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Abstract. We present an analysis of different sources of
impact model uncertainty and combine this with proba-
bilistic projections of climate change. Climatic envelope
models describing the spatial distribution of palsa mires
(mire complexes with permafrost peat hummocks) in north-
ern Fennoscandia were calibrated for three baseline periods,
eight state-of-the-art modelling techniques and 25 versions
sampling the parameter uncertainty of each technique – a to-
tal of 600 models. The sensitivity of these models to changes
in temperature and precipitation was analysed to construct
impact response surfaces. These were used to assess the be-
haviour of models when extrapolated into changed climate
conditions, so that new criteria, in addition to conventional
model evaluation statistics, could be defined for determining
model reliability. Impact response surfaces were also com-
bined with climate change projections to estimate the risk of
areas suitable for palsas disappearing during the 21st cen-
tury. Structural differences in impact models appeared to
be a major source of uncertainty, with 69 % of the models
giving implausible projections. Generalized additive mod-
elling (GAM) was judged to be the most reliable technique
for model extrapolation. Using GAM, it was estimated as
very likely(>90 % probability) that the area suitable for pal-
sas is reduced to less than half the baseline area by the period
2030–2049 and aslikely (>66 % probability) that the en-
tire area becomes unsuitable by 2080–2099 (A1B emission
scenario). The risk of total loss of palsa area was reduced
for a mitigation scenario under which global warming was
constrained to below 2◦C relative to pre-industrial climate,
although it too implied a considerable reduction in area suit-
able for palsas.
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1 Introduction

Recent developments in climate modelling have made it
possible to express projections of regional climate change
for Europe probabilistically quantifying various aspects of
climate modelling uncertainty (R̈ais̈anen and Ruokolainen,
2006; Murphy et al., 2007; D́eqúe and Somot, 2010; also
see the review of Christensen et al., 2007, pages 921–925).
These typically involve large ensembles of climate model
simulations combined with some statistical analysis. Prob-
ability distributions are fitted for projected changes in key
climate variables. The construction of such probabilistic pro-
jections of climate change was one of the main objectives
of the EU-FP 6 ENSEMBLES project (van der Linden and
Mitchell, 2009).

Multi-model ensemble climate projections pose both an
opportunity and a challenge to impact modellers. They of-
fer an opportunity to generate multiple estimates of future
impacts, which can then be presented in terms of risk. How-
ever, through their sheer number they can also present a sub-
stantial computational challenge, especially for more com-
plex impact models. Correspondingly, there have been few
attempts to carry such projections through to impacts us-
ing impact models (e.g. Wilby and Harris, 2006; New et al.,
2007). While such studies are themselves exploratory, they
focus mainly on addressing uncertainties in future impacts
attributable to projections of climate. Even less considera-
tion has been paid to uncertainties of the impact estimates
themselves, though the rare attempts that have been reported
are still not as comprehensive as the analyses conducted for
climate models (R̈otter et al., 2011). For example, New et
al. (2007) assessed the parameter uncertainty of a single hy-
drological model in combination with climate projection un-
certainties from an ensemble of climate model outputs, but
they did not undertake an intercomparison of different hy-
drological models to investigate structural uncertainties.
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An alternative approach for assessing impact risks is to
construct impact response surfaces from a sensitivity study
of the impact model with respect to key climatic variables
and to superimpose probabilistic climate change projections
onto these (Jones, 2000a, b; Luo et al., 2007; Fronzek et al.,
2010). The risk of exceeding critical impact thresholds can
then be quantified by calculating the proportion of ensem-
ble members lying above the threshold. In an earlier paper,
we presented an example of this approach with a climatic
envelope model, using a probabilistic projection of climate
change constructed by re-sampling an ensemble of General
Circulation Model (GCM) runs (Fronzek et al., 2010). How-
ever, impact model uncertainty was not quantified in that
study.

Model uncertainty can be grouped into three different
types: (1) uncertainty due to the structure of the model,
(2) the parameter uncertainty of a single model, and (3) un-
certainty of the initial conditions (Thuiller et al., 2009). Cli-
matic envelope techniques have been applied widely to as-
sess the impact of climate change on the spatial patterns
of biodiversity and many aspects of their uncertainty have
been discussed (Heikkinen et al., 2006; Jeschke and Strayer,
2008). It has also been suggested to quantify the uncertainty
of envelope models by using large ensembles of impact mod-
els (Aráujo and New, 2007; Thuiller et al., 2009). However,
the application of envelope models with climate change sce-
narios often implies model extrapolations to climatic condi-
tions that lie outside the range of values with which models
have been calibrated. Moreover, testing the validity of ex-
trapolations is difficult, as the response of future biodiversity
range shifts cannot be measured (Araújo et al., 2005). For
this reason, in this paper we advocate a rigorous testing of
the sensitivity of envelope models to evaluate the robustness
and plausibility of extrapolations.

