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Abstract. Internal waves in the atmosphere and ocean
are generated frequently from the interaction of mean flow
with bottom obstacles such as mountains and submarine
ridges. Analysis of these environmental phenomena involves
theoretical models of non-homogeneous fluid affected by the
gravity. In this paper, a semi-analytical model of stratified
flow over the mountain range is considered under the
assumption of small amplitude of the topography. Attention
is focused on stationary wave patterns forced above the rough
terrain. Adapted to account for such terrain, model equations
involves exact topographic condition settled on the uneven
ground surface. Wave solutions corresponding to sinusoidal
topography with a finite number of peaks are calculated and
examined.

1 Introduction

Stratified flows over topography are of interest for meteo-
rology, since air currents above mountain ranges represent
an example of the flow (Scorer, 1978; Nappo, 2002). It
is well known that lee waves can occur downstream of
the obstacle for appropriate upwind conditions (see surveys
by Long, 1972; Wurtele et al., 1996, and monographs
by Yih, 1980; Grimshaw, 2001). These waves possess
horizontal lengths amounting to tens of kilometres, and
typical magnitudes of vertical displacement are of hundreds
of metres. Producing small-scale atmospheric turbulence and
strong wave-induced winds, lee waves present a hazard to
air traffic and underlying terrain area. Internal waves are
potentially hazardous to all sub-sea operations including oil
and gas drilling operations and have already caused several
costly and dangerous incidents (Fraser, 1999). A two-layer
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KdV theory for the mass transport due to the waves, which
relates transport to the elevation of the interface and the linear
long wave phase speed, is presented in (Inall et al., 2001). It
compares well with the observed transport in the lower layer.

Theory of lee waves started with the pioneering work
by Dorodnitsyn (1938, 1950), Lyra (1943), Queney (1948),
Scorer (1949) and Long (1953) who considered the problem
of a steady flow of inhomogeneous fluid over an isolated
ridge. These papers deal with the mathematical model
of inviscid fluid being incompressible or compressible but
isothermal. In any case, despite the nonlinearity of basic
hydrodynamic equations, the governing model becomes
linear at the leading order of slight stratification. Beginning
with theoretical investigations and laboratory experiments
performed by Long (1955), many authors demonstrated that
lee wave theory simulate, with high accuracy, the flows
which, once forced by the barrier, still oscillate under the
action of buoyancy.

Limitations of the stationary lee-wave solutions appear
to be due to hydraulic effects such as upstream blocking
(Baines, 1995), resonant non-stationary effects (Grimshaw
and Smyth, 1985; Skopovi and Akylas, 2007), and
considerable correction due to the occurrence of nonlinearity
(Lilly and Klemp, 1979; Peltier and Clark, 1983). Indeed,
there are intrinsic causes to reformulate the steady state
model in order to cover the variety of the wave regimes with
greater accuracy. Since kinematic slip-condition involves
the shape of barrier, analytic solutions are known only
for the simplest topographies such as a single bell-shaped
obstacle (Witch of Agnesi). Even in the case of a semi-
circular obstacle, substantial difficulties arise by the analysis
of generated wave-field (Miles, 1968).

Presently, among the questions of great interest are: what
impact of complex topography can be observed on the wave
patterns in the vicinity of barrier? Interference of lee waves
in the presence of two adjacent ridges have been studied
experimentally by Gÿure and J́anosi (2003). As they noted,
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the extra difficulty appears in this case due to a high number
of possible coupling of obstacles with various shapes and
sizes. Aguilar and Sutherland (2006), Aguilar et al. (2006)
also experimentally studied the generation of internal waves
from sinusoidal topography. Their experiments elaborated
several mechanisms of the wave-forcing, such as direct
forcing over the hills as well as the wave generation by
separated flow in the lee of obstacles.

Quite recently, Humi (2009) derived an approximate
analytical model which incorporates the shape of a complex
obstacle into the coefficients of the model equation. This
formulation of the Long’s model uses the transformation
of independent variables to the terrain coordinates. In this
work, we develop a semi-analytical approach involving von
Mises transformation of both dependent and independent
variables. The main idea of our method is to satisfy the exact
topography condition by solving leading-order approximate
equations in an auxiliary rectangular domain.

2 Basic equations

We consider steady 2-D flow of a heavy inviscid incompress-
ible fluid in a horizontal layer of finite depth.

