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Abstract. In the framework of the European SCenar-
ios for tsunami Hazard-induced Emergencies MAnagement
(SCHEMA) project (www.schemaproject.org), we empiri-
cally developed new tsunami damage functions to be used for
quantifying the potential tsunami damage to buildings along
European-Mediterranean coasts.

Since no sufficient post-tsunami observations exist in the
Mediterranean areas, we based our work on data collected
by several authors in Banda Aceh (Indonesia) after the 2004
Indian Ocean tsunami. Obviously, special attention has
been paid in focusing on Indonesian buildings which present
similarities (in structure, construction material, number of
storeys) with the building typologies typical of the European-
Mediterranean areas.

An important part of the work consisted in analyzing,
merging, and interpolating the post-disaster observations
published by three independent teams in order to obtain the
spatial distribution of flow depths necessary to link the flow-
depth hazard parameter to the damage level observed on
buildings. Then we developed fragility curves (showing the
cumulative probability to have, for each flow depth, a dam-
age level equal-to or greater-than a given threshold) and dam-
age curves (giving the expected damage level) for different
classes of buildings. It appears that damage curves based
on the weighted mean damage level and the maximum flow
depth are the most appropriate for producing, under GIS, ex-
pected damage maps for different tsunami scenarios.

1 Introduction

Tsunami vulnerability assessment is a developing field. Nu-
merous works have been published on the vulnerability of
buildings, especially after the 2004 Indian Ocean tsunami.
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There are several approaches to assess tsunami risk at the
regional scale and to evaluate damage suffered by buildings.
One of the very first approaches for tsunami risk assess-
ment was developed by Papadopoulos and Dermentzopou-
los (1998) for application in northern Crete (Greece): this
study was the base for other qualitative and semi-quantitative
approaches. The one proposed by Dall’Osso et al. (2006) and
Papathoma et al. (2003) is based on the computation of a vul-
nerability index. In this approach, vulnerability is completely
detached from the notion of hazard, thus independent from
the flow height values or any other physical value describing
the impact of the tsunami. The indexes are computed starting
from very different factors (structural features, environment,
building use) and given subjective weights to each one of
them. Looking at the resulting vulnerability maps, it is not
possible to discriminate and quantify the influence of each
factor. In the SCHEMA FP6 EC co-funded project (SCenar-
ios for tsunami Hazard-induced Emergencies MAnagement),
it was thus decided not to use an index based approach.

Other existing approaches for the estimation of building
damage consist in deriving damage functions starting from
field observations (Ruangrassamee et al., 2006; Reese et al.,
2007; Peiris, 2006) or from field observation combined with
photo-interpretation (e.g. Koshimura, 2007; Koshimura et
al., 2009a). In general, damage functions found in the lit-
erature are developed for only a single typology of buildings.
For example:

– Leone et al. (2006, 2010) presented damage functions
for buildings classified as “B” (brick not-reinforced in-
dividual buildings), based on field survey and high res-
olution imagery for Banda Aceh (Indonesia). They also
proposed a qualitative scale for the differentiation of the
damage level supported by the buildings (from “D0: no
damage” to “D5: collapse”).

– Peiris (2006) developed vulnerability functions for un-
reinforced masonry residential properties using the
data available for the coastal areas of Sri Lanka. A
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qualitative damage scale is also proposed based on the
structural and geotechnical failure. Their “vulnerabil-
ity function” is a Lognormal cumulative distribution of
tsunami submerged height as the demand parameter.

– Finally, Koshimura et al. (2009a) developed fragility
functions based on a numerical model of the tsunami
and a visual inspection of buildings using high reso-
lution imagery in Banda Aceh, Indonesia. They sub-
divided a stock of 40 000 units into two groups, “sur-
vived” and “destroyed”. However, no damage scale is
given to discriminate the damage level incurred by the
analysed buildings. Moreover, no differentiation has
been performed by the authors according to the build-
ing typologies.

Most of the existing works on damage functions rely on
flow depth, which is the only parameter that can be di-
rectly measured in the field after a disaster. However, sev-
eral authors emphasize that besides damages due to hydro-
static forces and hydrodynamic pressures which depend on
the flow depth parameter, there are other factors which gen-
erate damages to buildings like scour, buoyancy force, drag
force, and impact due to debris flow (e.g. Saatcioglu et al.,
2006; Reese et al., 2007).

