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Abstract. This paper presents the development of a non-
parametric forecast model based on artificial neural networks
for the direct assessment of Arias Intensity corresponding to
a historic earthquake using seismic intensity data. The neural
models allow complex and nonlinear behaviour to be tracked.
Application of this methodology on earthquakes with known
instrumental data from Greece, showed that the artificial neu-
ral network forecast model have excellent data synthesis ca-
pability.

1 Introduction

With widespread use of strong motion recorders, it is pos-
sible to obtain engineering seismic parameters (ESP), such
as Arias Intensity (Ia) for the majority of strong earthquakes
that occur today. Many investigators have compared these
parameters to seismic intensity data, but have found that the
correlation is usually poor and the relationships are highly
nonlinear in nature (e.g., Tselentis and Vladutu, 2010).

Since most loss-estimation methodologies (seismic sce-
narios) in use today (Kaestli et al., 2006), are based on the
distribution of ESP, the task of forecasting these parameters
from seismic intensity is very important to quantify the effect
of historical earthquakes for which no instrumental data are
available. In the present investigation by seismic intensity,
we refer to the Modified Mercalli Intensity scale (MMI).

Arias Intensity, as defined by Arias (1970), is the total en-
ergy per unit weight stored by a set of undamped simple os-
cillators at the end of an earthquake. The Arias Intensity for
ground motion in theX (i.e., E-W) direction is calculated as
follows
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IaX =
2π

g

to∫
0

a2
X(t)dt (1)

whereaX(t) is the corresponding acceleration time history
and t0 is the total duration of the ground motion. In the
present investigation byIa, we mean the sum of the two hor-
izontal componentsIa= IaEW+IaNS.

We attempt to use a flexible class of statistical models to
investigate the relationship of parameters derived from seis-
mic intensity toIa, which essentially becomes a pattern-
matching problem and is implemented by the use of artifi-
cial neural networks (ANN). The significant advantage of the
ANN approach in estimatingIa from seismic intensity data is
that one does not need to have a well-defined process for al-
gorithmically converting an input to an output. All we need is
a set of representative examples of the desired mapping then
the ANN automatically adapts itself to reproduce the desired
output when presented with a training sample input.

2 MMI intensity relations

There are many ESP to MMI estimation equations proposed
by various researchers. A significant limitation of these equa-
tions is that most of them consider only ground motion to in-
tensity estimation, with intensity the depended value in the
regression. Thus, one should only use these equations for as-
sessing the MMI, given a ground motion and not to assess
ESP from intensity data.

Despite the doubtful conceptual validity of the MMI-ESP
correlations, this approach offers the possibility of transform-
ing quantitative, readily observed data (intensity) into param-
eters which are useful for engineering purposes (such asIa)
and is widely used to evaluate the historical earthquakes for
which no instrumental data are available.

A key task into the development of ShakeMaps (Wald et
al., 1999a) is the construction of regional specific relation-
ships between ESP and MMI. During the last decades, many
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attempts were made to develop region specific ESP-intensity
relationships (Ambraseys, 1974; Atkinson and Kaka, 2007;
Atkinson and Sonley, 2000; Cabanas et al., 1997; Kaka and
Atkinson, 2004; Kaliopoulos et al., 1998; Margottini et al.,
1992; Murphy and O’Brien, 1977; Panza et al., 1997; Schenk
et al., 1990; Trifunac and Brady, 1975; Wald et al., 1999b;
Wu et al., 2003). These studies are region specific, and the
proposed ESP-intensity relationships are suitable to that par-
ticular seismotectonic and building characteristics of the re-
gions.

Allen and Wald (2009) evaluated the performance of sev-
eral modern ESP-MMI equations (Wald et al., 1999; Atkin-
son and Kaka, 2007; Tselentis and Danciu, 2008) and found
that these relations specify a standard deviation of the order
of one MMI unit. Since the successful application of Shake
maps in seismic risk assessment (Wald et al., 1999a), various
investigators have addressed the problem of assessing inten-
sities from ESP. This conversion is usually necessary with
historical earthquake studies, where intensity data are avail-
able and is of interest to assess ESP.

