

2.2 The analysis system

For convenience, this section illustrates some aspects of the
objective analysis implemented in the study, which relies on
OI (Kalnay, 2003).

The analysed field, that is, the two-dimensional field of
minimum, mean, or maximum temperature, is given by the
equation:

xa= xb+W[yo−H(xb)] (1)

wherexa is the analyzed vector (i.e., the best estimate of
the unknown “truth”),xb is the background (or first guess)
field, taken from the RAMS first-day forecast (see previous
section),yo is the observational vector, whose elements are
the measurements of the 87 thermometers,2 H is the forward
observational operator, which converts the background field
into first guesses of the observations, andW is the optimal
weight (or gain) matrix.

The gain matrixW is given by:

W = BHT (R+HBHT )−1 (2)

whereB andR are the background and observational error
covariance matrices, respectively, andHT is the transpose of
the forward observation operator (which transforms observa-
tion points back to grid points).

The H matrix is a bilinear interpolation operator, which
accounts for the altitude differences between grid points and
stations. In particular, for each day, the vertical gradient (γ )
of the minimum, mean, and maximum temperature is com-
puted considering all land grid points of the third RAMS do-
main (Fig. 2). This gradient is used in the bilinear interpola-
tion operator to account for differences between grid points
and station altitudes. TheH operator changes daily for each
parameter. The dimensions of theH matrix arep×n where
p is 87 (the number of thermometers) andn is 7840 (i.e. the
number of grid points of the third RAMS domain; Table 1).

2Before entering the OI scheme, measurements are quality con-
trolled following the procedure presented in Sect. 2.1.
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Fig. 3. TheH operator.i, i +1, i +2 andi +3 are the grid points
surrounding the stationj . The weightsw and t are the distances
between the stationj and grid pointi along thex andy directions
of the polar stereographic projection used by RAMS.

Referring to Fig. 3, the explicit form of the componentj

(j=1,..,p is the station index) of the vectorHx is:

(Hx)j = (1−w)(1− t)
(
xi −γ

(
zi −zj

))
+w(1− t)

(
xi+1−γ

(
zi+1−zj

))
+wt

(
xi+2−γ

(
zi+2−zj

))
+(1−w)t

(
xi+3−γ

(
zi+3−zj

)) ,

wherew andt are the interpolation weights andz is the alti-
tude.

TheR andB matrices depend on the observation (σ 2
o) and

background (σ 2
b) error covariances, respectively, whose mag-

nitudes are estimated by the Lönnberg and Hollingsworth
method (L̈onnberg and Hollingsworth, 1986; Xu et al., 2001;
Myrick and Horel, 2006). The covariance between observa-
tional innovationsyo-Hxb is computed as a function of the
distancer from all background field-observation pairs:

cov(r) = (oi−bi)(oj−bj ) (3)

whereo is the measurement,b is the background field inter-
polated at the station point,i andjare indices denoting the
stations (i=1,. . . ,p; j=1,. . . ,p), and the overbar is the aver-
age operator. We assume that: (a) the observational errors
are uncorrelated with one another; and (b) the background
and the observational errors are uncorrelated. With these as-
sumptions, Eq. (3) becomes:

cov(r=0)=σ 2
o +σ 2

b

and:

cov(r 6= 0) = σ 2
b ρ(r)

whereρ(r) is the background error correlation, which is as-
sumed as an isotropic function of the distance.

Figure 4 shows the covariance of the observational inno-
vation as a function ofr for minimum, mean, and maximum
temperatures. The covariance drops sharply withr, however

Fig. 4. Binned innovation covariance for minimum (squares), mean
(diamonds), and maximum (circles) temperatures. The curves (dot-
dash, solid, and dash for minimum, mean, and maximum tempera-
tures) are 6th order polynomial fittings of the binned covariances.

it remains almost constant for distances greater than 100 km,
showing that errors remain correlated for long distances. The
data fitting, binned every 5 km, is given by a sixth-order poly-
nomial. This order was chosen, among polynomials from
second to the tenth degree, because it minimized theχ2 of
the interpolating polynomial (Press et al., 1992, Chapter 15).
It should also be emphasized that estimates ofσ 2

b andσ 2
o dif-

fer by less than 0.5◦C for polynomial fittings from the fifth
to the tenth degree.

