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Abstract. Hail is a serious concern for agriculture on the
Iberian Peninsula. Hailstorms affect crop yield and/or qual-
ity to a degree that depends on the crop species and the phe-
nological time. In Europe, Spain is one of the countries that
experience relatively high agricultural losses related to hail-
storms. It is of high interest to study models that can support
calculations of the probabilities of economic losses due to
hail damage and of the tendency over time for such losses.

Some studies developed in France and the Netherdlands
show that the summer mean temperature was highly corre-
lated with a yearly hail severity index developed from hail-
related parameters obtained for insurance purposes. Mean-
while, other studies in the USA point out that a highly sig-
nificant correlation between both is not possible to find due
to high climatic variability.

The aim of this work is to test the correlation between av-
erage minimum temperatures and hail damage intensity over
the Spanish Iberian Peninsula. With this purpose, correlation
analyses on both variables were performed for the 47 Span-
ish provinces (as individuals and single set) and for all crops
and four individual crops: grapes, wheat, barley and winter
grains. Suitable crop insurance data are available from 1981
until 2007 and based on this period, temperature data were
obtained.

This study does not confirm the results previously obtained
for France and the Netherlands that relate observed hail dam-
age to the average minimum temperature. The reason for
this difference and the nature of the cases observed are dis-
cussed.

Correspondence to:A. Saa Requejo
(antonio.saa@upm.es)

1 Introduction

Hail events represent an important natural disaster associated
with great economic losses in several regions, mainly in Eu-
rope. In Spain, the Combined Agrarian Insurance System
covers hail events for most types of crop losses. Insurance
coverage of hail events provides a means of economic recov-
ery for most producers, mainly in the Mediterranean region,
where the highest incidence of losses due to hailstorms is
recorded (Llasat et al., 2009). In Spain, the indemnification
for these losses reached 12.5 million euro in 2007.

Because of the nature of the hazards related to hail events,
the State Agrarian Insurance Body (Entidad Nacional de Se-
guros Agrarios, ENESA), which coordinates and links ad-
ministrative activities to guarantee the development of agrar-
ian insurance in Spain, is interested in models that can sup-
port further calculations of the probabilities of economic
losses and of the tendency for such losses to occur over time.

As mentioned by Ĺopez et al. (2007), the correlation of the
occurrence of hail events with climatic variables is a compli-
cated problem because of the small area disturbed and be-
cause of the short time associated with hail events. Thus,
although economic losses related to hail can be very impor-
tant, the information on the climatology associated with hail
events is very limited. It must also be recognised that most of
the records of hailstorm events are made for insurance pur-
poses.

Few studies address the climatology of hail events in Eu-
rope (Tuovinen et al., 2009; Webb et al., 2009; Hyvärinen
and Saltikoff, 2010). Likewise, predictive models of hail
events are lacking and are related in most of the cases
with precipitation models. The problem is complicated
because most investigations of this topic necessarily in-
volve hailstorm time series that are non-homogeneous and
non-continuous. For these reasons, model development
for different geographical regions having different climatic
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characteristics is very difficult (Piani, 2005; Fraile et al.,
2003). Moreover, Piani et al. (2005) have observed that the
relationship between hailstorm events and the parameters re-
lated to their occurrence seems unclear in published works
on the subject.

The study of hailstorms is based on several meteorologi-
cal parameters that are involved in conditions required to pro-
duce convection (temperature, instability, a deep humid layer
in the low and middle troposphere and an updraft to initiate
convection), as well as on the specific topographic character-
istics of the geographical area studied (Dessens, 1995; Johns
and Doswell III, 1995; Siemonov and Georgiev, 2003; López
et al., 2007; Garćıa-Ortega et al., 2007). These studies based
their descriptive and predictive models on several parameters
that depended, in most of the cases studied, on the geograph-
ical area.