Although it is common practice to simply invert ESP-MMI
relations to get an ESP, it is not necessarily correct (Wald et
al., 1999a). An exception is the relationship proposed by
Faenza and Michelini (2010), since it is based on an orthog-
onal distance regression and can be applied both ways, i.e.,
derive PGA from MMI and vice versa.

In Greece, Theodulidis and Papazachos (1992, 1994) and
Tselentis and Danciu (2008) proposed various empirical rela-
tions between MMI and ESP. Koliopoulos et al. (1998), pro-
duced an empirical regression equation for MMI and vari-
ous ground motion parameters. The main goal of the study
was to investigate the relationship between duration and en-
ergy characteristics of Greek strong ground motion data. Re-
cently, Tselentis and Vladutu (2010) followed a genetic algo-
rithm approach to investigate the relation between MMI and
various ESP.

3 Data

The database used for this study is derived primarily from
readily available strong motion data that have been recorded
for felt earthquakes in Greece in the last 40 yr and provided
by the European Strong Motion Database (Ambraseys et al.,
2004).

The horizontal components of ground motion have been
selected, no vertical components were considered and it
was decided to treat each horizontal component indepen-
dently rather than to introduce a vector sum of the two com-
ponents, because the maximum values of ground motion
parameters are not realized simultaneously in each compo-
nent and, therefore, any computed quantities based on sum-
mation would be the upper bounds of the parameters of in-
terest, thus, limiting their practical use (Koliopoulos et al.,
1998).

 

 

 

Fig.1 

 

 

Fig.2 

Fig. 1. Epicentral distribution of earthquakes used in the present
analysis.

The final dataset consists of 328 time histories recorded
from earthquakes which occurred in Greece (Fig. 1). Table 1
provides a list of these earthquakes. No correction has been
applied to the selected records because these records were
available in an already corrected form. The magnitude scale,
which we will refer to asM in this article, corresponds to the
moment magnitude (Hanks and Kanamori, 1979).

For the selected dataset based on data from Greece,M is
ranging between 4.5 and 6.6.

Since most of the events are offshore and for those on-
shore the surface geology does not often show any evident
faulting, it is impossible to use a fault distance definition like
the closest distance to the fault rupture or to the surface pro-
jection of the rupture. Thus, we decided to use the epicentral
distance. Hypocentral depths of the selected earthquakes are
in the interval 0 to 30 km with a mean of 11.14 km. Most of
the intensity information was available through the European
Strong Motion Database (Ambraseys et al., 2004) and com-
pleted by the macroseismic database developed by Kalogeras
et al. (2004). The macroseismic database covers most of the
strong earthquakes occurred in Greece and for each event
MMI values are assigned to every recording station.

The corresponding, to each earthquake, isoseisms were
constructed using the kriging methodology. Kriging is a sta-
tistical technique that estimates unknown values at specific
points in space using data values from known locations. The
main assumption when using kriging is that the data anal-
ysed are samples of a regionalized variable, as is assumed
to be the case with intensity data. A regionalized variable
varies continuously in such a manner that points near each
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Table 1. Database of strong motion records used.R is the epicentral distance,Mw is the body wave magnitude, Soil parameter is 0 for rock
(V s > 800 m s−1), 1 for stiff soil (V s = 360−665 m s−1) and 2 for soft soil (V s = 200−360 m s−1).