Extrapolating the polynomial fitting tor = 0 gives the esti-
mate of the background error covarianceσ 2

b. The difference
between the total covariance forr = 0 and the background er-
ror covarianceσ 2

b gives the observation error covarianceσ 2
o.

From Fig. 4 it follows thatσ 2
b is equal to 2.9, 2.1, and 2.4◦C2

for minimum, mean, and maximum temperature, whileσ 2
o is

equal to 1.5, 0.8, and 1.1◦C2 for minimum, mean and maxi-
mum temperature.

Figure 4 suggests that the OI analysis well represents ob-
servations because: (a) it gives more (less) weight to obser-
vations (background) becauseσ 2

o is about half ofσ 2
b; and (b)

the correlation of the innovation covariance at long distance
transports the observation far from the corresponding station.

Once observation and background error covariances are
determined, the matricesR andB are easily formed for each
parameter.R is ap×p diagonal matrix whose elements are
all equal toσ 2

o. B is ann×n matrix whose elementij is the
value of the polynomial fitting, reported in Fig. 4, computed
for the distance between grid pointsi andj .

It should be noticed that theB matrix is specified in a
different way compared to other studies (see Myrick et al.,
2005; Tyndall et al., 2010 and references therein), which ex-
plicitly introduce the horizontal (R) and vertical (Rz) decor-
relation distances and assume an exponential decrease of the
background correlation error with distance. There are two

www.nat-hazards-earth-syst-sci.net/11/487/2011/ Nat. Hazards Earth Syst. Sci., 11, 487–500, 2011
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Figure 4: Binned innovation covariance for minimum (squares), mean (diamonds), and 

maximum (circles) temperatures. The curves (dot-dash, solid, and dash for minimum, mean, 

and maximum temperatures) are 6th order polynomial fittings of the binned covariances. 

Figure 5: OI analysis variance for minimum (panel a), mean (panel b) and maximum (panel c) 

temperature averaged over the whole period. 

Fig. 5. OI analysis variance for minimum (panela), mean (panelb) and maximum (panelc) temperature averaged over the whole period.

main reasons for this choice: (a) considerable research has
shown that analysis approaches that directly estimate the spa-
tial relationships between background errors are superior to
those that specify them a priori (Kalnay, 2003); and (b) using
horizontal and vertical decorrelation distances introduces a
subjective choice of their values. This choice can be tuned
for the specific application at hand to obtain more reliable
analyses, though it might not be the right choice for other cir-
cumstances. This paper presents a general-purpose analysis
algorithm for temperature over Calabria and it is not targeted
for a specific application.

The proposed approach could produce unrealistic analy-
ses for particular areas and meteorological phenomena like
cold air confined to a side of a mountain or radiation inver-
sions in mountain valleys. Such errors can be reduced us-
ing more computationally expensive techniques that estimate
rather than specify theB matrix, such as ensemble Kalman
filters.

Among other factors, the observations density is a cru-
cial aspect of the analyses described above (hereafter also
referred as OI analysis). It is expected that the larger the
number of stations the lower the observational representative
error and the higher the OI analysis quality.3 In this paper it
is assumed that Calabria is a data-rich region for temperature
so that the OI analysis is close to the unknown truth (Kistler,
2001). So, comparing the forecast with the analysis gives a
good representation of the forecast error.

This assumption may raise doubts for the verification of
the first-day forecast, whose error may be sizeably reduced
by the fact that analyses use the first-day forecast as back-
ground field and that OI tends to minimize the error between
the background and observations. This is not the case be-
cause, in this paper, the OI analysis error is also quantified.
In other words, the study quantifies not only the forecast er-

3 The OI analysis quality can be estimated exactly by computing
the analysis error in respect to the unknown truth, as shown later.

ror compared to the analysis but also the analysis error from
the unknown truth, and the forecast error is estimated unam-
biguously.