López et al. (2007) demonstrated that a reliable hailstorm
study must include an adequate selection of meteorological
variables that must depend on the specific geographical areas
involved. Also, a model that proves valuable for a specific
geographical area may not give satisfactory results for other
areas (Lynn et al., 2004; Chagnon and Bigley, 2005). In-
deed, Ĺopez et al. (2007) obtained varying results when they
attempted to apply models having high accuracy for Europe
to other geographical areas. Some studies of hailstorm pre-
diction have shown that instability indices by themselves are
unable to produce successful predictions of the incidence of
hailstorms (Manzato, 2003; Siedlecki, 2008). The predic-
tions will depend strongly on the specific geographical area
considered because the characteristics of this area will define
the values and parameters associated with the particular me-
teorological conditions that occur (Kunz, 2007; Sánchez et
al., 2009; Dimitrova et al., 2009)

Alesandrov and Hoogenboom (2001) demonstrated great
variability in climatology at the local level for Geor-
gia (USA). Uncertainties about parameters are not the only
problem. Additional uncertainties arise because of climate
change and associated phenomena (Soutworth et al., 2002;
Reddy et al., 2002; Tao et al., 2004) and because of social
perception of climatology in time (Liverman and Merideth,
2002; Camuffo and Sturaro, 2001).

The situation is even more complicated because most hail-
storm studies are developed for insurance purposes, and
only a few of these studies are published. For example,
Dessens (1995) has found that an increase in night-time tem-
peratures could have been related to an increase in the oc-
currence of severe storms in France over the period 1946–
1992. This study shows that the summer mean temperature
was highly correlated with a yearly hail severity index de-
veloped from hail-related parameters obtained for insurance
purposes. Recently Berthet et al. (2011) found significant
correlations between physical hail parameters recorded with
hailpad network in France and some monthly temperatures.

Guided by this model, other authors found the same
type of positive relationship between hail occurrence and

minimum temperatures (Botzen et al. 2010). In fact, these
authors found a strong positive correlation between hailstorm
events and indicators of temperature and precipitation for the
Netherlands. The combination of precipitation with maxi-
mum temperatures is noted by the authors as one of the best
indicators of hailstorm events, whereas minimum tempera-
ture is the best indicator when temperature is used alone.
The authors compared the results of this model with the re-
sults of other studies of the problem, e.g., a study of hail-
storms occurring in Switzerland (Willemse, 1995). This au-
thor studied the statistical relationships of severe recorded
hailstorm events, based on producer damage claims recorded
since 1949, to other climate indicators. He concluded that the
data could not be used to extrapolate future hailstorm trends
because the data have too many uncertainties and because the
period considered was too brief.

According to Changnon and Bigley (2005), the correlation
of temperatures and hailstorm events is highly variable. In-
deed, this correlation can have either negative or positive val-
ues. In countries where the spatial climatic variation is high
(the USA, for example), the value obtained for the correlation
may differ for different states. The same author studied the
statistical relation between the mean temperatures across the
USA and hail and thunderstorm frequencies on a daily basis
(Changnon and Changnon, 2000, 2001). The results based
on simple correlations for different states showed that the
parameters were negative or positively correlated, depending
on the state. In general, states in the High Plains had pos-
itively correlations and greater variability with time, mean-
while states near the Great Lakes exhibited negative correla-
tions and less variability with time. In this sense, the relation-
ship between the indicators seemed to depend on indicators
related to geographical location.

McMaster (1999) evaluated the magnitude of hail damage
to winter crops in Australia as the result of climate change
in two geographical areas of New South Wales. The author
used upper-air climatic data from a global climatic model to
obtain forecasts of hail damage. For both geographical ar-
eas studied, the author found no change in hail-related crop
damage losses in relation to the changes in climatic indica-
tors that resulted from climatic change.

Mills (2005) mentioned that the losses due to damage
caused by natural disasters have increased since 1960. This
increase has been produced in part by socioeconomic and
demographic trends. These trends may be considered when
forecasting extreme climate events, mainly for insurance pur-
poses. Specifically, Mills et al. (2002) found a positively re-
lation between lightning related insurance losses and average
temperature in the USA.

Selected parameters that are valuable for predicting hail
events in one specific site would not necessarily produce suc-
cessful results in others as there are many factors influenc-
ing it. In the case of Spain, climatology and topography
varies greatly among different geographical regions. Val-
leys, mountain ranges and plateaus generate a macroclimatic
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Figure 1. Average hail claims per ha in 2005-2007 period for the provinces of 
Peninsular Spain. 
 

 
 
Fig. 1. Average hail claims per ha in 2005–2007 period for the
provinces of Peninsular Spain.

diversity that can be perceived in Fig. 1 as hail claims vari-
ability for Peninsular Spain. Therefore, models of hailstorms
must be defined on a case-by-case basis because orography
and proximity to the sea may have only limited utility when
predictive models are required for applications.