Earthquake Name Date R (km) Mw soil MMI Ia

Ionian 04/11/1973 15 5.8 0 7 0.5021
Ionian 4/11/1973 9 4.8 0 5 0.0238
Patras 29/01/1974 13 4.5 0 5 0.0006
Achaia 18/05/1978 8 4 0 5 0.0006
Volvi 20/06/1978 29 6.2 0 7 0.1737
Volvi 20/06/1978 29 6.2 0 7 0.2071
Alkion 24/02/1981 20 6.6 0 7 0.8195
Alkion 24/02/1981 19 6.6 0 8 0.8882
Alkion 25/02/1981 25 6.3 0 6 0.1826
Preveza 3/10/1981 28 5.4 1 7 0.2569
Preveza 3/10/1981 42 5.4 0 7 0.0483
Kefallinia island 17/01/1983 104 6.9 0 6 0.1058
Kefallinia island 17/01/1983 124 6.9 1 5 0.0156
Kefallinia (after 23/03/1983 11 5.2 0 5 0.0284
Kefallinia (after 23/03/1983 72 6.2 0 4 0.0118
Elis 13/08/1985 18 4.9 1 5 0.0132
Near coast of Pre 31/08/1985 13 5.2 1 6 0.0352
Near coast of Pre 31/08/1985 21 5.2 0 6 0.0389
Kalamata 13/09/1986 11 5.9 1 8 0.7413
Kalamata (aftersh 15/09/1986 3 4.9 1 7 0.2818
Dodecanese 10/5/1987 26 5.3 1 5 0.0179
Ionian 24/04/1988 13 4.8 0 6 0.2044
Etolia 18/05/1988 23 5.3 2 7 0.1454
Kyllini 16/10/1988 36 5.9 1 7 0.1416
Kyllini 16/10/1988 14 5.9 1 7 0.2949
Patras 22/12/1988 5 4.9 1 6 0.0307
Patras 22/12/1988 14 4.9 0 6 0.0056
Patras 31/08/1989 21 4.8 0 5 0.0185
Aigion 17/05/1990 20 5.30 1 6 0.0284
Plati 8/8/1990 36 5.10 1 4 0.0033
Mataranga 30/05/1992 28 5.2 1 4 0.005
Mataranga 30/05/1992 34 5.2 0 3 0.0093
Tithorea 18/11/1992 25 5.9 1 5 0.0129
Gulf of Corinth 2/4/1993 9 5.30 0 6 0.0535
Near coast of Fil 34092 27 5.2 1 5 0.0046
Kallithea 18/03/1993 41 5.8 0 4 0.0057
Pyrgos (foreshock 26/03/1993 16 4.9 1 5 0.0054
Pyrgos (foreshock 26/03/1993 10 4.9 1 5 0.0091
Pyrgos 26/03/1993 10 5.4 0 7 0.3325
Pyrgos 26/03/1993 24 5.4 1 6 0.0631
Mouzakaiika 13/06/1993 48 5.3 0 5 0.0657
Patras 14/07/1993 30 5.6 1 5 0.0196
Patras 14/07/1993 54 5.6 1 5 0.0037
Patras 14/07/1993 37 5.6 0 5 0.0096
Patras 14/07/1993 27 5.6 1 6 0.0214
Patras 14/07/1993 10 5.6 0 7 0.1789
Gulf of Corinth 4/11/1993 18 5.3 1 4 0.004
Gulf of Corinth 4/11/1993 10 5.3 1 5 0.0449
Komilion 25/02/1994 16 5.4 0 7 0.201
Komilion 25/02/1994 29 5.4 1 6 0.0231
Ionian 27/02/1994 27 4.8 0 5 0.0176
Ano Liosia 36350 20 6 0 7 0.1537
Ano Liosia 9/7/1999 16 6 1 7 0.3382
Ano Liosia 9/7/1999 17 6 0 7 0.0952
Ano Liosia 36350 19 6 1 7 0.0902
Ano Liosia 9/7/1999 19 6 1 6 0.0434
Ano Liosia 9/7/1999 20 6 1 6 0.0522
Ano Liosia 9/7/1999 18 6 1 6 0.064
Ano Liosia 9/7/1999 14 6 1 7 0.2942
Ano Liosia 9/7/1999 14 6 1 7 0.5939
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Table 1.Continued.