We present an analysis that attempts to quantify impact
model uncertainty, or at least some aspects of it, and com-
bines this with probabilistic projections of climate change.
We demonstrate this in a case study of sub-arctic palsa mires.
Palsas are peat mounds with an ice core that is frozen all year
round (Sepp̈alä, 2011). They are located at the outer limit of
the permafrost zone in sub-arctic regions, and hence are sen-
sitive to even small changes in climate. Luoto et al. (2004a)
and Fronzek et al. (2006) presented statistical climatic en-
velope models of the spatial distribution of palsa mires in
northern Fennoscandia. One of these models was applied
with probabilistic climate change projections derived from
an ensemble of 21 General Circulation Models (GCMs), us-
ing the impact response surface approach to estimate the risk
of palsa mire loss during the 21st century (Fronzek et al.,
2010). However, the uncertainty of the impact model was
not assessed. This paper extends the previous analysis and
has the following four objectives:

1. to quantify the uncertainties of climatic envelope mod-
els for palsa mires, where possible probabilistically;

2. to evaluate the robustness and plausibility of model ex-
trapolations;

3. to apply the impact models with more comprehen-
sive probabilistic projections of regional climate change
generated in the ENSEMBLES project for the SRES
A1B (moderate emissions) scenario, based on GCM
simulations and observed constraints; and

4. to compare these probabilistic results with determin-
istic scenarios from an ensemble of atmosphere-ocean
GCM simulations for the E1 stabilization scenario and
the SRES A1B scenario, in order to gain insight on the
effectiveness of mitigation policy in reducing the risk of
disappearance of European palsa mires.

2 Material and methods

2.1 Ensemble of palsa mire distribution models

The presence or absence of palsa mires has been mapped
using geomorphological and topographical maps and aerial
photography (Luoto et al., 2004a; updated) onto a regu-
lar grid with 10′ × 10′ spacing for Fennoscandia north of
the Arctic Circle (Fig. 1). Gridded monthly mean temper-
ature and annual precipitation observations for the period
1951–2000 were extracted from the Climatic Research Unit
TS 1.2 dataset at the same 10′

× 10′ resolution (New et al.,
2002; Mitchell et al., 2004). Period averages were calcu-
lated for three 30 yr baseline periods, 1951–1980, 1961–
1990 and 1971–2000, offering a range of long-term refer-
ence climates. The 1951–1980 period was coolest and had
the smallest annual precipitation, while 1971–2000 was the
warmest and wettest of the three periods (Fig. 2). The follow-
ing climate parameters were then derived for the three 30 yr
mean periods: Thawing degree days (TDD), freezing degree
days (FDD), continentality (CONT) and annual precipitation
(APREC). TDD and FDD, defined as the accumulated sum
of daily mean temperatures above (TDD) or below (FDD)
0◦C, have been calculated from monthly mean temperatures
using a method suggested by Kauppi and Posch (1985). This
required information on the standard deviation of daily mean
temperature around the monthly mean, for which a gridded
dataset interpolated from station data was used (Fronzek and
Carter, 2007). CONT was defined as the difference between
the maximum and minimum of the mean monthly tempera-
tures.

Eight climatic envelope modelling techniques imple-
mented in the BIOMOD R-library (Version 1.0–2; Thuiller
et al., 2009) were used to relate palsa presence/absence with
the explanatory climatic variables: generalized linear mod-
elling (GLM), generalized additive modelling (GAM), mul-
tivariate adaptive regression splines (MARS), classification
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Fig. 1. Map of the study area showing the location of palsas in
Northern Fennoscandia (Luoto et al. 2004, updated).

tree analysis (CTA), mixture discriminant analysis (MDA),
artificial neural network (ANN), random forest (RF), and
generalized boosting methods (GBM) (Table 1). Marmion
et al. (2008) classify these methods into regression methods
(GLM, GAM, MARS), classification methods (CTA, MDA)
and machine learning methods (ANN, RF, GBM). RF and
GBM use a large number of regression trees and could there-
fore also be described as classification methods. The models
give values on a continuous scale between 0 and 1; to con-
vert these into predicted presences or absences, a threshold
was determined by minimizing the difference between cor-
rect presence and correct absence predictions.

For each of the 8 modelling techniques and each of the
3 baseline periods, we calibrated models by randomly split-
ting the data into calibration and evaluation sets 25 times re-
sulting in 8× 3× 25 = 600 models. The calibration data sets
contained data from 70 % of the grid cells retaining the same
ratio of palsa presences and absences as in the full data sets;
the remaining 30 % of the grid cells were used as evalua-
tion data sets. Although arbitrary, this proportion is com-
monly applied for the split-sampling of data (Araújo et al.,
2005). All subsequent analyses of uncertainty should thus be
regarded as conditional on the 70:30 split, which was applied
consistently for all models.

Fig. 2. Area-averages of annual mean temperature and precipitation
(black lines), running 30 yr-averages centred at their mid-yr (green
lines) and period-averages for 1951–1980, 1961–1990 and 1971–
2000 (blue points) for the European land grid cell north of the Arctic
Circle (66.5◦ N) of the CRUTS 2.02 dataset.

This ensemble of palsa mire distribution models samples
three sources of impact model uncertainty: (1) initial con-
ditions, by relating the observed palsa distribution with cli-
matic conditions for different baseline periods, (2) model
structure, by employing alternative statistical techniques to
quantify palsa-climate relationships, and (3) model parame-
ters, by sampling across the distribution of parameter values
obtained for a single modelling technique (Table 2).

Two evaluation statistics were calculated for the evalua-
tion and calibration data sets; the area under the receiver op-
erating characteristics curve (AUC) and Cohen’s kappa co-
efficient. AUC is defined as the area under the curve of the
proportion of true positive to false positive predictions as a
function of the threshold values (Heikkinen et al., 2006). A
perfect model has an AUC value of 1 whereas a value of 0.5
indicates a discriminatory ability no better than chance. AUC
values above 0.9 are usually regarded as indicating excellent
model accuracy (Swets, 1988). The kappa coefficient is a
measure of agreement between predictions and observations
corrected for the probability of agreeing randomly (Heikki-
nen et al., 2006). A value of 1 indicates a perfect agree-
ment; values close to 0 indicate poor agreement. Landis and
Koch (1977) proposed the following classification of model
performances using the Kappa statistics: 0.81–1.00 = almost
perfect; 0.61–0.8 = substantial; 0.41–0.6 = moderate; 0.21–
0.4 = fair; 0.0–0.2 = fail. The ratio of AUC values for the
evaluation and calibration datasets was calculated as an in-
dicator of model stability (Heikkinen et al., 2007). The same
stability ratio was also calculated for the Kappa coefficient.
These ratios were used to compare different palsa model ver-
sions with each other.
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Table 1. Description of climatic envelope modelling techniques (based on Fronzek et al., 2006; Heikkinen et al., 2006; Elith et al., 2008;
Marmion et al., 2008).