The ICG/NEAMTWS (Intergovernmental Coordination
Group for the Tsunami Early Warning and Mitigation System
in the North Eastern Atlantic, the Mediterranean and Con-
nected Seas) of the IOC/UNESCO, since its establishment
in 2005, has highlighted the necessity of standardizing the
methodology needed for the pre-determination of tsunami
damage zones by combining experience from past cases, nu-
merical modelling, and flow results with socio-economic pa-
rameters, and to identify strategic stakes through ground-
based, airborne-based, or space-based techniques.

In this framework, the co-funded European SCHEMA
project (FP6 programme) aimed at contributing to this field
by supporting the development of a general methodology, us-
ing Earth Observation data, for the production of maps of ex-
pected damages associated with different tsunami scenarios.

In this paper, we present the work we carried out within the
SCHEMA project in order to develop and apply new damage
functions for assessing tsunami damages to buildings.

2 Methodology

We started from the database of post-disaster observations
collected by Leone et al. (2006, 2010) in Banda Aceh (In-
donesia) after the December 2004 tsunami. Four main steps
were followed in order to obtain new damage functions and
to apply them to specific building typologies in European-
Mediterranean coasts:

– Buildings database

In the first stage of this work, it was necessary to extend
the initial observed-buildings database using high resolution
satellite and aerial images taken before the event.

– Tsunami hydrodynamic loads

The tsunami hydrodynamic loads causing damage to build-
ings are a function of the water flow depth. In this study, the
damage is thus linked with the flow depth, which represents
the tsunami hazard parameter. Contrary to other authors (e.g.
Koshimura et al., 2009a), we did not perform a numerical
simulation of the tsunami. We only based our study on ob-
served flow depths after the 2004 tsunami. The water level
observations collected by several authors have been analysed
and merged into a unique database. Then an interpolation
was computed in order to obtain the spatial distribution of
flow depths in Banda Aceh.

– Damage functions

A statistical and probabilistic analysis was performed in or-
der to derive new damage functions for different building ty-
pologies. Two kinds of functions were developed:fragility
curves, which express the conditional probability of reaching
or exceeding a particular damage state “D” for each value of
the flow depthh, anddamage curves, which link the mean
damage level to the value of flow depth. Our supposition here
is that the flow depth is the demand parameter that governs
the hydrodynamic forces that cause damage to buildings.

– Damage assessment and mapping

A photo-interpretation process was done in order to assign
a vulnerability class to the building inventory in the five
test sites of the SCHEMA project (Setubal, Portugal; Man-
delieu, France; Catania, Italy; Balchik, Bulgaria; Rabat, Mo-
rocco). The developed damage functions were finally inte-
grated in a geographic information system (GIS) in order to
be used for the production of maps of expected damages in
the European-Mediterranean coasts.

3 Buildings data base

3.1 Initial Database

Leone et al. (2006, 2010) built up a building inventory in
Banda Aceh area in order to classify constructions according
to both the type of structure and to the level of damage due
to the tsunami forces. This database was built up based on
a field survey and a visual interpretation of high resolution
imageries of the affected area: a Quick Bird satellite view
taken on 2004-06-23 (60-cm resolution), aerial photographs
from January and June 2005 (30-cm resolution), a Quick
Bird satellite imagery from 2004-12-28 (60-cm resolution),
and a Ikonos satellite imagery from 2005-03-01 (1-m reso-
lution). The field survey was carried out from 16 to 25 Jan-
uary 2006, mainly focusing on partially damaged buildings.
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Due to the magnitude and scale of the disaster in Banda Aceh
area, damages were still well visible one year after the dis-
aster despite some rehabilitation to buildings and some new
constructions. In addition, as mentioned before, the field sur-
vey was supported by high resolution imageries dating from
before and two days after the disaster, when clean up process
had not yet started. As also highlighted by Koshimura et
al. (2009a), very high resolution imagery expands the possi-
bilities of detecting the extent of tsunami affected areas and
damage to structures, helping in completing the databases
gathered during post-tsunami surveys, which are hardly satis-
factory because of limitations in time as well as in economic
and human resources.