Earthquake Name Date R (km) Mw soil MMI Ia

Astakos 22/01/1988 27 5.1 2 5 0.0016
Agrinio 8/3/1988 6 4.9 2 6 0.0136
Etolia 18/05/1988 20 5.3 1 6 0.0166
Etolia 22/05/1988 21 5.4 1 5 0.0123
Kefallinia island 23/06/1992 16 5 1 7 0.1409
Skydra-Edessa 18/02/1986 2 5.3 1 6 0.0601
Griva 21/12/1990 36 6.1 1 7 0.129
Griva 21/12/1990 37 6.1 1 6 0.0187
Gulf of Corinth 32206 19 4.5 1 5 0.0065
Gulf of Corinth 3/4/1988 19 4.5 1 5 0.0093
Gulf of Corinth 7/5/1988 19 4.9 1 5 0.018
Tithorea 18/11/1992 61 5.9 1 5 0.0096
Kranidia 25/10/1984 23 5.5 2 6 0.0048
Near coast of Fil 5/3/1993 54 5.2 2 5 0.0079
Gulf of Kiparissi 7/9/1985 37 5.4 2 5 0.0045
Kalamata (aftersh 6/10/1987 17 5.3 2 6 0.0161
Peratia 22/05/1986 7 4.1 0 3 0.0015
Near NW coast of 27/02/1987 52 5.7 0 5 0.0124
Levkas island 11/10/1992 5 4.6 0 5 0.0105
Mouzakaiika 13/06/1993 48 5.3 0 5 0.018
Komilion 25/02/1994 15 5.4 0 7 0.1405
Ionian 27/02/1994 26 4.8 0 5 0.0158
Ierissos 26/08/1983 15 5.1 2 6 0.0643
Paliouri 4/10/1994 5 5.1 1 5 0.0089
Patras 15/05/1989 6 4.8 1 5 0.0078
Patras 31/08/1989 21 4.8 1 5 0.0237
Mataranga 30/05/1992 34 5.2 1 5 0.0142
Patras 14/07/1993 10 5.6 1 7 0.1589
Patras (aftershoc 14/07/1993 11 4.6 1 4 0.0021
Mataranga 30/05/1992 33 5.2 1 5 0.0137
Patras 14/07/1993 9 5.6 1 7 0.1601
Kyllini 16/10/1988 78 5.9 1 4 0.0034
Patras 22/12/1988 14 4.9 1 6 0.0049
Kyllini 16/10/1988 49 5.9 0 6 0.0116
Trilofon 20/10/1988 7 4.8 0 5 0.0007
Komilion 25/02/1994 12 5.4 1 6 0.0676
Kyllini (foreshoc 22/09/1988 23 5.3 1 5 0.0133
Almiros (aftersho 16/07/1980 3 5 1 6 0.0611
Almiros (aftersho 8/11/1980 14 5.2 1 6 0.037
Almiros (aftersho 26/09/1980 10 4.8 1 5 0.021
Kefallinia (after 23/03/1983 9 6.2 1 6 0.3968
Drama 11/9/1985 19 5.2 1 6 0.0193
Drama 11/9/1985 51 5.2 2 5 0.0208
Kalamata (aftersh 15/09/1986 12 4.9 1 6 0.0187
Kremidia (aftersh 25/10/1984 16 5 2 6 0.2228
Ierissos 26/08/1983 42 5.1 2 5 0.0326
Near coast of Pre 31/08/1985 13 5.2 1 6 0.0258
Kefallinia (after 23/03/1983 65 6.2 1 5 0.0173
Near SE coast of 10/4/1984 17 5 1 5 0.0143
Kyllini 16/10/1988 16 5.9 1 5 0.0053
Kyllini (aftersho 23/10/1988 10 4.3 1 5 0.0038
Kyllini (aftersho 31/10/1988 14 4.8 1 5 0.0117
Kyllini (aftersho 27/11/1988 14 4.5 1 4 0.0083
Kyllini (aftersho 22/10/1988 12 4.5 1 5 0.0041
Kyllini (aftersho 23/10/1988 7 4.4 1 5 0.0078
Kyllini (aftersho 27/11/1988 19 4.5 0 4 0.0063
Kyllini (aftersho 20/10/1988 16 4.2 0 5 0.0067
Kyllini (aftersho 22/10/1988 16 4.5 0 5 0.0109
Volvi 20/06/1978 78 6.2 0 5 0.0054
Kalamata 13/10/1997 48 6.4 2 7 0.1921
Strofades 18/11/1997 90 6.6 2 6 0.0605
Pyrgos 8/11/1996 2 4.7 0 6 0.0259
Levkas island 23/04/1996 6 3.9 1 5 0.0034
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Table 1.Continued.