Technique Description

Generalized linear modelling (GLM)

GLM is a parametric regression method that transforms a linear
combination of explanatory variables through a link function.
We used a logistic link function with polynomial terms and a
stepwise procedure to select the most significant variables based
on Akaike’s information criterion.

Generalized additive modelling (GAM)
GAM is a non-parametric extension of GLM that allows more flexible
smooth functions. We used a spline smooth function with a degree
of smoothing of 3.

Multivariate adaptive regression splines (MARS)
MARS is a non-parametric regression technique that partitions the data
to produce local models with either linear or non-linear relationships
between response and predictors.

Classification tree analysis (CTA)
CTA divides the data into regions spanned by the explanatory variables that
group together similar values of the response variable. Repeatedly dividing
the data builds a tree that is defined by thresholds for explanatory variables.

Mixture discriminant analysis (MDA)
MDA is a non-parametric classification method in which data are classified
as a mixture of normally distributed subclasses. MDA is an extension of
linear discriminant analysis.

Random forest (RF)
RF is an ensemble classifier that generates multiple trees forming a
“forest” by randomly varying training data and explanatory variables.

Generalized boosting methods (GBM)

GBM combine two techniques: regression trees and boosting (an adaptive,
multi-model combination method for improving predictive performance).
The additive regression model is fitted using a forward, stagewise
procedure with simple trees as individual terms. We allowed a maximum
number of 2000 trees.

Artificial neural network (ANN)
ANNs are non-linear models that combine information from explanatory
variables using artificial nodes or “neurons” linked together through
weighted connections over multiple layers.

Since the model application is an extrapolation to cli-
matic conditions outside the observations (see next sec-
tion), two criteria were defined to distinguish models
giving implausible results following extrapolation. A palsa
model was regarded as implausible if, for no changes in
precipitation:

1. increases (decreases) in suitability are projected for in-
creased (decreased) temperature (tested at−1◦C, 0◦C,
1◦C, 3◦C and 5◦C); and

2. the area projected as suitable does not totally disappear
for a warming of 6◦C relative to 1961–1990.

While essentially arbitrary, the first criterion can be justified
by the thawing effect of warming – higher air temperatures
will warm the soil and hence increase the risk of thawing
permafrost. A warming of 6◦C, as used in the second crite-
rion, would imply mean annual temperatures above 0◦C for
the whole study area, which is generally believed to be well
above the upper limit for palsas in Fennoscandia (Seppälä,
2011). These are similar conditions as those found in central
parts of Finland and Sweden for the period 1961–1990, and
therefore far outside the current distribution of permafrost.

2.2 Impact response surfaces

Simulations with the 600 palsa models were conducted for
each combination of temperature changes at 0.2◦C incre-
ments between−3◦C and 6.8◦C and precipitation changes
at 5 % increments between−30 % and 50 % relative to the
1961–1990 baseline period, which was also the baseline
period of one of the climate change datasets (see below).
Since the explanatory variables of the palsa models require
monthly mean temperature, we applied a seasonal pattern
taken from the average of an ensemble of AOGCM simu-
lations to scale the annual temperature change to monthly
changes (Fronzek et al., 2010). A seasonal pattern of precip-
itation changes was not needed as only annual precipitation
was used as the explanatory variable in the palsa models.

For each combination of temperature and precipitation
changes, we calculated the change in area suitable for palsa
mires relative to the modelled suitable area for climatic con-
ditions in the 1961–1990 baseline period. The results were
then plotted as impact response surfaces that display the
change in palsa area in relation to changes in precipitation
and temperature. The response in change of suitability area
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Table 2. Sources of uncertainty in projecting climate change effects on palsa mires.

Source of uncertainty Sampling method Sample size

Palsa impact model 3× 8× 25 = 600

Initial conditions Sampling of the 30 yr baseline periods: 1951–1980, 1961–1990 and 1971–2000 3
Model structure Ensemble of climatic envelope techniques 8
Model parameters Sampling of random sub-sets of the data for calibration 25

Climate projection 10000 + 12

GCM structure
Probabilistic projections of climate change

10 000GCM parameters
of climate change from a statistical emulator

Observed constraints
based on GCM ensembles and observations
for the SRES A1B emission scenario

GCM structure/initial Individual GCM simulations (E1
12

conditions stabilization and SRES A1B)

27
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Figure 3. Changes from 1961–1990 to 2080–2100 in annual mean temperature (°C) and

precipitation (%) over northern Lapland for the Grand Ensemble probabilistic projection

(Harris  et  al.,  2010)  and  an  ensemble  of  GCM simulations  for  the  E1 mitigation  and  SRES

A1B scenarios (Johns et al., 2011). Probabilities are depicted as the percentage of projections

enclosed within coloured zones.

Fig. 3. Changes from 1961-1990 to 2080–2099 in annual mean
temperature (◦C) and precipitation (%) over northern Lapland for
the Grand Ensemble probabilistic projection (Harris et al., 2010)
and an ensemble of GCM simulations for the E1 mitigation and
SRES A1B scenarios (Johns et al., 2011). Probabilities are depicted
as the percentage of projections enclosed within coloured zones.

was assumed to be constant outside the range of values for
which the sensitivity of the palsa models has been calculated.