Buildings of Banda Aceh have been classified by Leone
et al. (2010) into five categories according to their structure
type: from class “A” (the most vulnerable, made of wood,
single storey) to class “E” (the most resistant, well designed,
made of reinforced concrete with columns and infill walls).
The construction material, number of storeys, geometry, and
dimension are the elements on which this classification is
based. In general, each different class is also characterized by
a different roof type, which helps in recognizing the building
typology in high resolution space imagery.

The authors also suggested a damage scale for describ-
ing the damage state level suffered by buildings due to
tsunami forces: “D0 = No damage”, “D1 = Light dam-
age”, “D2 = Moderate damage”, “D3 = Important damage”,
“D4 = Heavy damage”, and “D5 = Collapse”. They finally
derived damage functions for the buildings of class “B”
(brick not-reinforced individual building), where the mean
damage level is linked to the tsunami flow depth. Only
the buildings within a buffer zone of 100 m around a water
mark measurement were chosen to build this damage func-
tion (161 units).

3.2 Expansion of the database

In order to develop new damage functions for other building
typologies, it was necessary to extend the available database.
In fact, 4095 buildings of the initial database could not be
classified according to their vulnerability during the field sur-
vey, due to the fact that all of these buildings collapsed (dam-
age level “D5”, total destruction). It was crucial to try to as-
sign a vulnerability class also to these buildings because, if
they had not been taken into account, the damage functions
would have been mistaken and the expected damage level
strongly underestimated.

In order to test the accuracy when extracting the build-
ing’s typology by earth observation, an exercise of photo-
interpretation was performed on Quick Bird images (spatial
resolution up to 60 cm) dating from June 2004. Three dif-
ferent observers with different backgrounds took part in this
exercise. We noticed that some errors could be introduced
in the process of assigning a typology class (Guillande et al.,
2009). Observers stated that in some cases, it was difficult

to differentiate between typology classes “B” and “C” or
classes “A” and “B”. A general remark was that a spatial res-
olution of 1 m is not enough to extract with accuracy some
detailed features such as roof covering material, roof slope,
boundary properties, or number of storeys, which can help
in recognizing the type of building. It is necessary to use
very high resolution imagery with a spatial resolution of 40–
60 cm or better. Moreover, the background and knowledge
of the observer is also important when retrieving information
by earth observation. A qualified operator who has seen the
characteristics of the different types of buildings on the field
can be more objective and more efficient in the process of
photo-interpretation.

Despite the risk of introducing some errors, a typology
was assigned to buildings which were not identified during
the field survey of January 2006. Caution was applied during
this process, so in cases of doubt, no class was attributed to
the building. With this process a total of 2576 buildings could
be identified by photo-interpretation. Figure 1 shows the ex-
tended data base produced and the distribution of buildings
according to their type: “A = light constructions on wood or
timber without any design ”, “B = Brick not reinforced ma-
sonry ”, “C = Brick with reinforced column and masonry fill-
ing ”, “D = collective buildings, concrete not reinforced ”,
“E = well designed buildings, made of reinforced concrete
with columns and infill walls ”, and “M = religious building
– Mosque ”.

4 Tsunami hydrodynamic loads and building damage

4.1 Flow-depth hazard parameter

Post-disaster measurements of water marks in Banda Aceh
were made available by three teams: the French and Indone-
sian team of the TSUNARISQUE program (Lavigne et al.,
2006, 2009), the International Tsunami Survey Team (Bor-
rero, 2005), and a Japanese team (Tsuji et al., 2005). These
field surveys were carried out in January 2005.

Since the three teams did not refer to the same reference
level and did not apply the same tide corrections, it was nec-
essary to implement some modifications to make the datasets
comparable. Before going ahead, it is important to highlight
that the expression “flow depth” represents the height of the
tsunami wave measured from the ground level up to the water
mark observed in field, whereas “water elevation” is defined
as the height of the tsunami wave measured from the sea level
up to the water mark observed in field.

Frequently, teams have measured the “water elevation”
from the sea level on the day of the measure. A correc-
tion for the tide was applied to bring the measure to sea
level at the time of the earthquake or to mean sea level.
Often, the measurements are also converted into values of
flow depth. The Borrero team has directly measured the
flow depth. Moreover, the terminology used by each team
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Fig. 1. Map showing the extended database of buildings in Banda Aceh, Indonesia, classified according to their vulnerability (“A” being the
most vulnerable, made of wood, single storey, and “E” the most resistant, well designed, made of reinforced concrete with columns and infill
walls. “M” stand for Mosque). The total number of buildings per type is given into brackets.

describing the measured parameter (“maximum water level”,
“tsunami heights”, “flow depth”) can be misleading.