Earthquake Name Date R (km) Mw soil MMI Ia

Off coast of Magi 30475 76 6.6 2 6 0.0264
Kefallinia island 23/01/1992 14 5.6 1 7 0.1562
Kozani (aftershoc 14/05/1995 6 4.5 1 6 0.0214
Kozani (aftershoc 15/05/1995 9 5.2 1 7 0.136
Kozani (aftershoc 17/05/1995 16 5.3 1 6 0.0712
Kozani 13/05/1995 77 6.5 1 6 0.0182
Kozani 13/05/1995 71 6.5 2 4 0.0115
Arnaia 4/05/1995 32 5.3 1 5 0.0075
Kozani (aftershoc 19/05/1995 16 5.2 1 6 0.3339
Kozani (aftershoc 6/11/1995 3 4.8 1 6 0.0677
Kozani 13/05/1995 93 6.5 1 4 0.0181
Kozani 13/05/1995 72 6.5 1 6 0.0172

 

 

 

Fig.1 

 

 

Fig.2 Fig. 2. General topology of a feed-forward ANN with one hidden
layer.

other, have a certain degree of spatial correlation, but points
that are widely separated are statistically independent.

The kriging estimator applied in the macroseismic dataset
considered in the present paper is given by

Ij =

n∑
i=1

wij MMI j (2)

WhereIj is the predicted intensity value at any grid node,
n is the number of points used to interpolate at each node,
MMI i is the intensity value at thei-th point andwij is the
weight associated with thei-th data value when estimating
Ij . The weights are solutions of a system of linear equations
which are obtained by assuming thatI is a sample-path of a
random process and that the error of prediction is minimal.

The kriging algorithm assigns weights to each point based
on the distance between the point to be interpolated and the
data location (h), as well as the inter-data spacing. Other

 

Fig.3 

 

Fig.4 

Fig. 3. The nonlinear S-shaped sigmoid activation function used in
the present investigation.

parameters, such as length scale, repeatability and direc-
tion dependence of data are also considered for assigning
weights. These parameters are entred into the algorithm via
the variogramγ (h), which is an analytical tool that quantifies
the degree of spatial autocorrelation of data.

In the present investigation, the isoseismals, that more ac-
curately represented the observed intensity data field, were
chosen by modelling a simple linear variogram based on the
kriging options of Surfer Package from Golden Software. A
detailed explanation of the kriging algorithm and the vari-
ogram parameters can be found in De Rubeis et al. (2005).

4 Artificial neural network

An artificial neural network is an information processing
paradigm that is inspired by the way biological nervous sys-
tems, such as the brain, process information. The most basic
element of the human brain is a specific type of cell, which
provides us with the ability to remember, think and apply pre-
vious experiences to our every action. These cells are known
as neurons. The power of the brain comes from the number
of neurons and the multiple connections (synapses) between
them.
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Table 2. Network performance for a different number of neurons in the hidden layer. AIC refers to the Akaike’s Information Criterion
defined by AIC= T ln(RSS)+2k, wherek is the number of regressors,T the number of observations and RSS the residual sum of square.

ANN Weights Train Error Validation Error AIC Correlation R-Squared

[6-1-1] 9 0.023 0.055554 −407.1 0.831 0.659
[6-15-1] 121 0.026 0.051017 −471.4 0.817 0.663
[6-9-1] 73 0.024 0.049607 −575.9 0.82 0.663
[6-5-1] 41 0.022 0.057709 −645.3 0.84 0.708
[6-12-1] 97 0.028 0.050409 −512.0 0.806 0.511
[6-7-1] 57 0.028 0.05679 −592.0 0.811 0.615
[6-10-1] 81 0.025 0.051625 −556.3 0.807 0.613
[6-8-1] 65 0.0191 0.053817 −608.7 0.913 0.833

Figure 2 shows a simplified view of a ANN. It consists of
a network of simple processing elements (artificial neurons)
which are organised in several layers: an input layer (which
has the number of neurons linked to the dimensionality of the
input), one or several hidden layers and an output layer. The
hidden layer provides a representation for the inputs.