2.3 Probabilistic climate projections and the risk of
palsa disappearance

The impact response surfaces were overlaid with projections
of 21st century climate change to estimate future impacts
on palsa suitability. Two datasets describing changes in an-
nual mean temperature and annual precipitation for north-
ern Fennoscandia relative to the period 1961–1990 were ob-
tained from the ENSEMBLES project (Fig. 3):

1. The “Grand Ensemble”, which describes joint proba-
bilities of annual mean temperature and precipitation

changes for nine 20 yr periods during the 21st century
(2000–2019, 2010–2029; 2080–2099) for the SRES
A1B forcing scenario (Harris et al., 2010). This dataset
combines information from perturbed physics ensem-
bles, multi-model ensembles and observational con-
straints, and quantifies uncertainties in the leading phys-
ical, chemical and biological feedbacks. The data are
available as joint frequency distributions with a sample
size of 10 000.

2. Changes in temperature and precipitation extracted
from 12 simulations of the E1 mitigation and the A1B
non-mitigation scenarios with seven Earth System Mod-
els and GCMs (Johns et al., 2011). Both emission
scenarios were quantified with the IMAGE 2.4 inte-
grated assessment model (van Vuuren et al., 2007). E1
is an aggressive mitigation scenario aimed at stabiliz-
ing global warming below 2◦C relative to pre-industrial
levels (Lowe et al., 2009). The A1B simulations with
the same climate models allow an evaluation of the im-
pact avoided by the E1 scenario. The quantification
of A1B used here slightly differs from the SRES A1B
marker scenario which was quantified with a different
integrated assessment model (Nakićenovíc et al., 2000).
Simulated changes were obtained for the periods 2030–
2049 and 2080-2099.

The change in area suitable for palsas was evaluated from the
impact response surface for the combination of temperature
and precipitation change defined by each climate projection.
For the Grand Ensemble we therefore obtained a distribution
of 10 000 impact estimates for each palsa model and time
period. The probabilities of exceeding two impact thresholds
were calculated from these distributions of impact estimates:
loss of the entire palsa area and loss of more than half of the
palsa area relative to the modelled baseline area.
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Table 3. Mean and standard deviation of the AUC evaluation statis-
tics of the 25-member ensemble of palsa models for three calibra-
tion time periods.

Model type 1951–1980 1961–1990 1971–2000

GLM 0.955± 0.008 0.956± 0.008 0.951± 0.009
GAM 0.952± 0.009 0.952± 0.009 0.947± 0.010
MARS 0.948± 0.010 0.951± 0.009 0.947± 0.010
CTA 0.920± 0.013 0.924± 0.015 0.908± 0.022
MDA 0.930± 0.011 0.934± 0.012 0.929± 0.013
RF 0.963± 0.006 0.966± 0.006 0.963± 0.007
GBM 0.949± 0.009 0.952± 0.009 0.946± 0.010
ANN 0.877± 0.060 0.857± 0.117 0.895± 0.032

3 Results

3.1 Model performance under baseline conditions

Descriptive statistics for the 600 climatic envelope models
are presented in Table 3. Nearly all models had AUC val-
ues greater than 0.9 for the evaluation data sets, indicating
excellent model agreement, the exceptions being versions of
the ANN and CTA models. 36 of the 75 ANN models had
AUC values below 0.9, with two models showing values be-
low or equal to 0.5, indicating model performance no better
than chance. These two models also had Kappa coefficients
of 0, indicating model failure. Eight of the 75 CTA mod-
els had AUC values below 0.9. ANN models had the largest
variability in model performance.

RF models consistently had the highest AUC values ahead
of GLM and GAM. The ratio of AUC values between eval-
uation and calibration data sets was highest for GLM and
GAM (average of 0.997 over all 75 ensemble members) and
lowest for CTA (0.955) and RF (0.964). Similar results were
achieved for the ratio of Kappa coefficients between evalu-
ation and calibration datasets, which ranged between 0.978
for the ensemble averages of GLM and GAM to 0.774 for
CTA.

GAM was the only technique for which all models ful-
filled the two plausibility criteria for extrapolating to cli-
matic conditions outside the range of calibration data; GLM
fulfilled these criteria in all but one of the 75 models (Ta-
ble 4). Decreases in area suitable for palsas with warming
were projected for nearly all CTA, RF and GBM models and
the majority of ANN models, whereas all MDA and nearly
all MARS models failed this criterion. The total disappear-
ance of area suitable for palsas for a warming of 6◦C was
projected by only a few MARS, CTA, MDA and RF models
and by none of the GBM models. Altogether, 185 of the 600
models fulfilled both plausibility criteria.

3.2 Model behaviour under climate change

Impact response surfaces were constructed to examine the
behaviour of each model under climate change. The full set
(25 versions of all eight model techniques for three calibra-
tion periods) is presented in Appendix A. Here we use se-
lected examples to illustrate notable characteristics of model
response.

Impact response surfaces for GAM and ANN models ful-
filling the plausibility criteria are shown in Fig. 4a, b. The en-
semble average of GAM calibrated for the 1961–1990 base-
line period projects the total disappearance of area suitable
for palsas with a warming of 4.5◦C, and the loss of half of
the area under a warming of 1.5◦C assuming no change in
precipitation (Fig. 4a). Increases in precipitation enhance the
decline of suitability; hence the warming required for total
or 50 % disappearance is smaller than that estimated without
precipitation changes. The parameter uncertainty of GAM
models gave a relatively narrow range of ca. 0.5◦C for the
curves describing the palsa loss with ranges becoming wider
for precipitation changes larger than±10 %.