The basic model involves steady state Euler equations
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whereρ is the fluid density, (u, v) is the fluid velocity vector,
p is the pressure andg is the gravity acceleration. It is
assumed that the flow domain is bounded from above by rigid
lid y =H , whereH is identified with the depth of seawater
or troposphere. The topography is represented by the smooth
curve y = h(x), so the isolated mountain range is formed
by a finite number of hills towering above the ground level
y= 0 (see Fig. 1). The kinematic boundary conditions at the
bottom and the top lid are

v−u
∂h

∂x
= 0

∣∣
y=h(x)

, v= 0
∣∣
y=H

. (5)

We suppose the absence of internal waves upstream on the
left of the mountain range. Upwind flow is presented here
by uniform current having constant speedU , so the velocity
field should satisfy the condition

(u,v)→ (U,0) (x→ −∞) (6)

Fig. 1. Scheme of stratified flow over obstacle.

In this case, the first of the conditions (5) can be replaced
under the assumption of a small typical heighta of
topography by a simplified version of the bottom condition

v(x,0)=Udh/dx

which is familiar for the lee wave theory. Using this
condition permits us to more easily construct the far-field
solution describing wave-train behind obstacle. However,
we should preserve here the exact form (5) of the bottom
condition in order to obtain the streamline picture precisely at
the near field. Keeping this in mind, we introduce the stream
functionψ by means ofu=ψy , v = −ψx . Integrating the
mass conservation equation (3) implies the dependenceρ =

ρ(ψ), which can be specified due to the upstream condition
(6). Namely, if the upstream uniform flow, defined by the
stream functionψ∞(y) = Uy, has known density profile
ρ∞(y) asx→ −∞, then we obtain

ρ(ψ)= ρ∞(ψ/U). (7)

Now, as it was derived by Dubreil-Jacotin (1935) and
Long (1953), eliminating the pressurep from the momentum
equations (1)–(2) reduces the fully nonlinear Euler system
(1)–(4) to equivalent scalar equation
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where∇
2
= ∂2

x + ∂2
y is the Laplacian operator andρ′(ψ)=

dρ/dψ (we refer to Yih, 1980 for analytical details). Since
the bottom and top lid are supposed to be streamlines, the
boundary condition (5) is formulated as follows:

ψ = 0
∣∣
y=h(x)

, ψ =UH
∣∣
y=H

. (9)

The Dubreil-Jacotin – Long (DJL) equation (8) can be treated
for a wide class of density coefficientsρ(ψ) prescribed by
the formula (7) with the known functionρ∞. However,
common practice in the lee wave theory is to consider the
buoyancy frequencyN ,

N2(y)= −
gρ′

∞(y)

ρ∞(y)
,
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which is assumed to be constant. In this case, it immediately
follows that the densityρ∞ depends exponentially on the
height,ρ∞(y)= ρ0exp(−N2y/g), whereρ0 is the reference
density attained aty= 0.

3 The von Mises transformation of scaled variables

Now, we introduce characteristic scales and control pa-
rameters in order to formulate the governing equations in
dimensionless form. We select as basic parameters the
Boussinesq parameterσ and squared inversedensimetric
Froude numberλ defined by the formulae

σ =
N2H

g
, λ=

σgH

U2
.

The quantityσ determines the slope of the density profile
for a uniformly stratified fluid being at rest and parameterλ

qualifies the measure of sub- or super-criticality of upstream
flow. Note that λ = F−2, where F = U/(NH) is the
standard Froude number used in most of the papers. On the
other hand, there is the relationλ= κ−1, where the scaled
frequencyκ = NH/U is known as the Long’s number.
Finally, we will use dimensionless height of topography
α= a/H as a small parameter by applying the perturbation
method. Selecting the heightH as the length scale and
upwind speedU as the velocity scale, we introduce the
dimensionless variables as follows:

(x,y,h)=H
(
x̄,ȳ,h̄

)
, ψ =U H ψ̄.

In these variables, the shape of the bottom topography can
be rewritten as̄y=αh̄(x̄), and upstream density profile takes
dimensionless formρ∞/ρ0 = exp(−σ ȳ). Dropping the bar
in new variables, we obtain from (8) and (9) the equations
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with the upstream condition

ψ(x,y)→ y (x→ −∞) (12)

Curvilinear shape of lower boundary is the main source
of difficulty when solving the problem formulated above.
Therefore, we transform the Cartesian coordinates (x, y) in
order to simplify the topographic condition (11). Namely,
we seek the streamlines in the formy = Y (x,ψ) with
independent (x, ψ)-variables, so the flow domain transforms
to the unit strip 0<ψ < 1 in the (x, ψ)-plane. This is the
von Mises transformation which is well-known in the fluid
mechanics, especially in the airfoil theory. Partial derivatives
with respect to old and new independent variables are
changed by the transformation(x,y)→ (x,ψ) as follows:
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For instance, first derivatives of both unknown functions
ψ(x,y) andY (x,ψ) are coupled by the relations
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As a result, Eq. (10) reduces to the equation
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and boundary conditions (11) take the simple form