To quantify the OI analysis error associated with each vari-
able considered, the analysis variance is also calculated by
means of the diagonal elements of thePa matrix (Kalnay,
1993). The precision matrix is an×n matrix given by:

Pa= (In −WH )B, (4)

whereIn is ann-dimension identity matrix.
Figure 5a, b, and c show the analysis variance for mini-

mum, mean, and maximum temperature, respectively, aver-
aged over the whole period.4 The OI analysis error asso-
ciated with each variable considered (mean, maximum and
minimum temperature) is given by the root square of the
corresponding field reported in Fig. 5. As expected, the OI
analysis error depends on the observation density: it is lower
where observations are denser and it is larger in data void re-
gions, namely the eastern flank of the Sila and northern Cal-
abria. The error for mean temperature is the lowest because
the two data sources involved in the OI analysis, i.e., the
background and measurements, have a lower RMSE com-
pared to other parameters (see Fig. 3 forr = 0).

In the remainder of this paper, OI analyses are used to
quantify the forecast error for two main reasons: (a) they
do not suffer from representative error; and (b) the forecast
error can be quantified unambiguously.

Nevertheless, OI analyses are also compared with spatially
interpolated observational analyses (hereafter SI analyses)
to: (a) show some aspects of the OI algorithm by compar-
ing its performance in different conditions; and (b) study the

4 The precision matrix varies from day to day because of the di-
urnal dependence of theH operator. However, the daily dependence
of Pa is very weak (<0.1◦C from day to day) and so the precision
matrix can be assumed constant.

Nat. Hazards Earth Syst. Sci., 11, 487–500, 2011 www.nat-hazards-earth-syst-sci.net/11/487/2011/
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Fig. 6. (a) OI analysis for mean temperature on 18 June 2008;(b) As in (a), but for the background field;(c) Difference between the OI
analysis and background;(d) SI analysis for mean temperature.

sensitivity of the statistics presented to the verifying analy-
sis. For each day considered in the verification period, the SI
analyses for mean, maximum and minimum temperature are
obtained by spatially interpolating the measurements onto
the RAMS grid.

The functional form of the weights used for the spatial in-
terpolation is the square of the inverse distance and only sta-
tions inside a search radius of 40 km from the grid point are
used in the interpolation. The spatial interpolation takes into
account the difference between the station and grid point ele-
vations through the observations’ vertical temperature gradi-
ent, similarly to theHx vector. The weights functional form
(inverse distance and simple Kriging were also tested) and
the search radius (from 10 to 60 km every 5 km) were deter-
mined by minimizing the RMSE among the SI analyses.

Finally, because observations are taken over land only, the
results and statistics of this paper are presented for the grid-
points of the third RAMS domain covered at least by 10%
land (hereafter land grid points).

3 Results

3.1 Forecast and analysis examples

Two examples of forecast and analysis of mean temperature
are discussed to show how the analysis system works. The
cases refer to a rapid temperature increase (18 June) and to
a rapid temperature decrease (15 September) over Calabria.
The first case shows a good agreement between the back-
ground and the analysis fields, and is an example of a good
RAMS first-day forecast. The second case was not well pre-
dicted by the model and therefore the background and anal-
ysis differ by several degrees. For both cases the synoptic
scale environment is briefly introduced (not shown).

The events of 18 June followed three days of sea level
pressure rise over the Ionian Sea. The increase was less
pronounced on 15 and 16 June (0.5 hPa d−1 on average be-
tween Calabria and Greece) and more pronounced on 17 June
(1 hPa d−1 on average between Calabria and Greece). Mean-
while, at 500 hPa, a geopotential ridge expanded from North
Africa toward the Central Mediterranean. The establishment

www.nat-hazards-earth-syst-sci.net/11/487/2011/ Nat. Hazards Earth Syst. Sci., 11, 487–500, 2011
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Fig. 7. As in Fig. 6, but for 15 September 2008.

of the high-pressure pattern over the Central Mediterranean
determined several days of fair weather over Calabria with-
out synoptic-scale cyclones affecting the area. The increase
in the sea level pressure over the Ionian Sea produced a west-
east positive pressure gradient in the Central Mediterranean
and warm advection from North Africa toward Calabria. The
synoptic-scale evolution led to a rapid increase in the surface
temperature over the region between 15 and 18 June (5◦C
for the average temperature).