ANN models gave a much wider range of projections
than GAM, even excluding those models not fulfilling the
plausibility criteria (Fig. 4b). The 11-member ensemble av-
erage of ANN models projected the loss of half the palsa area
for 1◦C warming and the total loss of palsa area for 4.9◦C
warming. Some other models resulted in more complex im-
pact response surfaces, sometimes with non-monotonic rela-
tionships of palsa change with warming. One such example
was a CTA ensemble member for which a warming of up
to 2◦C resulted in decreases in area suitable for palsas, but
additional warming produced a reversal in response towards
increased suitability (Fig. 4c). GLM produced impact re-
sponse surfaces with small variations similar to GAM, while
GBM, RF and CTA also resulted in relatively small ranges
(not shown), although most of these models did not fulfil the
criterion of projecting total palsa loss for a large amount of
warming (cf. Table 4). The response surfaces of the MARS
and MDA models showed a very large variation, and most of
these in any case failed the plausibility criteria.

GAM impact response surfaces for models calibrated with
1951–1980 (1971–2000) climate were shifted towards pro-
jecting palsa area loss with less (more) warming and precipi-
tation increases relative to the period 1961–1990, and largely
retained the shape of the 1961–1990 impact response sur-
faces (Fig. 4a). This largely reflects the observed trends in
temperature and precipitation between the three calibration
periods (cf. Fig. 2).

3.3 Estimating the risk of future loss of palsa suitability

The joint distribution of temperature and precipitation
changes projected in the Grand Ensemble remained outside
the area of total palsa loss for the GAM ensemble aver-
age during the first future period, 2000–2019, but gradually
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Table 4. Percentage of palsa models simulating decreases in palsa suitability with increased temperature and the total disappearance with
6◦C warming relative to 1961–1990 for three calibration time periods.

Complete loss of palsa suitability

Model type
Decreased palsa suitability with warming with 6◦C warming Both criteria satisfied

1951–1980 1961–1990 1971–20001951–1980 1961–1990 1971–2000 All periods

GLM 100 100 96 100 100 100 99
GAM 100 100 100 100 100 100 100
MARS 4 0 8 4 0 0 1
CTA 96 88 72 4 0 4 3
MDA 0 0 0 8 4 0 0
RF 88 44 44 12 0 4 5
GBM 100 96 100 0 0 0 0
ANN 56 64 72 44 48 36 39

migrated across the threshold of total palsa loss for periods
further in the future (Fig. 5). By the end of the 21st century,
only a small fraction of the distribution remained below the
impact threshold for 50 % loss of suitable area (Fig. 5, bot-
tom row right).

The distribution of changes for the E1 mitigation scenario
ensemble differed little from that of the non-mitigation A1B
ensemble for the period 2030–2049, with most simulations
resulting in 75 % to 100 % of the palsa area becoming un-
suitable (Fig. 5, centre row left). In contrast, by 2080–2099,
the A1B points have all crossed the impact threshold of total
palsa loss, whereas more than half of the E1 ensemble mem-
bers projected that some areas would remain suitable for pal-
sas (Fig. 5, bottom row right). Three E1 simulations even
showed slightly cooler conditions at the end of the 21st cen-
tury compared to the 2030–2049 period, implying reversion
of some previously unsuitable palsa areas.

3.4 Uncertainties in risk estimates

The estimated risk that all of the baseline palsa area becomes
unsuitable by the end of the 21st century varies widely when
a full ensemble of models, including those not fulfilling the
plausibility criteria, is applied (white boxes and whiskers in
Fig. 6). For one model class, MARS, all models calibrated
with 1961–1990 climate predicted a 0 % probability for this
impact threshold; this was also the case for all but 3 of the 25
MDA models. The remaining six model types showed me-
dian estimates of between 41 and 78 %. The total range was
largest for ANN, one version of which also gave the highest
risk of 84 %.

When only plausible models were considered, estimates
of the risk of crossing the impact threshold for total area loss
showed a much smaller range for ANN from 51 to 84 % (11
models) while the ranges for GAM and GLM (all 25 mod-
els plausible) are unchanged (grey boxes and whiskers in
Fig. 6). The medians of the three modelling techniques re-
sulting in plausible models for the calibration period 1961–
1990, ANN, GAM and GLM, spanned a similar range of
uncertainty as that described by the parameter uncertainty

across the GLM and ANN models, whereas the parameter
uncertainty across the GAM models was much narrower.

The GAM model results were used to compare parameter
uncertainties with initial condition uncertainties in estimates
of risk (Appendix B describes how these sources of uncer-
tainty were combined). The risk of total loss of suitable
area for palsas increased throughout the 21st century from
0 % (0 % to 1 %; 90 % confidence intervals) in 2000–2019 to
78 % (68 % to 84 %) in 2080–2099 (Fig. 7). The risk of 50 %
loss increased from 72 % (44 % to 92 %) in 2000–2019 to
100 % (99 % to 100 %) by 2080–2099, with all periods after
2020–2039 having median estimates above 95 %. The range
of 25-model-averages for each of the three calibration peri-
ods was wider than the range of risk estimates spanned by
parameter uncertainty for a single calibration period (black
points vs. grey boxplots in Fig. 7). Initial conditions, there-
fore, had a greater contribution to the combined uncertainty
of GAM models.

