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Abstract. In Europe, water management is moving from
flood defence to a risk management approach, which takes
both the probability and the potential consequences of
flooding into account. It is expected that climate change and
socio-economic development will lead to an increase in flood
risk in the Rhine basin. To optimize spatial planning and
flood management measures, studies are needed that quantify
future flood risks and estimate their uncertainties. In this
paper, we estimated the current and future fluvial flood risk
in 2030 for the entire Rhine basin in a scenario study. The
change in value at risk is based on two land-use projections
derived from a land-use model representing two different
socio-economic scenarios. Potential damage was calculated
by a damage model, and changes in flood probabilities
were derived from two climate scenarios and hydrological
modeling. We aggregated the results into seven sections
along the Rhine. It was found that the annual expected
damage in the Rhine basin may increase by between 54%
and 230%, of which the major part (∼ three-quarters)
can be accounted for by climate change. The highest
current potential damage can be found in the Netherlands
(110 billion C), compared with the second (80 billionC) and
third (62 billion C) highest values in two areas in Germany.
Results further show that the area with the highest fluvial
flood risk is located in the Lower Rhine in Nordrhein-
Westfalen in Germany, and not in the Netherlands, as is often
perceived. This is mainly due to the higher flood protection
standards in the Netherlands as compared to Germany.

Correspondence to:A. H. te Linde
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1 Introduction

Over the last couple of decades Europe has witnessed
a growth in the scale and frequency of extreme natural
disasters. Storms and floods are the most frequent and costly
extreme weather events occurring in Europe, representing
69% of the overall natural catastrophic losses. For example,
flooding in the Elbe basin in 2002 caused approximately
8 billion C of economic damage in Germany, Austria and the
Czech Republic collectively (CEA, 2007). Total damage of
the summer floods in 2007 in the UK amount to 4 billionC
(Environment Agency, 2007). In 2010, Poland suffered
from major floodings, of which the total damages are yet
unknown. When focusing on the Rhine basin in North-West
Europe, flood events in 1993 and 1995 caused severe damage
of 1.4 billion C and 2.6 billionC, respectively (Engel, 1997;
Glaser and Stangl, 2003; Brakenridge and Anderson, 2008).

The impact of flood events on societies and economies in
the Rhine basin is likely to increase further as a result of
two complementary trends. First of all, climate change is
expected to increase the frequency and magnitude of flood
peaks in the Rhine basin (Hooijer et al., 2004; Pinter et al.,
2006). Annual maximum peak discharges are expected to
increase by 3–19% in 2050 due to climate change (Kwadijk,
1993; Middelkoop et al., 2001; Vellinga et al., 2001). Te
Linde et al.(2010) estimate an increase in the occurrence
of an extreme 1/1250 per year flood event in the Lower
Rhine delta by a factor of three to five in 2050. Secondly,
the economic impact of natural catastrophes is increasing
due to the growing number of people living in areas with a
high flood exposure level, as well as the increased economic
activity in these regions (e.g.Bouwer et al., 2007; Pielke
Jr. et al., 2008). The International Commission for the
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Protection of the Rhine (ICPR) estimated an increase in
potential damage in flood-prone areas in the Rhine basin of
23% between 1995 and 2005 (ICPR, 2005a).

These projected trends have led to an increased interest in
a risk-based approach in water management, addressing both
the probability and potential consequences of flooding (Merz
et al., 2004; Buchele et al., 2006; De Bruijn and Klijn, 2009;
Kreibich and Thieken, 2009; Wheater and Evans, 2009).
Such an approach, for example, is currently stimulated by
the EU Flood Directive 2007/60/EC (EU, 2007), obliging
member states to create flood risk maps and basin-wide flood
risk management plans (De Moel et al., 2009).

Quite a lot of literature exists on how the discharge regime
in the Rhine may alter due to climate change (e.g.Kwadijk,
1993; Middelkoop et al., 2001; Menzel et al., 2006; Te Linde
et al., 2010). However, in terms of land-use change and
flood-damage potential only a few studies exist. The ICPR
uses the Rhine Atlas approach to estimate aggregated flood
damage for the whole Rhine basin (ICPR, 2001, 2005b). The
Rhine Atlas damage evaluation has some flaws, though, for
two reasons. Firstly, it has been recognized that the Rhine
Atlas yields rather low damage potential values for different
land-use classes compared to other studies and probably
underestimates potential flood damage (Thieken et al., 2008;
De Moel and Aerts, 2010). Secondly, the Rhine Atlas
differentiates between only six different land-use classes; it
uses a single urban class, whereas differentiation between
urban classes for flood damage estimates is essential (Apel
et al., 2009).

Research, however, on assessing current and future flood
risk (addressing both flood probability and potential damage)
is still in its early stages and a basin-wide assessment of
flood risk is lacking. For the Rhine delta in the Netherlands
two studies are available that calculate current and future
flood risks (Aerts et al., 2008; Bouwer et al., 2010). These
authors use a method in which the results of flood depths and
land-use information are combined within a flood damage
model. In this method projected land-use simulations using
a land-use model are combined with inundation information
to derive potential flood damages using stage-damage curves
(Merz et al., 2007). Flood risk (in terms of expected
annual damage) is assessed by multiplying the potential
damage with the probability associated with the inundation
information. Climate change is taken into account by
simulating future discharges and probabilities using climate
change scenarios as input for hydrological models (e.g.Te
Linde et al., 2010). In addition to a current and future
perspective,De Moel et al.(2010) also assessed the historical
trends in the 20th century for flood damage in the central part
of the Netherlands.