When one presents, at the network, a form to be learned,
the neurons simultaneously start a state of activity which
causes a small modification of the synaptic between the
forces. It follows a quantitative reconfiguration of the whole
of the synapses, some of them become very strong, the others
become weak. The learned form is not directly memorized
at a precise place; it corresponds in a particular energy state
of the network, a particular configuration of the activity of
each neuron, in a very large case of possible configurations.
This configuration is supported by the values of the synaptic
forces (Haykin, 1999).

Let Y s
j represents the output of thej -th neuron at layers,

W s
ij is the weight connecting thei-th neuron in layers to the

j -th neuron at layers −1. The neurons have their activation
function characterised by a nonlinear function (like the Sig-
moid function in Fig. 3). This function maps the output to its
input and can be expressed by the following equation

Y s
j = f (b+

R∑
i=1

W s
j i ×Y s−1

i ) (3)

whereb is the bias.
This relation allows, by knowing the input of the first layer

of the network, to gradually calculate the value of the global
output of the network, thus, ensuring the forward propaga-
tion. When one compares this output with the desired output,
one can calculate the error function, generally given by

e =
1

2

(
Y − Ȳ

)2
(4)

whereY is the desired output and
(
Ȳ

)
the obtained output.

The direction in which the weights are updated is given by
the negative of the gradient ofe with respect to every ele-
ment of the weight. This process consists in minimizinge
by a gradient descent. Thus, we try to modify the synaptic

 

Fig.3 

 

Fig.4 Fig. 4. Topology of the feed-forwardk-NN-type ANN used in the
present study. Input parameters are magnitudeMw, Soil parameter
S, MMI and epicentral distanceR.

weights in order to reducee. This is carried out using the
following relation

1ws
ij = −µ(es

jY
s−1
i )n +(1ws

j i)n−1 (5)

whereµ is the learning rate parameter and usually takes val-
ues between 0 and 0.5. The quantityes

j is the local error of
the j -th neuron in thes layer. Weights and bias terms are
first initialized to random values. In general, there are no
strict rules to determine the network configuration for opti-
mum training and prediction.

5 ANN model for seismic intensity

Data from earthquakes and locations for which both MMI
data and Greek strong motion records are available (Table 1)
was used to build and train an ANN. Earthquake magnitude,
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Fig.5 

 

 

 

Fig.6 

Fig. 5. Absolute ANN error versus No of iterations for different number of neurons in the hidden layer.

 

 

 

Fig.5 

 

 

 

Fig.6 

Fig. 6. Comparison of real (red line) and predicted values.
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soil conditions (rock, soil, soft soil), epicentral distance and
MMI values were used as input layer variables to a multi-
layered feed forward ANN. The single output layer variable
was theIa value.

After trying various numbers of hidden layers, we found
that the best type of network for the present investigation is
that consisting of one hidden layer resulting in a total of three
layers (Fig. 4). The Sigmoid function (Fig. 3), was used for
the transfer function of the hidden neurons. We changed the
number of neurons in the hidden layers and those that gave
the smallest error are depicted in Table 2. The performance
of the ANN was found to deteriorate as the number of hidden
neurons increased farther than the number 15.

For supervised training of the ANN, a subset of two thirds
of the total records was used. The individual sites assigned to
this training set were selected at random from the complete
set of records. The other third of the data was used for testing
the ANN after it had been trained.

Figure 5 depicts the ANN absolute error, for various num-
bers of neurons in the hidden layer, versus the training epoch
(iterations). Judging from this figure, we see that the ANN
with 9 neurons in the hidden layer has the lowest error and is
selected for further data processing.

Finally, a comparison between the results predicted by the
ANN and the test data are presented in Fig. 6. The correlation
between the predicted and real data is excellent considering
the strong nonlinear character of the relation between MMI
andIa.

6 Conclusions

In the present investigation, we examined the relation be-
tween MMI andIa using a database consisting of Greek
earthquakes and employing ANN. It is shown that an ANN
can be used to predictIa from MMI data despite the strong
nonlinear nature of the problem. This result is of particu-
lar importance in studying historical earthquakes for which
there is a big database in Greece.
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