Once all the measures were brought to the same reference
level and converted into “flow depths” (Gardi et al., 2011),
they were plotted on a map of the study area for direct com-
parison (Fig. 2). We noticed important differences between
the measurements made by the three teams: values from Lav-
igne et al. (2006, 2009) are very high, while data by Bor-
rero (2005) and Tsuji et al. (2005) seem to be much lower
(see Fig. 2). As emphasized by Gardi et al. (2011), these dis-
crepancies could mainly be due to the fact that the TSUNAR-
ISQUE team measured the highest water marks visible, while
the Tsuji team at numerous points observed and measured
several water marks. Different water marks on the same
building can correspond to the arrival of several waves, or
measures relative to the receding of the sea or differences
between the impact of the wave at the front and at the rear
of the same building. In these cases, we have retained only

the greater value given by the Tsuji team for each of their
measurement points.

Once the database of flow depths was established, we com-
puted an interpolation of all field measures, also taking into
account the inundation limits observed in Banda Aceh by
JICA (Japan International Cooperation Agency, 2005) and
TSUNARISQUE program (Lavigne et al., 2006).

In order to obtain the best interpolation for the study,
a sensitivity analysis was firstly performed with three dif-
ferent interpolation methods: Ordinary Kriging (Cressie,
1991; Krige, 1996; Baillargeon, 2005), Radial Basis function
(Cressie, 1991 Davis, 2002), and Nearest Natural Neighbour
(Cressie, 1991; Davis, 2002). Since our interpolation is
based on quite few data, the ordinary Kriging is employed
with a linear variogram (Cressie, 1991). Initially, a spatial
resolution of 80 m was chosen but the accuracy of the results
was not satisfactory. Finally, a spatial resolution of 15 m was
used for each interpolation. This resolution allowed us to
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Fig. 2. Computed flow-depth interpolation using Kriging method (grid size 15 m) and field measures available for Banda Aceh area (Indone-
sia) by three teams. The flow-depth parameter represents the height of the tsunami wave measured from the ground level up to the water
mark observed in field.

obtain a more accurate interpolation of observed flow depths
and to estimate tsunami heights with the available Digital
Terrain Model of Banda Aceh (grid size of 18 m) created in
the framework of the TSUNARISQUE program (Lavigne et
al., 2009) and modified by CEA (Commissariatà l’Energie
Atomique; Loevenbruck et al., 2007).

In order to compare the spatial accuracy of each interpo-
lation, the minimum Root Mean Square Error (RMSE) was
computed with each observed flow depth introduced for the
interpolation. The RMSE obtained with the ordinary Kriging
was 40 cm, while the RMSE obtained with Natural Neigh-
bour was 1.30 m.

Figure 3 shows the comparison between Natural Neigh-
bour interpolation for a grid size of 80 m and Kriging inter-
polation for a grid size of 15 m against the observed flow
depths. We can see that flow depths interpolated with Nat-
ural Neighbour method are more scattered from field obser-
vations, while flow depths computed with Kriging method
seem to be in good concordance with observed flow depths.
The interpolation computed with ordinary Kriging method is
the most accurate and was chosen for the development of the
damage functions.

Finally, by means of a GIS treatment in Vertical Map-
per, we allocated a flow depth value to each building of the
database.

4.2 Derivation of fragility curves

The fragility of a structure is determined with respect to the
“capacity” and the limit state function of the structure “E” is
provided by the expression:

E = (R(h)−P(h)) (1)

whereR is the capacity of the structure to support a hydrody-
namic pressure, andP is the tsunami hydrodynamic pressure
acting on the structure. Notice that the variablesR andP are
functions of the flow depth “h”.