In order to conduct an assessment for trends in flood risk
(in terms of flood probabilities and flood damage) for the
Rhine basin we need to address the following two research
issues. (1) A land-use model for the Rhine basin does not
exist, and hence it is difficult to estimate future land use and

potential flood damage. (2) Furthermore, despite existing
research focusing on the (future) hydrology of the Rhine (e.g.
Kwadijk, 1993; Middelkoop et al., 2001; Bronstert et al.,
2002; Shabalova et al., 2003), few estimates exist for changes
in future trends of low probability events. For the latter
issue, climate impact simulations are required that allow for
extreme value analysis techniques (Raff et al., 2009; Te Linde
et al., 2010).

The goal of this paper is, therefore, to estimate current
and future flood risk for the entire Rhine basin in a scenario
study. For this, we first assessed changes in flood probability
at various locations along the Rhine using climate scenarios
and hydrological models. Second, we developed a land-
use simulation model for the Rhine basin to generate future
changes in land use. Third, these future land-use maps
were used to estimate potential flood damage in flood-prone
areas using a damage model. Finally, we multiplied flood
probabilities with flood damage to derive current and future
flood risk for the Rhine basin.

The remainder of this paper is organized as follows.
Section2 describes the case study area. Section3 provides a
description of the data and research method we used. Results
are presented in Sect.4 after which we discuss these results
and provide conclusions in Sect.5.

2 Case study area: the Rhine basin

The river Rhine originates in the Alps in Switzerland, forms
part of the boundary between France and Germany and
continues flowing through Germany before it enters the
Netherlands at Lobith (Fig.1a). The Rhine is one of
the most important industrial transport routes in the world
and connects one of the largest sea harbours, the port of
Rotterdam, to the inland European markets and its large
industrial complexes (Jonkeren, 2009). About 58 million
people inhabit the river basin, of which 10.5 million live in
flood-prone areas (ICPR, 2001). The average discharge at
Lobith in the Lower Rhine is 2200 m3 s−1 and the maximum
observed discharge was 12 600 m3 s−1 in 1926 (Pinter et al.,
2006).

Water management has heavily influenced the characteris-
tics of the Rhine. Prior to the 19th century, the Rhine was a
multi-channel braided river system upstream of Worms and
meandering from that point downstream. However in order
to reduce flooding, the Upper Rhine was canalized between
1817 and 1890 (Blackbourn, 2006). Furthermore, to aid
shipping, engineers further rectified and canalized the main
branch until 1955, causing additional acceleration of flood
wave propagation in the Rhine (Lammersen et al., 2002).

The basin area is 185 000 km2 and in particular the flood-
prone areas in the basin are densely populated (Fig.1b).
Hence, flood management has predominantly focused on
major dike reinforcements along the Rhine over the last 20–
30 years. Safety levels vary from 1/200 to 1/500 per year in
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Fig. 1. Maps of the Rhine basin:(a) (estimated) safety levels and(b) land use in the reference situation. Figure(b) also shows the potential
inundated area due to fluvial flooding from the Rhine.

Germany to 1/1250 and 1/2000 per year in the Netherlands.
The design discharge that is associated with a safety level
of 1/1250 per year (the discharge used when designing
flood defences) is estimated at 16 000 m3 s−1 (Ministry of
Transport, Public Works and Water Management, 2006a,
Fig. 1a). Due to lower safety levels in Germany, floods
may occur at upstream sections in Germany while the Dutch
dike system will still prevent huge areas from inundation
downstream (Gudden, 2004; Apel et al., 2006).

3 Data and method

We followed the steps displayed in Fig.2 to estimate
expected flood damage per year (risk) for the reference
situation and different future scenarios for the year 2030.
Economic value of land-use classes determines the potential
flood damage in case of a flooding event. Current land-
use information was based on CORINE land cover data
(Bossard et al., 2000). Future changes in flood damage were
estimated using a land-use model, simulating future land use
for two different socio-economic scenarios (see Sect.3.1).
Through combining existing basin-wide flood inundation
depth maps (see Sect.3.2) with land-use information,

potential damage was calculated using a damage model (see
Sect.3.3). Flood risk was calculated by multiplying potential
flood damage with the accompanying flood probability
for different sections along the Rhine. Current flood
probabilities were estimated using research byICPR(2005b)
andSilva and Van Velzen(2008) (Fig. 1a). Changes in flood
probabilities were calculated using a hydrological model and
two climate change scenarios (Te Linde et al., 2010) (see
Sect.3.4).

The flood damage calculations were performed at spatial
grids of 100×100 m and aggregated into seven regions along
the Rhine (see regions A through G in Fig.1a) and the entire
basin to calculate expected damage per year. The steps used
in this method, as well as the data and future scenarios, are
described in detail below.