Figure 6a–c show the OI analysis, the background and the
difference between the two fields for the mean temperature
on 18 June. The model well represents the warming over the
region because the difference between the background and
analysis fields is almost everywhere between−1 and 1◦C.
Nevertheless, over the Sila plateau, at the northern-end of
the Crati valley, and over Serre, differences are between 1
and 2◦C (analysis colder than background).

The rapid temperature increase over Calabria is confirmed
by the low ACC value (see next section for details) of the sec-
ond day of a 48-h persistence forecast (day 12 in Fig. 9). The
value of ACC for 18 June is 0.97 for the RAMS second-day
forecast and−0.84 for the second day of a 48-h persistence
forecast.

Figure 6d shows the SI analysis for 18 June. Given
the small differences between the two observational grid-
ded fields plotted in Fig. 6a and d, it can be stated that the
OI analysis is able to well represent measurements. This is
shown, for example, by the local temperature minimum over
the Sila plateau, which is present in both analyses but not in
the background field, and by the temperature field over the
Serre, which is lower than the background in both analyses.

The second case refers to the passage of a synoptic-
scale storm over Calabria and the central Mediterranean,
which persisted from 14 to 16 September. The storm left
considerable precipitation over the region and the sky was
overcast. Rainfall was noticeably abundant on 14 Septem-
ber, when 19 rain gauges recorded more than 50 mm d−1.
The rainfall averages for all rain gauges were 40, 8.5, and
6.5 mm, on 14, 15, and 16 September, respectively.

Temperature decreased during the storm (see also Fig. 4 in
Federico et al., 2010), which marked the change in climate
regime from summer to fall. The average temperature over
Calabria decreased from 23.5◦C on 13 September to 15.7◦C
on 18 September. The storm was not well forecast by RAMS
on 15 September in terms of precipitation amount, cloud cov-
erage, and temperature decrease. Figure 7a, b, and c show the
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Fig. 8. (a) Mean temperature bias for the first-day forecast;(b)
As in Fig. 8a, but for the fourth-day forecast;(c) Mean temperature
RMSE for the first-day forecast;(d) As in Fig. 8c, but for the fourth-
day forecast. Contours drawn at interval of 0.5◦.

OI analysis, the background field, and the difference between
these two fields for mean temperature on 15 September. Dif-
ferences are between−10 and−8◦C over the Sila plateau
and the absolute value of the difference is larger than 4◦C
for most grid points.

The background field in Fig. 7b is obtained from the first-
day forecast issued on 15 September. Noticeably, the fore-
cast missed the event also on 14, 16, and 17 September, as
confirmed by the low ACC values for the second-day RAMS
forecast (days 100–103 of Fig. 9). The second day of a 48-h
persistence forecast was better than the RAMS second-day
forecast for 17 September (day 103 of Fig. 9; ACC is 0.90
for persistence and−0.74 for RAMS).

Figure 7d shows the 15 September SI analysis. Differ-
ences between the two analyses are larger compared to those
obtained on 18 June and the OI analysis is warmer than the
SI analysis as a consequence of using the RAMS temperature
as the background field. The RAMS error (Fig. 7c) is clearly

Fig. 9. Mean temperature ACC computed respect to OI analyses for
RAMS second-day forecast (black solid line) and for the second day
of a 48-h persistence forecast (dashed line) based on OI analyses.
Days 0–24 are June, days 25–55 are July, days 56–86 are August
and days 87–116 are September. RAMS forecasts and analyses are
not available for five days (gaps in the solid and dashed lines at the
beginning of July and September).

underestimated compared to the true error for 15 September,
but the forecast error contributes to increase the analysis er-
ror for the whole period (Fig. 5a–c). For 15 September, using
the RAMS first-day forecast as the background field in OI re-
duces the forecast error but this effect is offset by the increase
in the analysis error.

It must be pointed out that the analysis errors in Fig. 5a–c
are estimated for the whole period because the background
matrix is constant and does not account for the “error of the
day”. As a result, it follows that for the 15 September event
the analysis error is underestimated, whereas for the 18 June
event it is overestimated. For the whole period the “overesti-
mation” and “underestimation” compensate. While more ad-
vanced techniques take this problem into account, at present
OI analysis is the best technique for Calabria.