4 Discussion

4.1 Comparison of climatic envelope modelling
techniques

The majority of the 600 palsa models using eight climatic
envelope techniques showed excellent evaluation statistics
based on the AUC accuracy diagnostics of Swets (1988), al-
though a split-sampling method was used to divide the data
into calibration and evaluation sets, which does not provide
a truly independent evaluation as they are drawn from the
same sample (Aráujo et al., 2005). Exceptions were about
half of the ANN and a tenth of the CTA models, which had
less than excellent evaluation statistics. RF ranked high-
est in evaluation statistics, followed by GLM and GAM.
These latter two models also performed best in two indicators
of model stability defined as the ratios of evaluation statis-
tics between evaluation and calibration data sets, while CTA
ranked lowest. Some previous studies have reported com-
parable results when comparing the predictive performance
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Fig. 4. Impact response surfaces showing the combinations of
changes in annual mean temperature and precipitation for which
half (green lines) and all (black lines) of the simulated palsa area be-
comes unsuitable relative to the simulated distribution for the 1961–
1990 baseline period. The thicker lines show values for ensemble
averages of:(a) GAM models calibrated for three different base-
line periods (25 ensemble members each), with observed tempera-
ture changes relative to 1961–1990 also shown (crosses);(b) ANN
models calibrated for the 1961–1990 baseline period (11 ensemble
members);(c) a single CTA ensemble member. The thinner lines
show the range for the ensembles.

of envelope modelling techniques (Thuiller, 2003; Marmion
et al., 2009; Luoto et al., 2010), although other studies re-
sulted in a different ranking of techniques (e.g. Jeschke and
Strayer, 2008) and general conclusions about a specific tech-
nique outperforming others are difficult to make. Jeschke and
Strayer (2008) reviewed 12 studies reporting climatic enve-
lope models of species ranges that also used a split-sampling
method for evaluation; they reported an average value of
0.85± 0.029 (SE) for AUC. The AUC statistics reported here
(Table 3) out-perform many of these other studies, indicat-
ing the high capability of palsa models to reproduce the ob-
served spatial distribution. One possible explanation is that
species distributions can be strongly affected by biotic and
human factors, such as competition and land use, in addi-
tion to abiotic determinants such as climate. Another reason
is that the distribution of northern Fennoscandian palsas is
delimited solely by an upper limit (i.e. their southern range
margin where climatic conditions become too warm). There
is no lower limit, since the continuous permafrost that would
define this does not exist in the study area.

Despite the generally good evaluation results, there was
a large variation when these models were applied to mod-
ified climatic conditions, producing qualitatively different
model outcomes. This demonstrates that the use of evalu-
ation statistics calculated with split-sample data remains dif-
ficult and does not necessarily indicate if a model can also
be used for extrapolation in climate change studies. Some
models resulted in rather complex impact response surfaces
that showed a non-monotonic relationship with warming like
that shown for one of the CTA ensemble members in Fig. 4c.
The introduction of plausibility criteria, based on knowledge
of the processes governing palsa formation and maintenance
(albeit subjectively interpreted), provides one means of dis-
carding models that appear to behave unrealistically. Over
fitting can be seen as one possible explanation why some
models did not perform as well as others in the stability and
plausibility criteria (cf. Aráujo et al., 2005).

It is interesting to speculate on the potential for deploying
plausibility criteria in other applications of climatic envelope
models. For example, obvious thresholds in the relationship
between distributions of plant, insect or bird species and cli-
matic variables may not exist, or may depend on species traits
that are poorly understood. The plausibility criteria defined
in this study are therefore specific to the palsa distribution
in northern Fennoscandia. Nevertheless, even if no clear
thresholds are known, impact response surfaces could help
to identify species distribution models that show an unrealis-
tically complex response.

4.2 Uncertainty and probabilistic impacts on palsa
mires

The ensemble of impact response surfaces has been overlaid
with probabilistic projections of climate change to estimate
the risk of more than half and of all the baseline area of
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suitability becoming unsuitable for palsas. The Grand En-
semble probabilistic projection of climate change was used
for this, which is one of the most rigorous attempts at quan-
tifying regional climate change uncertainties over Europe re-
ported, to date. This data set was developed for a single
emission scenario, the moderate SRES A1B scenario, and
therefore does not attempt to quantify the effect of higher or
lower emissions. To address the lower end of emissions pro-
jections, we also presented an analysis of the impact of the
E1 mitigation scenario on the climatic suitability of palsas.

Three potential sources of impact model uncertainty have
been sampled, initial conditions expressed by comparing dif-
ferent baseline periods, model structure by using different
modelling techniques, and model parameter uncertainty by
randomly selecting different sub-sets of the data for calibra-
tion (cf. Table 2). The first two sources have fairly small
sample sizes that are best suited to permit a comparison of

periods or techniques, whereas the third source of uncer-
tainty, which was sampled 25 times, lends itself more readily
to a probabilistic interpretation if the sample members can be
thought of as being representative of their probability distri-
bution.

The observed data of the spatial distribution of palsas were
constructed from several sources and it is difficult to deter-
mine exactly the period in time that these data represent.
While the choice of the baseline period should ideally be
matched with the time range of samples of the distribu-
tion, it can potentially have an effect on model performance
(Roubicek et al., 2010). The three baseline periods investi-
gated in this study represent a range of long-term climatic
conditions that differ little in their spatial pattern. Eval-
uation statistics of models calibrated for different baseline
periods therefore also showed little difference. However,
the warmer and wetter baseline periods shifted the impact
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Fig. 6. Parameter uncertainty in estimating the probability that all
palsa area becomes unsuitable by 2080–2099 for eight model types
using all ensemble members calibrated for the period 1961–1990
(n = 25; white boxplots) and using only the “plausible” ensemble
members (grey boxplots; see text for definition). Probabilities were
estimated by evaluating impact response surfaces for the Grand En-
semble (n = 10 000) with SRES A1B forcing. Boxplots show lower
quartile, median and upper quartile; triangle peaks show the 5th and
95th percentiles (defining 90 % confidence intervals); whiskers de-
limit the smallest and largest values.

response surfaces (cf. Fig. 5a) and hence the choice of the
baseline period had a marked effect on the resulting risk es-
timates (cf. Fig. 7).