3.1 Current and future land use

Current land use is based on the CORINE land cover map
for 2000 (Bossard et al., 2000) that has a resolution of
100×100 m. Future land-use projections from the EUruralis
project exist for the whole of the European Union for the
year 2030 (Verburg et al., 2008). However, these projections
distinguish only a single urban land-use class and have a
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Fig. 2. Flowchart of the method used for estimating future
flood risk.

relatively low resolution of 1× 1 km, while it is important
to have an accurate representation of urban land use in
flood damage simulations (Bouwer et al., 2010). This
is illustrated by De Moel and Aerts(2010) who show
that urban land use contributes the largest share of flood
damage (∼80%), and because maximum damages differ
substantially between different urban classes in their damage
model (from 0.3 millionC hectare−1 for recreational areas
to 9.1 millionC hectare−1 for high density residential areas),
differentiation within urban land use is desirable for flood
damage assessments.

To address this issue, we have set up a new and
more detailed land-use model (the Land Use Scanner) to
downscale land-use projections from the EUruralis project,
both spatially and thematically. The Land Use Scanner
for the Rhine basin is based on the method described by
Hilferink and Rietveld(1999).

3.1.1 Land Use Scanner

The Land Use Scanner simulates future land use and is based
on demand-supply interaction of land, whereby different
sectors compete for allocation of land within land suitability
and policy constraints (Loonen and Koomen, 2008). The
model has previously been applied in a number of policy-
related research projects in European countries (Wagtendonk
et al., 2001; Hartje et al., 2005; Koomen et al., 2005;
Dekkers and Koomen, 2007). It was recently applied in
studies on the long-term development of flood risk in the
Netherlands and the evaluation of the effectiveness of various
adaptation strategies (MNP, 2007; Aerts et al., 2008; Bouwer
et al., 2010). The land-use model for the Rhine basin
operates on a spatial resolution of 250×250 m grid cells and
provides information on 13 different land-use classes, such as
infrastructure, nature, agricultural land and water, including
six different urban functions (Fig.1b).

3.1.2 Scenarios and land-use claims

To be able to simulate future land-use patterns with the
Land Use Scanner, the expected increase or decrease of each
land-use class (called “claims”) has to be defined. These
claims were derived from the EUruralis project (Verburg
et al., 2008; Verburg and Overmars, 2009). In this project
land-use projections and their underlying claims have been
developed for four socio-economic scenarios, in line with the
four scenarios in the Special Report on Emissions Scenarios
(SRES) byIPCC (2000). For the present study, two of
these projections and their land-use claims were selected:
the “Global Economy” (GE) and the “Regional Community”
(RC) scenarios which can be regarded as the upper and lower
boundaries of possible future urban land-use change.

The “Global Economy” scenario reflects a future with high
economic and population growth, international economic
integration as well as little environmental concern on behalf
of governments, resulting in a large increase in urban
land-use functions with no restrictions on urban sprawl.
The “Regional Communities” scenario, on the other hand,
represents a future with low economic and population
growth, a regional focus and strict environmental regulations
enforced by governments, resulting in a substantially lower
increase in urban areas and restrictions on urban sprawl.

We have used the NUTS3 level to derive land-use claims
and as a starting point for our downscaling. NUTS3
corresponds to level 3 administrative units under the
Nomenclature of Territorial Units for Statistics in Europe for
which socio-economic data is available. These are mainly
rural districts and cities with more than 100 000 inhabitants.
The land-use claims for the two future scenarios were derived
by assessing the decrease or increase of each land-use class
between the scenario projections and the baseline situation in
2000.
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Table 1. Suitability maps used for the “Land Use Scanner”.

Category Suitability map Extent Source

Physical properties Peat bog, marsh, moor Basin CORINE
Slope Basin SRTM
Population density Basin LandScan

Policy maps Nature 2000 sites Basin DG Environment
Flood retention areas Germany ICPR/TU Dortmund
Flood zone (1/100 per year) Basin ICPR Rhine Atlas
Flood zone (extreme event) Basin ICPR Rhine Atlas

Relational maps Distance to metropolitan areas Basin ESRI
Distance to long-distance train stations Basin TU Dortmund
Distance to passenger railway stations Basin TU Dortmund
Distance to motorway exits Basin TU Dortmund
Distance to international airports Basin ESRI
Distance to road network Basin ESRI
Distance to major rivers Basin ESRI
Neighborhood statistics Basin Own analysis

3.1.3 Downscaling

We spatially scaled down the land-use change projections
from the NUTS3 polygons to 250× 250 m, which is the
required level of detail needed for the Land Use Scanner.
Furthermore, the single urban land-use class distinguished
in the EUruralis projections was distributed into five
urban land-use classes; residential land use, commercial,
recreation, infrastructure and construction/mines. Using the
CORINE 2000 land cover map the percentage of the five
different urban land-use categories of total urban land use
was calculated for each NUTS3 region within the study area.
Subsequently, the total change in urban land use was assessed
by comparing the EUruralis projections for 2030 to the start
year, again at the NUTS3 regional level. The resulting
change in total urban land use was then distributed over
the five urban land-use classes according to the previously
established divisions, taking into account the storylines for
the two scenarios.