Figures 6 and 7 are representative of the OI analysis in
two different situations at the extremes of the RAMS forecast
performance. On 18 June, the analysis corrects the back-
ground field at local scale. Corrections are due to the mis-
forecast of the cloud coverage induced by local circulations,
or to the misforecast of local circulation characteristics such
as timing, direction, and intensity (De Leo et al., 2008). On
15 September, the analysis sizeably corrects the background
field over the whole region, as a result of the poor forecast,
and superimposes to this gross correction additional correc-
tions accounting for local effects.

3.2 Cumulative statistics

This section shows cumulative statistics of bias and RMSE
to quantify the forecast error and common forecast tenden-
cies, while ACC (Wilks, 2006) statistics are used to compare
the RAMS forecast with persistence. In the context of fore-
cast verification, cumulative statistics are necessary to reduce
the verification dimensionality (Murphy, 1991). Statistics are
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Table 2. Bias, MAE, and RMSE, computed with respect to the OI analyses, averaged for land grid points. Rows show the result for each
forecast day. Min, med, and max refers to minimum, mean and maximum temperature, respectively. The analysis error is shown only for the
first day and is equal for all days. Values into parentheses show the statistics computed with respect to SI analyses.

Bias Bias Bias MAE MAE MAE RMSE RMSE RMSE
min med max min med max min med max

1-D −0.2±1.2 0.1±0.9 0.2±1.1 1.3±1.2 1.2±0.9 1.4±1.1 1.8±1.2 1.6±0.9 2.0±1.1
(−0.2) (0.2) (0.4) (1.9) (1.5) (1.9) (2.6) (2.2) (2.7)

2-D −0.5 0.2 0.6 1.5 1.2 1.5 1.9 1.8 2.4
(−0.6) (0.4) (0.8) (2.0) (1.6) (2.0) (2.6) (2.3) (2.8)

3-D −0.5 0.2 0.5 1.6 1.3 1.6 2.0 1.9 2.4
(−0.6) (0.4) (0.8) (2.0) (1.6) (2.0) (2.7) (2.3) (2.9)

4-D −0.6 0.3 0.5 1.6 1.3 1.8 2.0 1.9 2.6
(−0.7) (0.4) (0.9) (2.1) (1.7) (2.2) (2.7) (2.4) (3.1)

computed for summer 2008 (112 runs) and, while one season
is not sufficient to draw final conclusions, they give a first as-
sessment of model performance.

Figure 8 shows the bias (Fig. 8a, b) and RMSE (Fig. 8c,
d) in mean temperature calculated for the whole forecast pe-
riod (6 June–30 September), for the first and fourth forecast
days, which show the best and the worst performance, re-
spectively. The bias is computed for each grid point as the
average of the difference between the forecast and the OI
analysis for the whole period. The bias is positive over the
main mountain peaks and is negative for lowland and coastal
areas. The absolute value of the bias increases between the
first and fourth forecast days, and the areas with positive
bias are more widespread for the fourth day, denoting a fore-
cast drift toward warmer temperatures compared to the anal-
ysis with increasing forecasting time. For mean temperature,
more than 98% of the grid points show an absolute bias less
than 1◦C for all four days.

Bias patterns of minimum and maximum temperature are
similar to those reported in Fig. 8a and b, but with associated
larger bias (not shown).

The RMSE of mean temperature is shown in Fig. 8c and
d. It is computed for each grid pointi as:

RMSEi =

√√√√√ N∑
J=1

(T i
AJ

−T i
FJ

)2

N
,

whereT i
AJ is the OI analysis for thei-th grid point and for

theJ-th day,T i
FJ is the forecast for the same day and for the

same grid point, andN is the number of simulations (112).
RMSE is larger than 2◦C in central Calabria while RMSE

is lower than 1◦C over the eastern flank of the Sila plateau.
By comparing Fig. 8c and d, the increase in the RMSE with
forecasting time is apparent. In particular, RMSE is one-half
degree larger over the eastern flank of the Sila plateau and
over the southern part of the Lamezia Terme and Gioia Tauro
plains.