In this context, CEIGRAM researchers tried to apply a re-
liable model to relate hailstorm damage to summer temper-
ature across the different regions of Spain. This research
aimed, for insurance purposes, to contrast results that de-
pended on specific parameters for each specific geographic
space. For the analysis of this problem, the model devel-
oped by Dessens (1995) seemed appropriate for application
to different Spanish regions. In this particular case, provinces
were the regions considered. For this purpose, the rela-
tionship between average summer minimum temperature and
hail severity index was studied for each growing season for
different Spanish provinces. This trend was evaluated using
separate, spatially-specific models. The aim of the study was
to try to confirm the link found in France and the Netherlands
between hail tendency and temperatures and to use the results
of the investigation for insurance planning purposes. In addi-
tion, authors have evaluated the model applied by this study
to assess the specific damages to particular crops. This eval-
uation sought to identify particular characteristics specific to
different crops within a growing season.

2 Data sets and methods

This study covered Peninsular Spain. The subareas consid-
ered were the provinces shown in Fig. 1. The Spanish islands
were not considered in this work. This selection has a politi-
cal component because selection criteria are imposed by the
availability of hail damage data, and such data are referenced
to these areas. We consider 47 provinces of Peninsular Spain,
each having an average extent of 10 000 km2.

2.1 Insurance data

Hail insurance data from ENESA between 1981 and 2007
were considered to represent good estimates of hail damage
intensity because crop insurance is widely implemented in
Spain. Hail insurance covers the production of 79 % of win-
ter cereals, 78 % of fruit crops, 39 % of vineyard and 14 % of
olive trees, with a year average of 36 901 hail claims in the
period 2005–2007. The data are expressed in terms of a ratio
between damage and production value, the loss-to-risk ratio
for all crops insured against hail. Data were disaggregated
by province. In Fig. 1 we can observe the great variation
in hail claims per ha (or 10000 m2) due to climatology and
crop insurance characteristics. However, data disaggregated
by month could not be obtained. We thus obtained a separate
series of 27 points (1981–2007) for each of 47 provinces as
well as for the whole Peninsular Spain.

Five loss-to-risk ratio series were collected. The first se-
ries included all insured crops. Four similar series were col-
lected for grapes, wheat, barley and winter grains (including
wheat and barley). Series for other crops could not be consid-
ered, owing to historical changes in the standards for damage
evaluation for insurance purposes by expert witnesses. These
changes could generate non homogeneous data series.

2.2 Climatologic data

The climatologic data consisted of monthly average mini-
mum temperatures recorded by the Agencia Estatal de Me-
teoroloǵıa (AEMet, the Meteorological State Agency) and
provided for this study through ENESA.

The weather stations were selected based on a grid approx-
imately 40× 40 km in size. This selection was designed to
ensure the availability of recent data, the fewest possible gaps
in the data and the longest possible series. Several stations in
each county were also selected to represent high- and low-
altitude areas. The locations of the 404 stations selected are
shown in Fig. 2.

2.3 Correlations

Several data transformations are require to relate loss-to-
risk hail damage (R) and summer minimum temperatures
(Dessens, 1995). BecauseR is highly variable, a logarith-
mic transformation was used to normalise data (log(1+R)).
Also, because the value ofR can be less than 1 or even zero,
we added an increment of 1 toR to avoid negative or inde-
terminate values. The transformed hail damage index used
in our analyses was therefore calculated as the logarithm of
(1+R).

We constructed regional time series of summer mini-
mum temperatures for each province by averaging the val-
ues for all the weather stations in the province. The av-
erage monthly minimum temperatures of June, July and
August were used to compute average summer minimum

www.nat-hazards-earth-syst-sci.net/11/3415/2011/ Nat. Hazards Earth Syst. Sci., 11, 3415–3422, 2011



3418 A. Saa Requejo et al.: Analysis of hail damages and temperature series for peninsular Spain

 

Figure 2. Map of Spain with the 47 provinces considered. Points represent 

meteorological stations. 

 

 

 

 

 

 

 

Fig. 2. Map of Spain with the 47 provinces considered. Points
represent meteorological stations.

temperature, as proposed by Dessens (1995). We also com-
pute, as this author, the parameters for Peninsular Spain as a
single set.

Linear correlation obtained as a result of least squares fit-
ting was used to relate year-to-year hail damage to summer
minimum temperature. Also, a non-parametric Kendal’s tau
is computed.