On top of differentiating the EUruralis urban land-use
class, an extra residential class representing high-density
residential areas was defined using the LandScan population
data base (Landscan, 2009). This was done because the
CORINE 2000 land cover data makes very little distinction
between high and low urban density residential areas.

3.1.4 Suitability maps

The land-use claims provide information on the scale of
future land-use change but give no indication as to where
these claims might be realized. This allocation process
is carried out by the Land Use Scanner on the basis of
suitability maps. These maps give a definition for every

location (grid cell) of its attractiveness for the different
land-use types available, depending on its current land
use, physical properties, operational policies and expected
relations to nearby land-use functions (Ritsema van Eck
and Koomen, 2008). For example, a location (grid cell)
with a steep slope (physical property) that is situated in a
nature protection area (operational policy) and far away from
existing urban infrastructure (relation to nearby land use)
is thus considered as highly unsuitable for the realization
of a residential land-use claim. The suitability maps can
also be used to further reflect the effect of socio-economic
scenarios and thus the land-use change simulations by
integrating flood-risk specific information. For example,
the regional communities scenario assumes a world with a
regional focus and strict environmental regulations enforced
by governments. To reflect this, the 1/100 per year flood
zone, which is mainly embanked river foreland, is given a
low suitability value for further urbanization, a policy that
has already been adopted in Germany. In contrast, the global
economy scenario assumes a world where governments have
little environmental concern, resulting in a large increase
in urban land-use functions with no restrictions on urban
sprawl. We, therefore, simulated land use according to this
scenario without limitations as far as the 1/100 per year flood
zone is concerned. Moreover, the suitability of urban areas
close to a river course is increased in the global economy
scenario as it is assumed that more people would like to
live near the water and are willing to pay for this location.
This development has also been observed in the past during
periods of economic growth (ICPR, 2005b). An overview of
the suitability maps used for the Land Use Scanner for the
Rhine basin is given in Table1.
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3.2 Inundation map

One of the inputs for the flood damage model is a map
displaying the water depth of a possible flooding event in
the entire Rhine basin. Such a map was developed in 2001
by the International Commission for the Protection of the
Rhine (ICPR), known as the Rhine Atlas (ICPR, 2001).
This atlas contains a collection of maps that displays the
potential flooded area in the Rhine basin at different flooding
probabilities (1/10 per year, 1/100 per year, and “extreme”,
without a probability estimate).

We used only the “extreme” situation to indicate the
inundated area in the case of flooding, since safety levels
along the Rhine are all higher than 1/100 per year (Fig.1a).
Based on the Rhine Atlas, we cannot predict how the flood
extent will change in the future and therefore we have
assumed that the inundated areas for the reference situation
and in 2030 are the same. For the Netherlands, we have used
flood risk maps made available by the Dutch government that
are based on multiple inundation model runs (Van den Berg
et al., 2010). We have only included inundated areas that are
prone to flooding by the river Rhine and not areas that are
influenced by storm surges from the sea.

3.3 Flood damage

Potential flood damage can be assessed in various ways,
ranging from the use of very detailed, object-based data to
the use of aggregated asset values per hectare (or square
meter) for a certain land-use category (Messner et al., 2007).
Given the spatial and temporal scale of the present study,
which looks at the development of flood risk on a basin-
wide level in the future, we used a simple damage model for
land use categories, the Damage Scanner (Aerts et al., 2008;
Bouwer et al., 2010; Klijn et al., 2007). This model is based
on two input parameters: water depth and land use. Potential
damage is calculated by the model using so-called damage
functions that define for a land-use category the damage that
can be expected when a respective inundation level occurs.

The model applies damage functions for the 13 land-use
classes distinguished by the Land Use Scanner and reflects
predominantly direct tangible damage caused by physical
contact between economic assets and flood water. Note
that direct intangible losses such as loss of life are not
reflected by the model. However, the Damage Scanner also
implicitly comprises approximately 5% of indirect damages
as a surcharge on direct damages. Indirect damages refer
to a loss of turnover due to business interruption during a
flood event and can make up a substantial share of total flood
damages (RebelGroup, 2007).

3.4 Climate change scenarios for changes in flood
probabilities

Figure1a shows current safety levels for seven regions along
the main Rhine branch. In the Netherlands, there is a legal
standard for flood defence safety levels. In Germany, dike
heights are often legally defined and the related safety levels
are estimated and described byICPR(2005b) andSilva and
Van Velzen(2008). The differences in safety levels were
used to distinguish the regions for which aggregated flood
damage and flood risk can be calculated. The seven regions
have different surface areas. The larger the surface area,
the larger the aggregated damage and risk will be, since we
assume that at the given probabilities the entire region will
flood. Nevertheless, we made no corrections in our results
for the different surface areas of the seven regions.