RMSE patterns for minimum and maximum temperature
are similar to those reported in Fig. 8c and d, but errors are
larger (not shown).

Figure 8c shows the effect of using the RAMS first-day
forecast as the background field in the OI analyses. The de-
crease in the RMSE in northern Calabria and on the eastern
flank of Sila is caused by the larger weight that the analy-
sis algorithm gives to the background in data void areas. So,
the error decrease is not caused by a better agreement be-
tween the RAMS forecast and observations, rather, it is a
consequence of the lack of measurements. However, the OI
algorithm accounts for this effect because the analysis error
comparatively increases in these areas (Fig. 5a–c) and analy-
ses are less reliable.

To quantify the forecast error for all (land) grid points of
the third RAMS domain, Table 2 shows the values of the
bias, mean absolute error (MAE) and RMSE averaged over
the land grid points. Analysis error is used to quantify the
uncertainty in the estimate of the forecast error. It is given by
the land grid-points average of the square root of Fig. 5a–c.
The first-day forecast has a small bias.5 For other forecast
days, minimum temperature has a negative bias (the fore-
cast is colder than the analysis), while maximum tempera-
ture shows a positive bias (the forecast is warmer than the
analysis).

The largest RMSE is for maximum temperature. It in-
creases from 2.0◦C (first day) to 2.6◦C (fourth day). The
RMSE increases slowly during the four forecast days. This
is partially determined by the season considered in this work.
In summer, the weather over Calabria is rather stable (Co-
lacino, 1992; Federico et al., 2009) and its predictability is
expected to be longer than in other seasons.

5It is important to note that no methodologies were applied to
correct or reduce the bias, and the bias could be considerably larger
in other seasons or years. Moreover, the day-to-day bias is not neg-
ligible as shown, for example, for 15 September (previous section).
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Table 3. Average of the ACC for the whole period for RAMS and persistence forecasts. The seasonal average is computed as the average
of the OI analyses for the period considered. Persistence is computed from OI analyses. ACCmin columns are for minimum temperature,
ACCmeacolumns are for mean temperature, and ACCmax columns are for maximum temperature. Values into parentheses show the ACC
statistic computed using SI seasonal average and the persistence computed from SI analyses.

RAMS PERSISTENCE
ACCmin ACCmea ACCmax ACCmin ACCmea ACCmax

1-D 0.82 (0.70) 0.85 (0.82) 0.87 (0.82) 0.70 (0.70) 0.79 (0.80) 0.74 (0.76)

2-D 0.73 (0.65) 0.84 (0.82) 0.84 (0.80) 0.54 (0.58) 0.60 (0.63) 0.56 (0.59)

3-D 0.71 (0.63) 0.83 (0.81) 0.81 (0.78) 0.47 (0.49) 0.54 (0.56) 0.49 (0.51)

4-D 0.70 (0.62) 0.82 (0.80) 0.78 (0.77) 0.42 (0.45) 0.53 (0.54) 0.47 (0.49)

Table 2 also shows the results of the comparison between
the forecast and SI analysis to quantify the statistics’ sen-
sitivity to the verifying analysis. The error increases slowly
with forecasting time and RMSE values are 0.5–0.8◦C larger
than for OI analysis. The error computed with respect to SI
analyses is likely an overestimation of the true error because
measurement errors are ignored. Nevertheless, the difference
between the two statistics is lower than the analysis error.

The usefulness of the forecast for all days is confirmed by
the ACC analysis. ACC (Wilks, 2006) is a commonly used
measure of association between gridded fields (the forecast
and observational analysis fields in this paper). To compute
ACC, the seasonal average is subtracted from each field to
draw attention to how well the forecast captures the day-to-
day variability. In this paper, the seasonal average is given
by the average of the OI analyses computed for the whole
period. The threshold value for a skilful forecast is 0.5, how-
ever it is a common practice to use the 0.6 threshold to define
a useful forecast.