Y (x,0)=αh(x), Y (x,1)= 1. (14)

The upstream condition (12) reduces to

Y (x,ψ)→ψ (x→ −∞) (15)

The advantage of the system (13)–(15) is a formulation
of equations in a rectangular domain with reserved exact
topographic condition at the lineψ = 0. However, strong
limitations appear while the von Mises transformation
suggests all the streamlines to be projectible onto the
horizontal levely = 0. This condition does not permit step
streamlines with overhanging as well as recirculation zones
with closed streamlines. Numerous experiments and field
observations indicate that vertical jets and zones of reverse
flow are ubiquitous in the lee of obstacle of finite amplitude.
Therefore, it is clear that the nonlinear model (13)–(15) may
serve, in the first place, to simulate topographic flow over the
barrier of sufficiently small height.

4 Modelling and results

Approximate analytical solution of the problem (13)–(15)
is constructed by the perturbation procedure with small
parameterα. Looking for the streamlinesY (x,ψ)= ψ +

αw(x,ψ) with unknown deviationw, we obtain from
Eq. (13) by expanding on powers ofα the equation

wxx+wψψ −σwψ +λw
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As expected, nonlinear equation (13) becomes linear with
respect tow at the leading order inα. It is interesting
that nonlinear terms in Eq. (10) formally depend on the
Boussinesq parameterσ only, while the parameterα is
presented implicitly at the boundary condition (11). The von
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Mises transformation changes the roles of these parameters
by settingα to be the dimensionless measure of nonlinearity
in the Eq. (16). Thus, we have to solve the linear problem

wxx +wψψ −σwψ +λw= 0 (17)

w(x,0)=h(x), w(x,1)= 0 (18)

with the upstream condition

w→ 0 (x→ −∞) . (19)

Equation (17) is well-known in the linear theory of lee waves
in the context of using together with the boundary condition
on the curvilinear bed (Yih, 1980). However, in the case
under consideration, this approximate equation is coupled
with the exactcondition (18) at the boundary of auxiliary
rectangular domain. This distinctive feature provides the
model with the flow patterns near the obstacle without loss
of accuracy. Spectral problem

φxx+φψψ −σφψ +λφ= 0 (0<ψ < 1)

φ(x,0)= 0, φ(x,1)= 0

is an important role by solving Eqs. (17)–(19). Discrete
normal modes are defined by the eigenfunctions

φn(x,ψ)= e
ikxeσψ/2sinπnψ (n= 1,2,3,...)

which correspond to the eigenvaluesλn =π2n2
+k2

+σ 2/4
with real wave-numberk. Accordingly, parametric range of
m-modal lee waves is formed by the values ofλ belonging to
the sub-critical domain
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4
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For a givenλ satisfying the condition (20), the set of wave-
numbers

kn=

√
λ−σ 2/4−π2n2 (n= 1,...,m) (21)

determines the wave-lengths of basic harmonic components
which form free wave-train far downstream the mountain
range. Note, that neglecting smallσ in (20) leads us back
to the known existence condition of lee waves in the case of
slight stratification (Yih, 1980).

We use the Dorodnitsyn’s method in order to construct
the solution series (the results of Dorodnitsyn’s papers are
presented in Kochin et al., 1964). For a given shape of
topographyh(x), the Fourier solution of Eqs. (17)–(19)
determines the elevation of streamlines as follows:

w(x,ψ)= eσψ/2

{
y(ψ)h(x)+

∞∑
n=1

wn(x)sinπnψ

}
. (22)

Here the function

y(ψ)=
sink0(1−ψ)

sink0
(23)

Fig. 2. Lee wave interference with shadow zone over the barrier.