We assumed flooding occurs at probabilities correspond-
ing to the safety levels in the reference situation. Hence,
we did not simulate flood damage due to dike failures that
may occur at lower probabilities and furthermore assumed
that dike heights will not change in the future. The current
policy in the Netherlands, however, foresees adaptation of
the flood defences (i.e. dike heightening or lowering of the
flood plains) when flood probability increases in order to
maintain current safety levels.

We used two climate change scenarios (a moderate and
an extreme scenario) to estimate future changes in flood
probabilities along the main Rhine branch, which were taken
from Te Linde et al.(2010). The first climate scenario
(referred to from now on as Wp) represents an extreme
climate change scenario, based onVan den Hurk et al.(2006)
and describes the most extreme scenario out of four in terms
of winter precipitation and resulting floods along the Rhine
in 2050 (Te Linde, 2007). This climate scenario corresponds
with a 2◦C increase in global temperature in 2050 with
respect to 1990 and changes in atmospheric circulation
resulting in drier summers and wetter winters.

The second climate scenario (further referred to as
“RACMO”) displays more moderate climate change effects
and follows the output of the RACMO2.1 regional climate
model (Lenderink et al., 2003; Meijgaard et al., 2008; Bakker
and Van den Hurk, 2009). This scenario corresponds with
the IPCC SRES-A1B scenario and projects more spatial
variation in meteorological changes than the Wp scenario
does.

Both climate scenarios are available in time series
of 35 years, and were resampled into time series of
1000 years of daily data. These resampled times series
were subsequently used to drive the hydrological model
HBV (Bergstr̈om, 1976) and to simulate river discharges
and related flood peak probabilities (Te Linde et al., 2010).
By comparing current flood probabilities with future flood
probabilities, changes in flood-peak probability were derived
for the seven regions along the Rhine (see Table2). Te Linde
et al.(2010) evaluated changes in flood probabilities between
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Table 2. Climate change scenarios for increased flooding probabilities in 2030. Flooding probabilities (per year) for the reference situation
are estimated based on literature. The probability (p) increase is displayed as a factor (∗ estimate, based onSilva and Van Velzen(2008) and
on the Evaluation of the Action Plan on Floods (ICPR, 2005a)).

Reference∗ RACMO Wp RACMO Wp

Region p p incr.

Alpine A 1/200 (0.0050) 1/139 (0.0072) 1/64 (0.0157) 1.4 3.1
Upper Rhine B 1/1000 (0.0010) 1/691 (0.0014) 1/261 (0.0038) 1.5 3.9
Upper Rhine C 1/200 (0.0050) 1/160 (0.0062) 1/77 (0.0129) 1.3 2.6
Middle Rhine D 1/200 (0.0050) 1/159 (0.0063) 1/80 (0.0125) 1.3 2.5
Lower Rhine E 1/200 (0.0050) 1/134 (0.0075) 1/80 (0.0125) 1.5 2.5
Lower Rhine F 1/500 (0.0020) 1/327 (0.0031) 1/162 (0.0062) 1.5 3.1

Delta G
1/1250 (0.0008) 1/673 (0.0015) 1/437 (0.0023)

1.9 2.9
1/2000 (0.0005) 1/1080 (0.0015) 1/702 (0.0023)
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Fig. 3. Extreme value distributions of annual maximum discharge
at Lobith, and Generalized Extreme Value (GEV) fits (lines) for
the reference situation, and the RACMO and Wp climate change
scenarios for the year 2050 (adapted fromTe Linde et al., 2010).

1990 and 2050. Since the reference year in this study is 2000,
and the scenario year 2030, we divided the projected changes
in flood probabilities byTe Linde et al.(2010) by two in order
to take the shorter timescale into account.

4 Simulation results

4.1 Discharges and probabilities

Figure3 shows an extreme value plot for annual maximum
discharges at Lobith, for the year 1990 and two climate
change scenarios for 2050. The results represent 1000-year
runs for the reference and each climate change scenario (Wp
and RACMO). From the simulation results it can be derived
that the discharge corresponding to a probability of 1/1250

Table 3. Surface percentages of different land use classes in the
flood prone area of the Rhine basin, for the reference situation in
2000, and the RC and GE scenarios in 2030. Percentages and Euros
in Tables3 through7 are rounded to two significant digits.

Reference RC GE RC GE

Land use class Area (%) Change (%)

Residential High Density 3.7 4.3 5.4 16 45
Residential Low Density 9.0 11 14 23 47
Commercial 3.7 4.3 5.2 18 42
Infrastructure 1.0 1.1 1.1 14 13
Construction/mines 0.69 0.77 0.77 12 11
Recreation 1.7 2.0 2.2 14 28
Nature 9.4 19 11 110 21
Agriculture 23 19 20 −16 −15
Cultivation 10 10 10 2.3 1.7
Pasture 37 36 40 −2.7 5.9

per year at Lobith increases by 16% for the Wp scenario and
by 13% for the RACMO scenario. The discharge currently
corresponding to the 1/1250 event (about 16 000 m3 s−1) will
increase to 1/460 per year for the RACMO scenario and
1/265 per year for the Wp scenario, meaning the probability
increases by a factor of 2.7 to 4.7, respectively (Te Linde
et al., 2010). Similar projected changes in flood probabilities
are available for several locations along the Rhine branch,
representing the regions A through G in Fig.1a with different
safety levels. The projected increases in flood probabilities
for 2030 range from a factor of 1.3 to 3.8, depending on
region and climate change scenario (Table2).