The comparison of modelling techniques, discussed
above, showed that not all techniques provided reliable long-
term projections of palsa suitability for future climatic con-
ditions. Thus, we used only a single technique, GAM, for
assessing changes in suitable palsa area in more detail. The
parameters of the GAM models were all calibrated for the
same set of explanatory variables and using the same smooth-
ing function, although in principle other settings in the cali-
bration would have been possible (Thuiller, 2003). A larger
set of explanatory variables to study the spatial distribution
of palsas has been tested by Luoto et al. (2004a), whose most
significant variables were used here.

A general assumption in climatic envelope modelling is
that species/ecosystems distributions are at equilibrium with
current climate. Recent studies have questioned how dis-
tant these current distributions are from equilibrium, and
have further queried whether possible deviations from equi-
librium would produce important biases in future projections
(Heikkinen et al., 2006). Luoto and Seppälä (2003) showed
that the present palsa distribution represents only a small
remnant of its earlier, much wider distribution. Recent palsa
degradation has generally occurred in the marginal parts of
the palsa distribution area (Luoto et al., 2004b). These dy-
namics may cause a possible time lag of climate change and
permafrost thaw which is not taken into account by static en-
velope models (Fronzek et al., 2006).
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Apart from uncertainties in the statistical modelling tech-
niques, there are also other sources of impact model uncer-
tainty that merit consideration. These include:

1. the effect of non-climatic factors, such as the distribu-
tion of a sufficiently thick peat layer that is needed to
form a palsa (Sepp̈alä, 1988) – this would affect possi-
ble expansions of palsa areas for cooling scenarios to be
restricted to peat areas, but does not affect estimates of
contraction directly. Indirectly, the lack of information
on peat thickness might also decrease the explanatory
power of models;

2. the impact response surface approach, which introduces
additional error as it requires an assumption about the
seasonal cycle of temperature changes – this mainly af-
fects the tails of the distribution causing an underesti-
mation of risk of up to ca. 5 % (Fronzek et al., 2010;
their Fig. 9).

The analysis showed a high risk of reduction in area suitable
for palsa mires during the 21st century. The estimated risk for
overlapping 20 yr periods during the 21st century is similar
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to earlier estimates obtained with a re-sampled ensemble of
GCMs for overlapping 30 yr periods (Fronzek et al., 2010).
Using a single GAM model, the earlier estimate of total palsa
loss for the A1B scenario by the end of the 21st century is at
the high end of the impact range presented here, whereas es-
timates for the A2 (high emissions) and B1 (low emissions)
scenarios were outside the range. The risk of total palsa loss
by 2080–2099 was reduced, but not totally avoided, for the
E1 mitigation scenario compared to the A1B non-mitigation
scenario, indicating that mitigation policies could preserve
some areas of suitability for palsas. However, even under the
E1 scenario, the current distribution of palsa mires is pro-
jected to decrease markedly by the end of the 21st century.

5 Conclusions

We presented an analysis of the risk of palsa disappearance
from Northern Fennoscandia during the 21st century that
used probabilistic projections of climate change and com-
pared three different sources of impact model uncertainty:
(1) initial condition, (2) structural and (3) parameter uncer-
tainty. A large ensemble of 600 model versions describing
the spatial distribution of a single habitat type (palsa mires)
was calibrated and analysed – this ensemble is much larger
than those used to date in studies of habitat or species distri-
butions.

Impact model parameter uncertainty was quantified with
ensembles of palsa models that allowed a probabilistic inter-
pretation. The comparison of eight state-of-the-art climatic
envelope modelling techniques demonstrated that the use of
evaluation statistics based on observed distributions, such as
AUC or kappa, does not necessarily indicate that a model
can also be used for extrapolation in climate change studies.
This study has introduced two criteria for judging the plau-
sibility of model extrapolations based on the sensitivity of
palsa models to changes in climate.

Structural differences in impact models appeared to be a
major source of uncertainty. Some modelling techniques and
altogether 69 % of the model versions were judged to be un-
reliable and gave implausible results. GAM proved to be
the most reliable technique for model extrapolation, based
on the two criteria, and was therefore used to estimate im-
pacts for the 21st century. Parameter uncertainty for GAM
was smaller than the uncertainty due to different definitions
of the baseline period.

We demonstrated how impact response surfaces can be
used to depict the sensitivity of impacts to climate change
and how these can help to evaluate model extrapolations be-
cause they show the model behaviour over a large range of
climatic conditions. Combined with a definition of crite-
ria for evaluating model plausibility, it is recommended that
such procedures be followed prior to the application of cli-
matic envelope models in climate change studies that involve
extrapolation.