Figure 9 shows the ACC comparison between the second-
day RAMS forecast and the second day of a 48-h persistence
forecast for mean temperature. The second day is chosen
because it does not show the best or the worst performance,
so provides a good representation of the whole forecast be-
haviour. There is large day-to-day variability and the RAMS
forecast is usually better (70% of the cases) than persistence.
This behaviour is also shown by minimum (69%) and maxi-
mum (75%) temperature second-day forecasts (not shown).
As discussed in the previous section, the RAMS forecast
was particularly poor for four consecutive days in September
(days 100–103, from 14 to 17 September). The second-day
RAMS forecast is useful in 90% of cases for mean tempera-
ture, in 76% of cases for minimum temperature, and in 92%
of cases for maximum temperature. So, despite the RMSE
of maximum temperature being the largest, the RAMS fore-
cast better follows the day-to-day variability of this parame-
ter. Similar considerations apply to other forecast days (not
shown).

To show the effect of using the RAMS first-day forecast
as the background field in the OI analysis, the ACC is com-
puted using both OI and SI seasonal averages (ACCOI and
ACC SI, respectively).

Table 3 shows the ACC average computed for the whole
period for RAMS (both ACCOI and ACCSI). In this table
the 1-D row refers to the first day RAMS forecast and to the
24-h forecast of a one-day persistence forecast, and similarly
for other days.

The ACC is larger than 0.6 for each parameter and fore-
cast day. The RAMS forecast is always better than persis-
tence, especially for days two to four. Persistence is useful
for the first day and for mean temperature of the second day;
nonetheless, the ACC for the RAMS fourth-day forecast is
still better than the one-day persistence forecast for ACCOI.

The previous statement is not valid for the ACCSI mini-
mum temperature and Table 3 shows a decrease in the ACC
performance for minimum temperature when the SI seasonal
average is used. In particular: (a) differences between 1-D
ACC OI and 1-D ACCSI are much larger for minimum tem-
perature than for other parameters (0.12, 0.03, and 0.05 for
minimum, mean, and maximum temperature, respectively);
and (b) the ACCOI decrease between the first- and second-
day forecast is larger for minimum temperature compared to
others parameters. Both results show the effect of using the
RAMS first-day forecast as the background field in the OI
analysis, because minimum temperature has the largest rep-
resentative error (Fig. 4). As a consequence, compared to
other parameters, OI analyses give a larger weight to the
background field for minimum temperature, which causes
the two behaviours in the ACCOI and ACCSI statistics
mentioned above. Nevertheless, the RAMS forecast is useful
for minimum temperature when the SI seasonal average is
used to compute ACC. The persistence forecast performance
is expected to decrease in other seasons.

Finally, differences between ACCOI and ACCSI provide
an estimation of the error associated with these statistics.
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4 Conclusions

Beginning in the June 2008, a high-resolution (2.5 km) tem-
perature forecast has been issued daily at CRATI/ISAC-CNR
out to four days for the Calabria peninsula (southern Italy).
This paper shows the performance of the surface minimum,
mean, and maximum temperature forecasts from 6 June to 30
September 2008 (112 runs out of 117 days because the fore-
cast was not available for five days). While it is not possi-
ble to draw final conclusions about the resulting statistics be-
cause of the brevity of the analysis period, it must be stressed
that: (a) summer is the most important season for open field
agriculture in the country, and farmers are among the final
users of the forecast; (b) the study introduces the analysis
system for future reference.

The subgrid-scale variability in weather and inadequate
ground truth, because of both instrumental and representa-
tive errors, significantly complicate the forecast verification,
especially in complex orography. To cope with these diffi-
culties, surface analyses of minimum, mean, and maximum
temperature have been prepared at 2.5 km resolution since
June 2008. The analysis algorithm, which uses the RAMS
first-day forecast as the background field, is based on Opti-
mal Interpolation and uses data from 87 thermometers. Mea-
surements are (objectively) quality controlled to reject data
that show gross differences with nearby stations.

The analysis error, which quantifies the difference be-
tween the OI analysis and the unknown truth, is introduced to
show the effect of using the RAMS first-day forecast in the
OI algorithm and to quantify the forecast error unambigu-
ously.

A simple spatial interpolation analysis is used to show
some aspects of the OI analyses and to assess the statistics’
sensitivity to the verifying analysis.