4.2 Land-use change

Table3 shows surface percentages of land-use classes in the
flood prone area of the Rhine, according to the CORINE
land cover map. Agriculture, cultivation and pasture have
the largest combined share of 71% in the reference situation.
High and low density residential and commercial areas
comprise 17% of the total basin area. The RC scenario for
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Fig. 4. Land use maps for the reference year 2000, and for 2030 under the RC and GE socio-economic scenarios. The image is zoomed on
the Lower Rhine near the border between Germany and the Netherlands, and shows only land use types in flood-prone areas.

2030 displays by far the largest increase in nature (110%),
whereas residential and commercial areas each increase on
average by 19%. In the GE scenario, the residential and
commercial areas each increase on average by 44%. Both
scenarios project a decrease in agricultural area (∼ −15%).
Cultivated area and pasture remain fairly stable in both
scenarios (less than 6% change).

These trends are also illustrated in Fig.4, showing output
maps of the land-use simulations. The map shows a
clear increase in urbanized areas close to the river in the
GE scenario, whereas the increase in nature is the most
apparent change in the RC scenario. These results obviously
correspond to the scenario descriptions that were used in the
simulations (see Sect.3.1.4).

4.3 Flood damage

Table4 and Fig.5a display the expected damage aggregated
for the seven regions along the Rhine. For the reference
year (2000), we estimated the total potential damage for the

whole basin to be 300 billionC. This is substantially more
than the ICPR estimate of 200 billionC (ICPR, 2001). The
ICPR damage estimates are, however, recognized to be rather
low compared to other methods and studies. Several land-use
types such as residential and commercial areas or agriculture
have substantially lower maximum damage values compared
to the damage model applied in our study (for more details
ICPR, 2001; Thieken et al., 2008; De Moel and Aerts, 2010).
This can be explained, amongst others, by the observation
that the results of the Damage Scanner also comprise a share
of, on average, 5% indirect damages, which is not included
in the Rhine Atlas estimates.

The expected damage gradually increases downstream.
The delta in the Netherlands (region G) is the largest and
most densely populated region, and has therefore the highest
potential damage, both in the reference situation as well as
in the future projections of both socio-economic scenarios.
Between the two scenarios, the RC scenario yields the lowest
increase in potential damage: 7.5% over the entire basin.
In most regions potential damage changes little, with the
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Table 4. Expected damage for different regions in 2000 and 2030 (at 2000 prices) (∗ the estimate of theICPR, 2005a).

Reference ICPR Scen RC Scen GE Scen RC Scen GE
Region billionC 2005∗ billion C billion C Change (%) Change (%)

Alpine A 0.46 0.0 0.39 0.50 −0.18 8.2
Upper Rhine B 21 1.6 21 26 1.8 18
Upper Rhine C 58 11 62 73 5.9 20
Middle Rhine D 15 1.5 12 18 −23 15
Lower Rhine E 71 22 80 90 11 21
Lower Rhine F 25

170
30 37 18 34

Delta G 110 120 140 7.6 20

Total 300 200 320 380 7.5 21
∗1995: 160
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Fig. 5. Potential damage(a) and flood risk(b), aggregated to seven regions along the Rhine.

exception of the Lower Rhine region (F) (+18%). In some
areas, such as the Middle Rhine, the RC scenario even
projects a decrease in potential damage. The GE scenario
gives an overall larger increase in potential damage (21%).
Moreover, expected damage seems to increase substantially
in almost all regions, often by more than 15% and ranging up
to 34%.

Results of expected damage per land-use class for the
entire Rhine basin are presented in Table5. The potential
damage of residential and commercial areas in the Rhine
basin is 200 billionC, which comprises 63% of the total
damage, and is projected to increase to 260 billionC (RC)
and 320 billionC (GE) (Table5). Agriculture, cultivation
and pasture comprise 93 billionC damage (29% of the total
damage), which is projected to decrease to 61 billionC (RC)
and 63 billionC (GE).
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Table 5. Expected damage for different land use categories in 2000 and 2030 (at 2000 prices).

Reference RC GE Reference RC GE RC GE

Land use class billionC (%) Chng (%)

Residential H D 73 86 110 23 25 27 18 46
Residential L D 85 120 150 27 34 36 39 72
Commercial 42 53 66 13 16 17 28 59
Infrastructure 7.0 6.3 6.2 2.2 1.8 1.5 −11 −12
Constr/mines 2.5 2.9 2.9 0.8 0.9 0.7 19 17
Recreation 4.7 2.0 2.3 1.5 0.6 0.6 −57 −51
Nature 9.1 14 7.9 2.9 4.1 2.0 56 −13
Agriculture 31 15 16 10 4.5 4.0 −49 −47
Cultivation 32 30 30 10 8.8 7.5 −5.4 −6.1
Pasture 30 16 17 10 4.6 4.3 −48 −43

Table 6. Basin-wide annual expected damage (risk) in millionC per
year. The factor of change is displayed in brackets. The reference
year is 2000 and the scenarios represent 2030.