Fig. 3. Isolated wave packets over the barrier.

satisfies the “hydrostatic” equationyψψ + k2
0y = 0 with

zero mode wave-numberk0 =

√
λ−σ 2/4, and boundary

conditionsy(0)= 1, y(1)= 0 are valid. Infinite sum in the
right-hand side of (22) represents the non-hydrostatic part of
the solution. The coefficientswn are as follows:

wn(x)= −
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x∫
−∞

sinkn(x−s)h′′(s)ds (n= 1,...,m)

with the wave-numberskn defined by (21), and
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+∞∫
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with kn =

√
π2n2+σ 2/4−λ. In both the formula forwn,

real numberscn are the Fourier coefficients of the function
y(ψ) from (23) with respect to the basis{sinπnψ}

∞

n=1.
Figures 2–5 demonstrate calculated 1-mode wave patterns

which are generated from sinusoidal topography of finite
horizontal extension. Experimental observations indicate
substantial interference from the upper lid atα > 0.15 (see
Guyure and Janosi, 2003). Therefore, the parametersα and
λ are taken asα = 0.04 andλ= 15 in all the cases. On
the other hand, elementary analysis of the balance of kinetic
and potential energies in stratified flow indicates the absence
of upstream blocking when the condition 2U/Na < 1 is
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Fig. 4. Lee wave amplification:σ = 2.4.

Fig. 5. Separation of wave zones over long sinusoidal topography: forced small-amplitude waves near the bottom (y < 0.2) and slow
modulated wave-train of moderate amplitude (y >0.2).

fulfilled (Baines, 1995). The dimensionless version of this
condition has the formα

√
λ < 2, and it is quite true in the

case under consideration. The Boussinesq parameterσ is
chosen asσ = 0.2 except the case of the Fig. 4 whenσ = 2.4.
The length of the waves forced directly over the topography
matches with the period of sinusoidal obstacle. Downstream
wave-lengthL= 2π/k1 corresponds to the wave-numberk1
from (21).

Figures 2 and 3 compare the interference patterns forced
from two different topographies by the same upstream
conditions. It is interesting here that the shadow zone
arises over the five-bumped barrier. This topography forces
no waves directly above the fourth and fifth peaks, but
regular periodic wave tail appears beyond the last hill.
Figure 3 displays the generation of localized wave packets
formed over the eleven-bumped obstacle. Figure 4 illustrates
monotone amplification of the wave amplitude by passing
the flow over the barrier. Note, that upstream flows found
in Figs. 2 and 4 differs only by stratification rateσ and
topographies are identical in both the cases. Figure 5 shows
an example of irregular interference which appear above the
rough sinusoidal barrier composed by thirty three peaks. The
wave street placed at the heighty = 0.2 seems to be quasi-
periodic. The wave amplitude is strongly depressed at this
height level despite the upstream flow is very far from the
conditions to create critical level.

Wave patterns shown in Figs. 2–5 presumably arise from
the phase differences in the forced waves over sinusoidal
hills as result of the transition to the larger wavelengths
in the downstream wave train. Similar phase change is
well known for vertically propagating internal waves in
stratified flow of infinite depth over the obstacle having finite
horizontal extension: as the height increases, interference
occurs for columnar modes satisfying the radiation condition
at infinity. In the case of finite depth, the solution (22)
satisfies the free-stream condition (19) which follows from
the assumption of no upstream influence. Therefore, the
interference patterns are localized in the domain confined
directly above the topography. Strongly modulated harmonic
waves were observed in calculations for relatively short
sinusoidal obstacles with 5–12 peaks only. The wave
modulation sharpened due to substantial influence of the end
hills by the transition from forced waves over the barrier
to the lee waves behind the obstacle. This effect was not
observed for long sinusoidal-bottom domains. For such
domains, the near-bottom region of boundary-trapped waves
of small amplitude is clearly separated from the upper region
of slowly modulated waves having maximal amplitude at
the mid-height of the fluid layer. It is interesting that the
separation between lower and upper wave zones occurs over
the topography at the heighty∼ 0.2, both for short and long
sinusoidal obstacles with relative heightα = a/H = 0.04.
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As expected, wave reflection at the upper boundary did not
appear due to small height of the obstacle. However, even for
such a smallα, the wave amplification up to the amplitude
about ∼0.3 was found by the variation of upstream flow
parameters (see Fig. 4), what shows the necessity to take
into account nonlinear dispersion effects. The perturbation
procedure suggested in this paper allows us to construct
higher order approximation inα based on Eq. (16), this work
being in progress now.

5 Conclusions

An analytical model of two-dimensional steady stratified
flow over complex topography formed by isolated group of
hills is considered. Our method involves asymptotic analysis
of the Dubreil-Jacotin – Long equation transformed to the
(x, ψ) independent variables, whereψ is a stream function.
Perturbation procedure uses small dimensionless parameter
which characterises the typical height of the obstacle. The
wave patterns appearing above the mountain range due to the
interference from finite number peaks are calculated. In this
paper, we have demonstrated that the flow patterns over the
mountain range may be very sensible to the specific shape of
topography.
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