Impact response surfaces can also be used, in combina-
tion with probabilistic projections of climate change, to es-
timate risks of future impacts. The risk of reduced North-
ern Fennoscandian area suitable for palsas to less than half
the baseline area was quantified asvery likely(>90 % prob-
ability; 90 % confidence) for periods from 2030–2049 on-
wards, with total loss of suitability judged aslikely (>66 %
probability; 90 % confidence) by 2080–2099 under the A1B
emission scenario and using an ensemble of 75 GAM palsa
models (confidence based on 5 to 95 percentiles of combined
box plots in Fig. 7). The risk of total loss of palsa area
from Northern Fennoscandia was reduced for a mitigation
scenario under which global warming was constrained to be-
low 2◦C relative to pre-industrial climate, although it, too,
implied a considerable reduction in area suitable for palsas.

Appendix A

Impact response surfaces of the full ensemble of palsa
climatic envelope models

Figures A1–A3 present impact response surfaces of all 600
palsa climatic envelope models.

Appendix B

Combination of parameter and initial conditions
uncertainties

For practical reasons, the sampling of uncertainty due to ini-
tial conditions was limited to three baseline periods, 1951–
1980, 1961–1990 and 1971–2000, although in principle one
could have sampled other long-term periods. The periods
1951–1980 and 1971–2000 approximately (and coinciden-
tally) demarcate the range of running 30 yr averages for the
second half of the 20th century, with intermediate climatic
conditions represented by 1961–1990 (Fig. 2). As a conse-
quence, combining the parameter uncertainties of palsa mod-
els calibrated for each of the three baseline periods would
result in an overestimation of the spread of the distribution
(i.e. two extremes and an intermediate distribution). To ac-
count for this, we assumed a linear progression between the
palsa loss risks for 1951–1980 and 1971–2000. Next, we
re-sampled the three estimated distributions of palsa loss
risk by shifting them with modified means at equal incre-
ments between the means of the GAM models calibrated
with each baseline climate (to simulate overlapping 30 yr
mean climates with an annual time step). This resulted in a
combination of 21 individual distributions, comprising three
sets of seven iterations of the 1951–1980, 1961–1990 and
1971–2000 distributions, respectively (Fig. A4, short orange
boxplots). The combination of these 21 distributions (la-
belled “Adjusted mean” in Fig. A4) spans the same range
as the three individual parameter uncertainty distributions
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Fig. A1. Impact response surfaces showing the combinations of changes in annual mean temperature and precipitation for which half (green
lines) and all (black lines) of the simulated palsa area becomes unsuitable relative to the simulated distribution for the 1961–1990 baseline
period for eight climatic envelope modelling techniques. The thicker lines show values for ensemble averages of all plausible models (see
text) calibrated for the 1951–1980 baseline period, the thinner lines show the range for the ensembles. Impact response surfaces of individual
models, including those that failed the plausibility criteria, are shown with gray lines. The name of the technique and the number of plausible
models is given as a title for each sub-graph.

Fig. A2. As in Fig. A1, but for models calibrated for the 1961–1990 baseline period.
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Fig. A3. As in Fig. A1, but for models calibrated for the 1971–2000 baseline period.
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Figure A4. Confidence intervals on probabilities of all palsa areas becoming unsuitable by

2080-2100 estimated with GAM ensembles calibrated for different baseline periods (1951-80,

1961-90, 1971-2000; gray boxplots), two approaches for estimating the combined parameter

and initial conditions uncertainty by a simple sum of the individual distributions (darkgray

boxplots) and by summing re-sampled distributions with adjusted mean (orange boxplots).

Probabilities were estimated by evaluating the impact response surface for the Grand

Ensemble (n=10000) with SRES A1B forcing. Boxplots show lower quartile, median and

upper quartile; triangle peaks show the 5th and 95th percentiles (defining 90% confidence

intervals); whiskers delimit the smallest and largest values.

Fig. A4. Confidence intervals on probabilities of all palsa areas
becoming unsuitable by 2080–2099 estimated with GAM ensem-
bles calibrated for different baseline periods (1951–1980, 1961–
1990, 1971–2000; gray boxplots), two approaches for estimating
the combined parameter and initial conditions uncertainty by a sim-
ple sum of the individual distributions (darkgray boxplots) and by
summing re-sampled distributions with adjusted mean (orange box-
plots). Probabilities were estimated by evaluating the impact re-
sponse surface for the Grand Ensemble (n = 10 000) with SRES
A1B forcing. Boxplots show lower quartile, median and upper
quartile; triangle peaks show the 5th and 95th percentiles (defin-
ing 90 % confidence intervals); whiskers delimit the smallest and
largest values.

(GAM5180, GAM6190 and GAM7100 in Fig. A4), but has
thinner tails then a simple combination of these three distri-
butions (labelled “Simple” in Fig. A4).
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Sepp̈alä, M.: Palsas and related forms, in: Advances in Periglacial
Geomorphology, edited by: Clark, M. J. and John Wiley and
Sons, Chichester, 247–278, 1988.

Nat. Hazards Earth Syst. Sci., 11, 2981–2995, 2011 www.nat-hazards-earth-syst-sci.net/11/2981/2011/

http://dx.doi.org/10.3354/cr00866
http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x
http://dx.doi.org/10.1007/s10584-009-9679-y
http://dx.doi.org/10.5194/nhess-10-2009-2010
http://dx.doi.org/10.1196/annals.1439.002
http://dx.doi.org/10.1007/s00382-011-1005-5
http://dx.doi.org/10.1007/s00382-011-1005-5
http://dx.doi.org/10.1029/2009EO210001
http://dx.doi.org/10.1002/ppp.441
http://dx.doi.org/10.1016/j.cageo.2009.07.008
http://dx.doi.org/10.1002/esp.1695
http://dx.doi.org/10.1098/rsta.2007.2077
http://dx.doi.org/10.1038/nclimatE1152


S. Fronzek et al.: Uncertainty in modelling the impact of climate change 2995
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