Socio-economic scenario

Reference RC GE

Climate Reference 880 950 (7.5%) 1100 (27%)
scenario RACMO 1300 (43%) 1400 (54%) 1600 (81%)

Wp 2300 (160%) 2500 (180%) 2900 (230%)

4.4 Flood risk

Figure5b shows estimates of expected annual flood damage
in the reference year (2000) for the seven regions along
the Rhine. In contrast with potential damage (Fig.5a), the
highest flood risk estimates are not found in the Dutch Delta
(G), but rather in the Lower Rhine (E) in the German state
Nordrhein-Westfalen and in the Upper Rhine (C). This is the
result of the substantially higher flood protection levels in
the Delta region G, which obviously determines and lowers
the flood-risk estimates to a large extent. This also implies
that uncertainties of flood probabilities heavily affect the
reliability of (future) flood-risk estimates in this region.

For the future risk projections, the RACMO climate
scenario is combined with the RC socio-economic scenario
and Wp with the GE scenario. The combination RACMO-
RC can be considered as the lower estimate and Wp-GE as
the upper estimate in the risk simulations. Basin-wide results
are displayed in Table6. The flood risk estimates of the
scenarios show a large variation. In the reference situation,
we estimate the basin-wide expected annual flood damage
to be 880 millionC on average per year. The RACMO-
RC scenario projects the risk to increase to 1400 millionC
per year, an increase of 54%. The Wp-GE scenario
projects a much larger increase in flood risk, tripling it to
2900 millionCper year (an increase of 230%).
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Fig. 6. Basin-wide annual expected flood damage (risk) for 2030,
compared to the reference situation.

The contribution made by climate change is considerably
larger than socio-economic change in both scenario com-
binations. Due to climate change, basin-wide flood risk
increases by 43-160%, whereas land-use change results in
an increase of 6.5-27% (Table6). In order to illustrate the
relative increase of annual expected damage due to each of
the driving forces, we displayed the basin-wide flood risk
scenarios in a bar chart (Fig.6). The bar chart displays the
contributions to change in annual expected damage, from (a)
climate change only, (b) socio-economic change only, and (c)
the combination of both impacts. Climate change accounts
for ∼three-quarters (6/8) of the increase, whereas socio-
economic change only results in∼1/8 of the total increase in
annual expected damage. The combination of impacts adds
the remaining∼1/8 to both scenarios, respectively.

As this is the first assessment of basin-wide future flood
risk, it is interesting to compare different sections along the
Rhine and to evaluate if differences with regard to the drivers
of future flood risk can be observed. To assess differences
between regions along the Rhine, Table7 shows annual
expected damage for seven regions. Bar charts similar to
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Table 7. Annual expected damage (risk) in millionC per year for different regions in 2000 and 2030 (at 2000 prices).

Reference situation RACMO and RC Wp and GE

Region p billion C million C yr−1 p billion C million C yr−1 p billion C million C yr−1

Alpine A 0.0050 0.46 2.3 0.0072 0.39 2.8 0.0157 0.50 7.9
Upper Rhine B 0.0010 21 21 0.0014 21 31 0.0038 26 98
Upper Rhine C 0.0050 58 290 0.0062 62 390 0.0129 73 940
Middle Rhine D 0.0050 15 77 0.0063 12 78 0.0125 18 220
Lower Rhine E 0.0050 71 350 0.0075 80 590 0.0125 90 1100
Lower Rhine F 0.0020 25 49 0.0031 30 91 0.0062 37 230

Delta G
0.00080

110 87
0.0015

120 180
0.0023

140 310
0.00050 0.00093 0.0014

Total 300 880 320 1400 380 2900

Fig. 6 are shown in Fig.7, but now disaggregated to seven
regions along the Rhine. The bar charts show large variations
in base risk and flood risk projections between regions, and,
like the basin-wide projections, the dominant contribution of
climate change to increased flood risk.

The Alpine area (A) and the Upper Rhine (B) display
hardly any annual expected damage at the vertical scale
they are presented (less than 100 millionC per year). Just
as we have seen in Fig.5b for the reference flood risk,
projections for annual expected damage in 2030 are the
highest in the Upper Rhine (C) (up to 940 millionC per
year in the Wp-GE scenario, an increase of 220%) and the
Lower Rhine (E) (up to 1100 millionC per year, an increase
of 210%). The Middle Rhine (D), the Lower Rhine up
to the Netherlands (F), and the Dutch Delta (G) show risk
projections of between 220 and 310 millionC per year in the
Wp-GE scenario.

For the different regions, the relative contribution of
climate change to increased flood risk varies between 5/8 and
7/8, whereas socio-economic change results in zero to 2/8 of
the total increase in annual expected damage.

5 Discussion and conclusions

The aim of this paper was to estimate future flood risk in
2030 for the entire Rhine basin. We took the year 2000 as a
reference and used scenarios in a model simulation to assess
changes in flood probability due to climate change, and to
assess changes in potential damage due to land-use change.
The combined simulations provided different projections for
future flood risk.