Two case studies are then discussed to show the OI be-
haviour in different conditions. The 18 June study refers
to a rapid warming of surface temperature caused by a
favourable synoptic environment, namely clear-sky condi-
tions and warm advection from North Africa toward Cal-
abria. The case was well predicted by RAMS and the differ-
ence between the background and OI analysis of mean tem-
perature was between−1◦C and 1◦C for most grid points.
The difference is larger (between 1 and 2◦C) for specific ar-
eas showing local phenomena that are not well predicted by
the model, such as local circulation characteristics. Compar-
ing OI and SI analyses for 18 June shows the ability of the
OI analysis to well represent measurements.

The 15 September case study refers to the passage of a
synoptic-scale storm that persisted over Calabria from 14 to
16 September. During this period, the sky was overcast and
rain abundant, especially on 14 September. A considerable
temperature decrease accompanied this storm, which was not
well predicted by the model, and differences between the
background and analysis are larger than 4◦C (locally larger
than 8◦C).

Comparing OI and SI analyses shows a less satisfactory
result (the worst of the whole period) for OI and the forecast
error is underestimated compared to the true error. The fore-
cast error underestimation is compensated for by an increase
in the analysis error because days with larger errors are those
contributing more to the increase in the analysis error. Nev-
ertheless, assuming a constant background error produces an
underestimation of the analysis error for 15 September. The
reverse occurs on 18 June and the two effects compensate
considering the whole period.

Measure-oriented cumulative statistics are used to reduce
the forecast verification dimensionality and to elucidate com-
mon forecast tendencies.

The forecast shows a drift toward cold bias for minimum
temperature (−0.6◦C for the fourth day), and a drift toward
warm bias for mean (0.3◦C for the fourth day) and maximum
(0.5◦C for the fourth day) temperatures.

The RMSE shows a slow increase from the first- to the
fourth-day forecast. In particular, RMSE increases from 1.8
to 2.0◦C for minimum temperature, from 1.6 to 1.9◦C for
mean temperature, and from 2.0 to 2.6◦C for maximum tem-
perature. The small error increase with forecasting time is,
at least partially, caused by the stability of the weather in the
area during summer. Statistics’ errors are quantified by the
OI analysis error.

To show the statistics’ sensitivity to the verifying analysis,
cumulative statistics are computed with respect to SI analy-
ses as well. Even if SI statistics are likely an overestimation
of the true error, because they do not consider the observa-
tional errors, the OI analysis error is larger than the differ-
ence between statistics computed with respect to OI and SI
analyses.

The RMSE spatial distribution shows the largest values for
the Crati valley and for the western part of Sila, and the low-
est values for northern Calabria and for the eastern flank of
Sila. The RMSE spatial distribution is similar for all param-
eters and for all forecast days. The decrease in the RMSE in
northern Calabria and on the eastern flank of Sila is caused
by the larger weight that the analysis algorithm gives to the
background field in data void areas. At the same time, the
analysis error increases for these areas, compensating for
the forecast error decrease, and unambiguously defining the
forecast error.

By performing the anomaly correlation analysis, the use-
fulness of the RAMS forecast compared to the persistence
forecast is shown. The latter shows a good performance be-
cause of the stability of weather patterns over Calabria in
summer. The second-day forecast is considered as represen-
tative of the whole forecast because its score is between the
best (first-day) and the worst (fourth-day) scores. Assuming
the 0.6 threshold to define a useful forecast, the second-day
RAMS forecast is useful in 90% of cases for mean tempera-
ture, in 76% of cases for minimum temperature, and in 92%
of cases for maximum temperature, when the OI seasonal
average is used to compute ACC.
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Comparing ACCOI and ACCSI average values for the
whole period shows that RAMS forecast is always better than
persistence. The RAMS fourth-day forecast is better than
the one-day persistence forecast when the ACCOI is con-
sidered, while this is not verified for minimum temperature
for the ACCSI.

A decrease in the ACCSI performance is noticed for min-
imum temperature compared to that for mean and maximum
temperatures. Because SI analyses are given by the spatial
interpolation of observations, this decrease does not reflect
poorer model performance, but is caused by the larger repre-
sentative error of temperature observations in stable bound-
ary layer conditions. The difference between the ACCOI
and ACCSI statistics gives an estimate of the error associ-
ated with these statistics.
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