E is the limit state function of the structure that gives the
threshold beyond which the structure will suffer some dam-
age (E < 0: damage,E > 0: security,E = 0: limit state).
Damage probability is defined as (Lemaire, 2005):

PD = P [E ≤ 0] =P [(R(h)−P(h)) ≤ 0] (2)

The capacity of the structure is generally supposed to be Log-
normally distributed (Reed et al., 1994). The conditional
probability to have or exceed a given damage “D” for a given
tsunami flow depth “h” is expressed by the function:

P [D/h] = 8

(
ln(h− h̄D)

αD

)
(3)

where: 8(·) is the standard normal cumulative distribution
function, h̄D is the median value of the flow depth for each
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damage state “D”; h is the value of the flow depth, andαD

is the standard deviation of the natural logarithm of “h” for
each damage state “D” that can be obtained by Eqs. (4) and
(5). So, fragility curves are defined by two parametersh̄D

andαD, where:

α2
D =

k∑
i=1

ni ×
¯h2
D

N
−µ2

H (4)

µH =

k∑
i=1

ni × ln(h̄D)

N
(5)

For each damage state “D”, we have obtained a cumula-
tive histogram of damage as a function of the flow depth

Table 1. Values for the obtained parametersh̄D andαD for the
fragility functions we derived.R2 is the linear regression coefficient
determined through the least-squares fitting for each fragility curve.

Damage h̄D αD R2

state level

D1 2.76 0.28 0.9981
D2 5.26 0.30 0.9978
D3 6.09 0.27 0.9941
D4 6.81 0.29 0.9966
D5 7.57 0.28 0.9978

“h”. In Fig. 4 we can see that each point of the discrete
set corresponds to the empirical cumulative frequency to
have damage “D” in the flow-depth interval “i”, with step
of 0.1 m. The frequency to have damage “D” is defined as
fi =

ni

N
. whereni = total number of buildings with damage

state “Dj ” in the flow-depth interval “i”; N = total number
of buildings with damage state “Dj ”; j = 1 to 5. A statistical
analysis was undertaken in order to obtain fragilities curves
for building typology “B”.

Table 1 shows the values obtained for the parametersh̄D

andαD for the fragility functions we derived.R2 is the linear
regression coefficient determined through the least-squares
fitting for each fragility curve. Derived fragility curves are
shown in Fig. 4. Fragility curves give, for each flow depth
value, the probability of incurring damage≥ D1 and the
probability of incurring damage≥D2, etc. up to the prob-
ability of incurring total destruction (D5). However, when
producing damage maps for different scenarios of tsunami,
these kind of functions are not suitable because it becomes
very complicated to manage all the information associated
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with one level of flow depth, knowing that a tsunami hazard
scenario is composed by a spatial distribution of flow depths.
For this reason, it was decided to use a simplified method-
ology to link the flow depth to one damage level, thus ob-
taining a set of damage functions. The procedure adopted is
described hereafter.

4.3 Derivation of damage curves

For every typology class (“A”, “B”, “C” and “D”), a set of in-
tervals of flow depth was generated with step of 0.1 m from
the minimum value “hmin” to the maximum value “hmax”.
Then, for each flow-depth interval, the number of buildings
presenting a certain damage level (“D1”, “D2”, “D3”, “D4”
or “D5”) was calculated. As a consequence, the number
of buildings in each interval of flow depth is different, as
shown in the histogram of data for building typology “B”
(Fig. 5). For this reason we have computed the “weighted“
mean damage level for each flow-depth interval. Notice in
Eq. (6) that “the weight” corresponds to the total number of

buildings with damage state “Dj ” for the flow-depth interval
“ i”. The values from 1 to 5 in Eq. (6) represent the damage
scale adopted (from “D0 = No damage” to “D5 = Collapse”).
Based on the works by Ruangrassamee et al. (2006) and
Leone et al. (2010), the weighted mean of damage level “D̄i”
was computed with Eq. (6):

D̄i =
1×nD1i +2×nD2i +3×nD3i +4×nD4i +5×nD5i

nD1i +nD2i +nD3i +nD4i +nD5i

(6)

where:nD1i = total number of buildings with Damage “D1”
for the flow-depth interval “i” ; nD2i = total number of build-
ings with Damage “D2” for the flow-depth interval “i”; etc.

The standard deviation “σDi” was calculated for each
flow-depth interval using Eq. (7).
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σ 2
Di =

nD1i ×(1−D̄i)
2
+nD2i ×(2−D̄i)

2
+nD3i ×(3−D̄i)

2
+nD4i ×(4−D̄i)

2
+nD5i ×(5−D̄i)

2

nD1i +nD2i +nD3i +nD4i +nD5i

(7)

As can be seen in Figs. 6 to 9, the standard deviation is
represented as an error bar around the weighted damage level
D.