It was found that, in absolute terms, potential flood
damage is highest in the Dutch Delta region (G), namely
110 billion C, compared to 71 billionC of the second
highest value in the Lower Rhine region (E). Flood risk
(damage × probability) is, on the other hand, much
higher in other regions, most notably in the Lower Rhine
region E (350 millionC per year) and the Upper Rhine C

(290 million C per year), whereas the Dutch Delta region (G)
only reaches 87 millionC per year.

Our research further projected that flood risk in the Rhine
basin will not be stationary and might considerably increase
over a period of several decades. Expected annual damage
in the entire Rhine basin may increase by between 54%
and 230%, due to socio-economic and climate change. The
results display large variations in current risk and flood-
risk projections between regions along the Rhine. The
increase in flood risk can mainly be attributed to increasing
probabilities of flood peaks due to climate change (43-160%,
which is ∼6/8 of the total risk increase), whereas socio-
economic change accounts for 7.5-27% increase, which is
∼1/8 of the total risk increase. This is in contrast with
the findings ofBouwer et al.(2010), who found, for a
Dutch polder, that the effects of socio-economic change and
climate change are similar in magnitude (climate change: 46-
201% increase; socio-economic change: 35-172% increase,
which resulted in an estimated total increase of between
96 and 719%). However, they used 2040 as scenario year,
while we addressed 2030. Also,Bouwer et al. (2010)
included projections for increasing capital value in their
socio-economic scenarios, in addition to projections for land-
use change. This accounts for the major part of their estimate
of the contribution from socio-economic change to total flood
risk. When wealth increase is not included inBouwer et al.
(2010), the relative change in flood risk is much more similar
(socio-economic change inflicts an increase of 3-44%). We
omitted wealth increase projections for the Rhine basin due
to lack of reliable future projections for the entire basin.

Our method provides a more comprehensive assessment
of basin-wide flood risk in the Rhine than was previously
possible as existing studies either assessed flood risk in the
Netherlands or in upstream areas in Germany (Apel et al.,
2004; Klijn et al., 2007; Aerts et al., 2008; Bouwer et al.,
2010). Furthermore, our method enables basin-wide scenario
projections for future land use and potential damage, by
integrating a land-use model with a damage model at a high
spatial resolution.
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Fig. 7. Annual expected flood damage, for the reference situation and projections for 2030, aggregated into seven regions along the Rhine.

We have shown that expected annual damage depends
heavily on estimated flood-probabilities. Further work might
focus on acquiring actual safety levels along the Rhine in
more detail, by analyzing dike heights and water levels. In

reality, there are no jumps in dike height or thus in safety
levels along the Rhine between countries or Bundesländer, as
we assumed here, but instead the shift is gradual. In addition,
due to dike failure processes such as piping, the actual
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flood-probability might be much higher than the probabilities
of flood events dikes are designed to cope with (Ministry of
Transport, Public Works and Water Management, 2006b).
On the other hand, due to over dimensioning of dikes,
flood probabilities can also be much lower than currently
perceived. Understanding this requires more research,
which is ongoing in detail in the Netherlands (Ministry of
Transport, Public Works and Water Management, 2006b),
but, to our knowledge, not on a large scale in Germany and
France.

Flood damage estimates contain uncertainties related to
the choice of the damage model and the simulation of
inundation depth. The uncertainty in absolute damage
estimates and increases can be considerable when applying
damage models (Apel et al., 2009; Merz and Thieken, 2009;
De Moel and Aerts, 2010). However, the relative damage
increase (increase as a percentage compared to the reference)
is much more robustDe Moel and Aerts(2010). For this
reason, the absolute values of flood risk increase presented
in this paper should also be interpreted with care.

In our approach, we assumed for the Netherlands that all
areas (“dike rings”) will inundate during a flooding event,
while they might only partly flood in reality. Therefore,
both basin-wide potential damage, as well as expected annual
damage, do not provide information on the damage of a
single event. For the part of the Rhine basin upstream of the
Netherlands, we used inundation maps from the Rhine Atlas
(ICPR, 2001) that are to date the best available. The Rhine
Atlas assumes flood prone areas to inundate completely.
However, several 2-D hydrodynamic inundation simulations
for the Lower Rhine byLammersen(2004) showed that the
flood-prone areas do not always entirely inundate, depending
on breach locations and flood wave characteristics. We
therefore recommend more inundation calculations upstream
of the Netherlands which are currently only incidentally
available, in order to aid further flood risk assessments.

Finally, the implementation of flood defence measures,
such as retention basins and dike heightening, might prevent
the increase in flood probability due to climate change,
and thus the contribution of climate change to flood risk.
This requires a thorough analysis of the effectiveness of
flood management measures under different climate change
scenarios. Spatial planning policies and damage mitigation
measures and risk transfer mechanisms, such as flood
proofing of buildings and insurance, might further reduce
flood risk. Such flood risk decisions may have implications
for several decades. Therefore, flood risk management needs
to deal with expected climate and socio-economic changes
(Merz et al., 2010).
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