3 Results and discussion

Correlations parameters for all 47 provinces and the whole
Peninsular Spain with data for the agricultural seasons from
1981 to 2007 are presented in Table 1. Only two 5 % signif-
icant Pearson correlation coefficients (see Fig. 3) are found.
These significant correlations resulted for Huelva province
(in the southwest) and Zamora province (in the central north-
west). The proportion of total variance explained is 19 %.
This value is slightly less than the value of 27 % observed
by Dessens (1995) and less than the value of 34 % reported
by Botzen et al. (2009), although these authors also found a
variance of 18 % in their model for within-greenhouse crops.
However, the main difference between the results of our
study and those obtained by these previous studies is that
the previous authors cited found a positive relationship be-
tween hail damage and summer minimum temperatures. In
contrast, our study found a similar positive relationship for
Huelva and an inverse (negative) relationship for Zamora,
whereas the remaining 45 areas showed no significant cor-
relation. We also must remark that the provinces with sig-
nificant relationships are categorised as low hail incidence
provinces (see Fig. 1).

Figure 3. Correlations estimated between hail damage and minimum summer 

temperature for Huelva and Zamora. Graphs show minimum summer 

temperature at the x-axis (summer t min) and transformed hail damage index 

(log(1+R)) at the y-axis. 
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Fig. 3. Correlations estimated between hail damage and minimum
summer temperature for Huelva and Zamora. Graphs show mini-
mum summer temperature at the x-axis (summert min) and trans-
formed hail damage index (log(1+R)) at the y-axis.

Considering Kendal’s tau, the previous relations are con-
firmed (for Huelva and Zamora) and three new provinces
presented 5 % significant index (see Fig. 5). Málaga is a
province with low frequency of hail claims and the data
(Fig. 5) shows a high frequency of low damage ratio, with
a descent slope very close to zero.Álava and La Rioja are
two provinces with medium high and high hail claims per
ha, that are below a classical hail damage area along with
Navarra, a province with one of the highest hail claims lo-
cated east of them. The hail claims tendency is to increase in
both and it became significant at 5 % according to Pearson’s
r when the most extreme case is deleted. When the analysis
is applied using Kendall’s tau, that only considers arranging
the cases. The estimation is less sensitive to this extreme
case and therefore the tendency is significant without having
to remove it.

As regards the whole Peninsular Spain, we also found no
significant linear correlation with both methods (Fig. 4).

A comment about outliers is relevant here. We also com-
puted correlation coefficients for all areas by deleting one,
two or three years data, including all the possible variations.
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Table 1. Lineal correlations statistical parameters: Pearsonr and Kendall tau. Forty-seven provinces and the Peninsular Spain as a single set
(PEN. SPAIN) are shown. (SoS= Sum of squares;n = number of data;F = F test parameter;pF = probability ofF ; r2

= correlation coef-
ficient; K-tau= kendall’s tau parameter;pK-tau= probability of K-tau).pF bold numbers correspond to 5 % significant Pearson correlation
coefficients.pK-tau bold numbers correspond to 5 % significant index.