It was therefore decided to build an enveloping curve
based on the extreme values of the weighted mean damage
(Fig. 6 to 9). This is in agreement with the SCHEMA project
philosophy of adopting a conservative approach to avoid un-
derestimation of the damage level. Several automatic tools
exist and have been tested for the construction of an envelop-
ing curve. Since these methods appeared extremely sensitive
to the scattering of few isolated data (which could likely be
due to some errors or uncertainties), it was finally decided to
draw this curve manually.

We can observe in Figs. 6 to 9 that standard deviation of
data can be significant. In fact, errors could come from dif-
ferent stages of the process. The standard deviation depends
on the number of buildings associated to each flow-depth in-
terval and to each damage level. Besides, errors can be in-
troduced either in the process of determining a damage level
during the field survey or when trying to recognize a building
typology either in the field or by photo-interpretation.

It is important to remark that these functions do not only
represent the damage due to hydrodynamic forces of the
tsunami, but damage incurred by buildings as a result from
cumulated effects of multiple factors whose damaging im-
pact can not be independently assessed:

– Effects due to the impact of debris and floating objects;

– effect of the earthquake in the region of Banda Aceh that
has generated the tsunami;

– effects of other factors such as scouring, erosion, etc.

Figures 6 to 9 present the damage functions produced for
each building class. We can see a link between the evolution
of the damage level as a function of the flow depth and the
intrinsic characteristics of resistance of the various buildings.

4.3.1 Class A

Considering the class “A” (1052 units) that represents the
light constructions, we can observe, in Fig. 7, that data are
very scattered between flow depths 0 to 3 m. Starting from a
flow depth of 3 m, a big stock of buildings reaches the highest
damage level “D5” (total collapse), which confirms the high
fragility of class “A”. We noticed that the standard deviation
is equal to zero for all the data in the last part of the curve.

4.3.2 Class B

The class “B” vulnerability curve, already introduced, is
based on a large and representative sample of 1849 units.
This class represents the masonry constructions that are more
resistant than the constructions of the class “A”. In Fig. 6, we
observed a uniform evolution in the damage level. The en-
veloping curve of typology class “B” was elaborated based
on this trend. We can observe that the standard deviation for
the mean damage levelD̄i plotted in this figure fits an upper
limit and a lower limit for this curve (see Fig. 6).

4.3.3 Class C

This vulnerability class (385 units) corresponds to the ma-
sonry constructions with reinforced columns. It is more re-
sistant than the class “A” and class “B”. For example, with
a flow depth of 3 m, total destruction “D5” is incurred for
building class “A” (Fig. 7), while the damage level for the
class “C” is expected between “D1” and “D2” (see Fig. 8).
Class “C” buildings are expected to suffer total destruction
(damage level “D5”) for flow depths greater than 7 m.

4.3.4 Class D

The constructions of the class “D” correspond to non-
engineered concrete buildings. A stock of 744 units was
available. From Fig. 9, we noticed that for values of flow
depth between 0 and 3 m, the damage level expected is be-
tween “D1” and “D3”; while for flow depth greater than 4 m,
data are gathered between damage levels “D4” and “D5”.
This kind of building seems to be more vulnerable than those
of class “B”. This behaviour could seem surprising but, as
explained by Saatcioglu et al. (2006), the lower capacity re-
sistance of non-engineered reinforced concrete buildings can
be explained by the performance of the columns, which are
especially vulnerable to lateral tsunami pressures and to the
impact forces generated by floating debris.

4.3.5 Class E

Considering the low sample of buildings available for class
“E” (45 units), it was not possible to develop a damage func-
tion for this class.

4.4 Adaptation to European context

After the Indonesian tsunami of 2004, various authors
(Peiris, 2006; Garcin et al., 2007; Leone et al., 2010) have
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Fig. 7. Enveloping curve for the building vulnerability class “A”. Standard deviation for mean damage levelD̄i is shown with red bars.
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Fig. 8. Enveloping curve for building vulnerability class “C”. Standard deviation for mean damage levelD̄i is shown with red bars.

proposed typologies of buildings based on field observations
collected in the areas affected by the Boxing Day tsunami.

In the framework of the SCHEMA project, a recognition
process was done in order to identify in the five test sites of
the project (Setubal, Portugal; Mandelieu, France; Catania,
Italy; Balchik, Bulgaria; Rabat, Morocco) those buildings
which present similarities (in structure, construction mate-
rial, number of storeys) with the building typologies identi-
fied in Indonesia.

The classification has also been completed and enlarged
in order to include the type of constructions present at the
five test sites of SCHEMA (SCHEMA Consortium, 2009a).
New building classes were identified (i.e. historical build-

ings, hangars, clay constructions, lava-stone constructions).
However, we did not have available data to develop dam-
age functions for these new typologies. The classes for
which damage functions have been developed are resumed
in Fig. 10, together with field and aerial views of these types
of buildings for the French test site.

Since until now there is no building code applied in Europe
concerning the tsunami resistance for structures and no suf-
ficient post-tsunami observations exist in the Mediterranean
coasts, we assume that at a first order the buildings of types
A, B, C, and D in European-Mediterranean regions would
react in a similar way as did the equivalent buildings in In-
donesia.
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Fig. 9. Enveloping curve for building vulnerability class “D”. Standard deviation for mean damage levelD̄i is shown with red bars.

4.5 GIS Interface for production of maps of expected
damages

In order to produce damage maps, the damage functions pre-
sented in Sect. 4.3 have been converted into thresholds in
order to obtain a damage matrix readable in a GIS.

For the production of maps, a software package (Dam-
ASCHE) has been developed as a module for ArcGIS, able
to handle geo-referenced data in a raster format (SCHEMA
Consortium, 2009b). Three types of input are required by
this module:

– a raster layer representing the hazard parameter;

– a shapefile layer of points representing the building lo-
cations, with a file containing information on their vul-
nerability class (“A”, “B”, “C”, or “D”);

– the damage matrix.

The DamASCHE tool overlays the different data layers and
gives the estimated level of damage expected for each build-
ing as a function of its building class and flow depth foreseen
in its location. Finally, the user can display the damage sce-
nario map, showing the distribution of buildings, each one
represented with a colour showing the expected damage to it.

5 Conclusions

In the framework of the SCHEMA project, new tsunami
damage functions were developed for different typologies
of buildings. The available building database derived from
Leone et al. (2010) has been extended and completed.
A building typology, depending on the type of construc-
tion material, was assigned by photo-interpretation to those

buildings not identified during the field survey carried out in
Indonesia just after the December 2004 tsunami.

Additionally, the post-disaster observations of water levels
published by three different teams have been analysed and
gathered with the purpose of creating an increased database
for the flow depth hazard parameter, to which the damage
level on buildings is linked.

An interpolation with all flow depth observations was
therefore computed in order to obtain the spatial distribution
of the tsunami flow depth in Banda Aceh. The obtained re-
sults seem to be consistent with the field measures.

Several methodologies were studied in order to develop
damage functions. We derived fragility functions for build-
ing class “B”. The cumulative Lognormal distribution func-
tion is well fitted to the data. However, when mapping dam-
ages for different scenarios of tsunami, these kind of func-
tions are not appropriate.

Therefore, we chose to follow a simplified approach, cre-
ating enveloping curves based on the weighted mean damage
level: in that way, damage functions were derived for sev-
eral building classes (“A”, “B”, “C”, and “D”). This is a con-
servative method in agreement with the worst-case scenario
approach followed within the SCHEMA project.

These functions do not only represent the damage due to
hydrodynamic forces of the tsunami, but they result from cu-
mulated effects of multiple factors for which it is impossible
to separate the respective damaging effect on a building: ef-
fects due to the impact of debris and floating objects; effects
of the earthquake in the region of Banda Aceh that generated
the tsunami; and effects of others factors such as scouring,
erosion, etc.

In the framework of the SCHEMA project, the existing
classification of buildings (based on their intrinsic resistance)
has been adapted to the European context. Similarities have
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Field recognition 
criteria Field view Aerial view Recognition criteria by EO

A
Beach or sea front light 

constructions:
Wooden, timber, clay 

materials, or zinc slabs.

Flat roof, steel sheets Small to very 
small surfaces. Extended surfaces in 
case of beach activities (restaurants, 

bars)

B
Brick not reinforced 
Cement mortar wall, 

Fieldstone, Masonry. One 
storey.