AREA SoS Regression SoS Residualn F pF r2 K-tau pK-tau

ALAVA 0.726 0.647 27 3.045 0.093 0.109 0.2710.024
ALBACETE 0.675 0.637 27 1.485 0.234 0.056−0.140 0.153
ALICANTE 1.612 1.455 27 2.683 0.114 0.097−0.180 0.095
ALMERIA 0.674 0.629 25 1.802 0.192 0.067 0.100 0.242
ASTURIAS 2.438 2.416 9 0.145 0.708 0.009 0.167 0.266
AVILA 0.872 0.869 27 0.088 0.770 0.003 −0.054 0.346
BADAJOZ 1.236 1.148 27 1.910 0.179 0.071 0.128 0.174
BARCELONA 0.802 0.702 27 3.576 0.070 0.125−0.214 0.059
BURGOS 1.406 1.406 27 0.004 0.951 0.000 0.117 0.196
CACERES 1.462 1.458 27 0.057 0.814 0.002−0.014 0.459
CADIZ 0.006 0.006 11 0.297 0.591 0.012 0.346 0.070
CANTABRIA 6.239 5.709 15 2.321 0.140 0.085 0.067 0.365
CASTELLON 2.318 2.318 27 0.002 0.961 0.000−0.009 0.475
CIUDAD REAL 1.351 1.351 27 0.005 0.946 0.000 0.003 0.492
CORDOBA 0.079 0.079 27 0.107 0.746 0.004−0.100 0.233
CUENCA 0.575 0.574 27 0.010 0.923 0.000−0.031 0.409
GERONA 2.392 2.376 27 0.173 0.681 0.007−0.066 0.316
GRANADA 0.868 0.866 27 0.066 0.800 0.003 0.100 0.233
GUADALAJARA 0.784 0.769 27 0.488 0.491 0.019 0.106 0.220
GUIPUZCOA 3.180 3.172 9 0.039 0.845 0.003 0.169 0.263
HUELVA 1.700 1.368 23 6.057 0.021 0.195 0.328 0.014
HUESCA 1.133 1.107 27 0.586 0.451 0.023 0.180 0.095
JAEN 0.848 0.840 27 0.229 0.636 0.009−0.049 0.361
LA CORUÑA 3.656 3.635 3 0.100 0.756 0.006 0.000 0.500
LA RIOJA 1.666 1.492 27 2.914 0.100 0.104 0.2370.042
LEON 0.961 0.947 27 0.388 0.539 0.015−0.003 0.492
LERIDA 2.703 2.423 27 2.883 0.102 0.103 0.214 0.059
LUGO 4.523 4.300 19 1.297 0.266 0.049−0.099 0.276
MADRID 1.055 1.040 27 0.364 0.552 0.014−0.003 0.492
MALAGA 0.018 0.017 20 0.740 0.398 0.029 −0.295 0.035
MURCIA 1.118 1.094 27 0.557 0.463 0.022−0.117 0.196
NAVARRA 1.018 0.953 27 1.695 0.205 0.063 0.168 0.109
ORENSE 1.882 1.766 22 1.637 0.213 0.061 0.022 0.444
PALENCIA 0.986 0.983 27 0.078 0.782 0.003 0.026 0.426
PONTEVEDRA 1.260 1.220 17 0.787 0.384 0.032 0.250 0.081
SALAMANCA 0.727 0.718 27 0.303 0.587 0.012 0.049 0.361
SEGOVIA 0.971 0.971 27 0.004 0.949 0.000 0.100 0.232
SEVILLA 0.405 0.380 27 1.691 0.205 0.063 0.145 0.144
SORIA 1.060 1.058 27 0.047 0.830 0.002−0.060 0.331
TARRAGONA 1.570 1.570 27 0.002 0.962 0.000 0.088 0.259
TERUEL 0.738 0.736 27 0.067 0.798 0.003−0.031 0.409
TOLEDO 1.021 1.006 27 0.371 0.548 0.015 0.049 0.361
VALENCIA 1.661 1.566 27 1.519 0.229 0.057 0.191 0.081
VALLADOLID 0.941 0.886 27 1.546 0.225 0.058 −0.157 0.126
VIZCAYA 4.732 4.419 13 1.489 0.236 0.066 0.181 0.195
ZAMORA 0.670 0.541 27 5.967 0.022 0.193 −0.283 0.019
ZARAGOZA 1.091 1.080 27 0.247 0.623 0.010 0.128 0.174
PEN.SPAIN 0.013 10.673 27 0.029 0.433 0.001−0.009 0.457
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Figure 4. Correlation estimated between hail damage and minimum summer 
temperature, at a 95% of significant level, for Peninsular Spain data as a single set and 
all crops. Graph shows minimum summer temperature at the x-axis (summer t min) and 
transformed hail damage index (log(1+R)) at the y-axis. 
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 Fig. 4. Correlation estimated between hail damage and minimum
summer temperature, at a 95 % of significant level, for Peninsular
Spain data as a single set and all crops. Graph shows minimum
summer temperature at the x-axis (summert min) and transformed
hail damage index (log(1+R)) at the y-axis.

Two provinces change to 5 % significant coefficient deleting
1 point, four new provinces change to significantr when
2 points are deleted, and 15 new provinces change when
3 points are deleted. Revising these changing provinces,
we found cases where the set of points showed a spheri-
cal shape around the tendency and lost their thickness when
some points located in the periphery were omitted. This
causes an increase in the correlation coefficient; however,
they do not seem to be specific outliers that should be elim-
inated as they are located in the context of the point set and
characterize the variability in the time and space of hails.

Therefore, the relation between temperature and hail
shows that it is relevant in hail claims for some provinces,
but not for overall Peninsular Spain or for most of Spain.