Simple geometry (square, rectangle).
Flat or slope roofs, tile roofs. Little 
extension or surface. Located in the 

old town.

C
Individual buildings, villas: 

Brick with reinforced 
column & masonry filling. 

One or two storeys.

More complex geometry. Several 
levels of roof and several annex. 

Pitched roof. Medium to big 
dimensions.

D
Non-ingeneered reinforced 

concrete buildings. 
Collective use. Two to four 

floors

Tiles roofs.
Located in old town. Elongated 

geometry.

Fig. 10.Building typology depending on the resistance capacity of the constructions for Mandelieu test site (adapted from Leone et al., 2010;
Peiris, 2006; Saatciouglu et al., 2006; Ghobarah et al., 2006; Reese et al., 2007). Only the classes for which we developed damage functions
are shown here.

been found between the typology of buildings studied in
Banda Aceh and the buildings existing in our European-
Mediterranean coastal test sites. New building classes, typi-
cal of the study areas of the project, were also identified (i.e.
historical buildings, hangars, clay constructions, lava-stone
constructions). However, we do not have available data to
develop damage functions for these new typologies.

Finally, for the production of maps of expected damages,
a software package (DamASCHE) has been developed as a
module for ArcGIS, and damage functions have been con-
verted into thresholds in order to obtain a damage matrix
readable in a GIS.

Acknowledgements.This study has been developed thanks to the
support of the European Commission in the framework of the
SCHEMA project (contract no. SST5-CT-2006-030963). Yan-
nick Thiery is kindly acknowledged by NV and AG for construc-
tive discussions and his contribution to the sensitivity analysis of

interpolation methods. This article greatly benefited from com-
ments by S. Reese and three other anonymous referees.

Edited by: S. Monserrat
Reviewed by: S. Reese and three other anonymous referees

References

Baillargeon, S.: Le krigeage: revue de la théorie et applicatioǹa
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de Maitrise es Sciences de la Faculté des Etudes Supérieures de
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of uncertainties associated with the process of tsunami damage
assessment on buildings (SCHEMA FP6 EC co-funded project),
Nat. Hazards Earth Syst. Sci., 11, 883–893,doi:10.5194/nhess-
11-883-2011, 2011.

Guillande, R., Valencia, N., and Gardi, A.: Uncertainties in model-
ing and damage assessment of tsunami risk, implications for cri-
sis management (FP6 SCHEMA project), Provence 2009 Inter-
national Conference, Aix-en-Provence, France, 6–8 July, 2009.

Ghobarah, A., Saatcioglu, M., and Nistor, I.: The impact of the 26
December 2004 earthquake and tsunami on structures and infras-
tructure, Eng. Struct., 28, 312–326, 2006.

Japan International cooperation Agency (JICA): The study on the
urgent rehabilitation and reconstruction support program for
Aceh province and affected areas in north Sumatra, JICA, japan,
Final Report (1), Vol. IV, 2005.

Krige, D. G.: Two dimensional weighted moving average trend sur-
faces for ore-evaluation, J. S. Afr. I. Min. Metall., 66, 13–38,
1966.

Koshimura, S.: Tsunami vulnerability assessment for the city of
Banda Aceh using the tsunami numerical model and the post-
tsunami survey data, IUGG XXIV General Assembly, Perugia,
Italy, 2–3 July 2007, JSS002 Symposium, oral presentation 1767,
2007.

Koshimura, S., Oie, T., Yanagisawa, H., and Imamura, F.: Develop-
ing fragility functions for tsunami damage estimation using nu-
merical model and post-tsunami data from Banda Aceh, Indone-
sia, Coast. Eng. J., Jpn. Soc. Civil Eng., 51, 243–273, 2009a.

Koshimura, S., Namegaya, Y., and Yanagisawa, H.: Tsunami
Fragility : A new measure to assess tsunami damage, J. Disaster
Res., 4, 479–488, 2009b.

Lavigne, F., Paris, R., Grancher, D., Wassmer, P., Setiawan, A.,
Syahnan, Gunawan, T., Fachrizal, Waluyo, Cahyadi, R., Flohic,
F., De Coster, B., and Mahieu, L.: Le tsunami du 26 décembre
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contributionà la connaissance du phénom̀ene età l’élaboration
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