We can explain these differences in terms of geographical
and topographical characteristics. Compared with Holland
and France, Spain has markedly higher variation in relief and
is characterised by alternate plains, hilly and valley areas (see
Cohen and Small, 1998, for the area distribution under and
below 500 m).

Another difference between our study and the works
cited involves the length of the data series analysed.
Dessens (1995) analysed data from the years 1946–1992.
Botzen et al. (2009) analysed monthly data from the years
1990–2005. We could not use data for years before 1981
because ENESA andAgoseguro(a pool of private insurance
companies) felt that homogeneity of the data could not be
guaranteed prior to this date. This problem is also mentioned
by Dessens (1995). The monthly data are only available for
the past five years.

Another aspect of the heterogeneity of the data results
from the characteristics of the contract periods and the insur-
ance coverage. These characteristics produced annual time
periods that could not be analysed effectively because they
were too long. These considerations suggested that separate

Figure 5. Significant correlations according to Kendall’s tau test between hail damage and 
minimum summer temperature, excluding those provinces that gave a Pearson r significant. 
Graphs show minimum summer temperature at the x-axis (summer t min) and transformed hail 
damage index (log(1+R)) at the y-axis. 
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Fig. 5. Significant correlations according to Kendall’s tau test be-
tween hail damage and minimum summer temperature, excluding
those provinces that gave a Pearsonr significant. Graphs show
minimum summer temperature at the x-axis (summert min) and
transformed hail damage index (log(1+R)) at the y-axis.

consideration of each crop could possibly improve the overall
analysis of the relationship between hail damage and summer
minimum temperatures. For this reason, several damage se-
ries were constructed for each crop, based on the importance
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Fig. 6. Positive (red) and negative (blue) significant correla-
tions between hail damage and minimum summer temperature for
(a) grapes,(b) wheat,(c) barley, and(d) all winter grains.

of the crop in Spanish agriculture. The crops considered were
grapes, wheat, barley and all winter grains (including wheat
and barley).

Tree fruit damage is of great relevance in the Spanish
Peninsula. However, damage to these crops was not con-
sidered because the process used for insurance damage eval-
uation changed midway through the period of study.

Correlation analyses were performed for the 47 provinces
and for the four crop types considered. The results of these
analyses are shown in Fig. 3. Only two or three provinces
exhibited 5 % significant correlations between crop damage
and temperature. These results are similar to those found for
total agricultural damage. A negative 5 % significant corre-
lation was found for grapes in Avila and Huesca and a pos-
itive correlation at Léon. A negative correlation was found
for wheat at Zamora and a positive correlation at Alicante.
A negative correlation was found for barley at Lérida and
Barcelona and a positive correlation at Alicante. For all win-
ter grains, a negative correlation was found at Zamora and
Lérida and a positive correlation at Alicante.

The results for all the crops studied are consistent across
Peninsular Spain. Only a few scattered areas exhibited statis-
tically significant increasing or decreasing tendencies, with
no clear connections evident in any case. Furthermore, only
some provinces show consistent tendencies, and these ten-
dencies occur in the context of crop inclusion, for example
in the case of cereals in Alicante.

Our results are closer to the findings described by
Changnon (2000, 2001, 2005) for the USA than to the find-
ings from France and The Netherlands. Although the area
covered by our study is smaller than the area included in the
study involving the USA, the lack of predictive consistency

shown by the models evaluated should result from climatic
variability (very strong in Peninsular Spain) rather than from
simple considerations of spatial amplitude.

Further research is necessary considering other climatic
variables such as precipitation and temperatures for different
months and seasons (from annual to crop phenological peri-
ods). At the same time, an improvement in meteorological
and crop damage data resolution with respect to time and/or
space is necessary to explore a new type of analysis for find-
ing significant relationships.

4 Conclusions

The results of other studies linking hail damage to minimum
summer temperature in countries outside Spain did not agree
with our results for Peninsular Spain. For some areas we
found significant relationships; however, not all of them are
relevant regarding hail incidence. We must recognise that the
results of the analyses could be affected by the series length,
by the data frequency (monthly or crop campaign), by the
crop considered or by changes in the crop damage evalua-
tion process. All these factors have an obvious influence on
the study. On the other hand, we cannot dismiss the differ-
ences that might result from the specific dynamical charac-
teristics of each area and from the special characteristics of
each area’s landscape and topography.
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