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Abstract. The use of high resolution hydrodynamic mod-
elling to simulate the potential effects of tsunami events can
provide relevant information about the most probable inun-
dation areas. Moreover, the consideration of complemen-
tary data such as the type of buildings, location of priority
equipment, type of roads, enables mapping of the most vul-
nerable zones, computing of the expected damage on man-
made structures, constrain of the definition of rescue areas
and escape routes, adaptation of emergency plans and proper
evaluation of the vulnerability associated with different areas
and/or equipment.

Such an approach was used to evaluate the specific risks
associated with a potential occurrence of a tsunami event in
the region of Set́ubal (Portugal), which was one of the areas
most seriously affected by the 1755 tsunami.

In order to perform an evaluation of the hazard associated
with the occurrence of a similar event, high resolution wave
propagation simulations were performed considering differ-
ent potential earthquake sources with different magnitudes.
Based on these simulations, detailed inundation maps asso-
ciated with the different events were produced. These results
were combined with the available information on the vulner-
ability of the local infrastructures (building types, roads and
streets characteristics, priority buildings) in order to impose
restrictions in the production of high-scale potential damage
maps, escape routes and emergency routes maps.

1 Introduction

Since the 2004 Indian Ocean tsunami, the awareness of the
European governments on the risks associated with the po-
tential occurrence of a tsunami event has being growing. An
example of this is the tsunami warning system (TWS) that
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has been implemented by the Intergovernmental Coordina-
tion Group for the Tsunami Early Warning and Mitigation
System in the North-Eastern Atlantic, the Mediterranean and
connected seas.

Similar systems have been developed and are operational
in other regions, such as the Pacific Tsunami Warning Sys-
tem (PTWS), the West Coast and Alaska Tsunami Warn-
ing Centre (WC/ATWC), the ICG/CARIBE-EWS (which has
been conceived with a multi-hazard approach and focused
on all coastal hazards) or the Indian Ocean Tsunami Warn-
ing System (IOTWS), among others. Most of these systems
were designed to cover large areas, but in many places there
is a need to establish a regional warning system due to the
short time available for an effective response. Such is the
case of Portugal, where the average travel time for a tsunami
originating in the most probable areas, the South and south-
west coasts of the Iberian Peninsula, takes less than 15 min to
reach the Portuguese southern coast as discussed in Sect. 4.

In order to improve the capacity of response for a tsunami
event, a Portuguese Tsunami Warning System (PtTWS) is
being developed by the Meteorological Institute in collabo-
ration with D. Lúıs Institute and the Joint Research Centre
(JRC) and it has been designed to detect tsunami originated
from earthquakes. A dense seismic network that operates
24 h a day, 7 days a week, along with the Tsunami Analysis
Tool (TAT), that explores a database of over 6500 scenarios,
allows a first evaluation of the tsunami danger by an operator
within 5 min of the event onset (Matias et al., 2010).

In any case, despite the improvement of the background
infrastructure and the capability of the Portuguese Civil Pro-
tection Services to deal with more common hazards (such
as floods, fires or even earthquakes), there is still a lack of
information about the most probable scenarios that may re-
sult from the occurrence of a tsunami. According to a so-
cial awareness survey regarding tsunami risk performed in
Set́ubal, under the SCHEMA project (Scheer et al., 2011),
it is perceptible that although most of the inquired persons
show a good perception in identifying the risk and the most
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vulnerable areas associated with an earthquake or flooding
events, the tsunami hazard is still not seen as a high risk
event and there is a lack of association of an earthquake with
a tsunami event. In view of these results, one must conclude
that it is imperative to develop public awareness concerning
this issue.

Conversely, although the Civil Protection Authority shows
a high level of preparedness to deal with major hazards such
as floods or fires, it does not have specific plans to respond to
a tsunami event (or to a more probable combined earthquake-
tsunami event). For instance, there are detailed maps identi-
fying the most vulnerable areas and escape routes in case of
the occurrence of a flood, but there is no similar information
for the occurrence of a tsunami. In order to cover this gap,
the identification and mapping of the most vulnerable areas
using high resolution models can produce a reliable input in
the elaboration of evacuation and rescue plans in the case of
a tsunami event.

Such simulations were carried out for the area of Setúbal,
on the western Portuguese coast, using the MOHID wa-
ter modelling system (Malhadas et al., 2009) following a
methodology common to 5 sites that were investigated within
the framework of the SCHEMA project (Setúbal in Portu-
gal, Varna in Bulgaria, Catania in Italy, Rabat in Morocco,
and Mandelieu in France). In order to properly evaluate the
robustness of MOHID and other models to properly simu-
late the propagation of a tsunami event, a benchmark based
on data available from the 2004 Indian Ocean tsunami im-
pact on the Seychelles islands was performed using 5 differ-
ent models: MOHID water modelling system, Community
Model Interface for Tsunami (ComMIT) base on the Method
of Splitting Tsunami model (MOST), UBO-TSUFD model,
FUNWAVE model and the TIDAL model. The tide gauge
recorder from the Pointe Larue station located at Mahé Is-
land international airport was used to compare the results of
the water level and time of arrival measured and computed by
the models. Also, the results of maximum inundation depths
and current speed were used to benchmark the various mod-
els used in the SCHEMA project (Lessons learnt from the
Asia test site,www.schemaproject.org/spip.php?rubrique4).

2 Study site

The study site is located in the Sado estuary region, on the
western coast of Portugal (Fig. 1), and it includes two differ-
ent areas: Setúbal city and Tŕoia peninsula.

The Sado Estuary is located 40 km south of Lisbon and is
the second largest estuary in Portugal, with an area of ap-
proximately 24 000 ha. Most of the estuary is classified as a
natural reserve (Reserva Natural do Estuário do Sado). Ex-
ception is made for the city of Setúbal, its port, and a con-
siderable part of its surrounding area. With a number of in-
habitants of some 120 000 and a land area of 170 km2, the
population is concentrated mainly in the city of Setúbal.

Fig. 1. Location of the test site.

The Tŕoia peninsula is a low land sand spit that separates
the estuary from the ocean where, due to its particular char-
acteristics of long sand beaches, a strong tourism pressure is
present. Also due to its location, this area of Tróia peninsula
may be particularly vulnerable to a tsunami event. The coast-
line starts at the Tŕoia peninsula and extends until Melides,
over 45 km south.
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Fig. 2. Source(a): considered the most destructive simulated, Baptista et al. (2003). Source(b): MPF event, considered the moderated case,
Omira et al. (2009). Source(c): GBF event, considered the weakest, Omira et al. (2009).

Table 1. The considered scenarios, the fault for each scenario, the length and the width of the faults, depth from the sea bottom to the top of
the fault and the moment magnitude.

Scenario L W Epicentre coordinates D Slip Strike Dip Rake µ Mω

(Km) (Km) Lon Lat (Km) (m) (◦) (◦) (◦) (Pa)

MPTF 105 55 – – – 20 21.7 24 – –
> 8G. Bank 96 55 – – – 20 70 45 – –

MPF 129 70 −9.890 36.574 4.0 8.0 20.0 35 90 3.0× 1010 8.1
GBF 127 60 −11.332 36.665 5.0 8.3 233.0 35 90 3.0× 1010 8.1

2.1 1755 Tsunami

There has been a significant number of tsunami events regis-
tered on the Atlantic coast of the Iberian Peninsula (Baptista
and Miranda, 2009). Among them is the well-known 1755
earthquake and tsunami event.

The 1755 earthquake took place on Saturday, 1 Novem-
ber 1755, the Catholic holiday of All Saints’ Day, at approx-
imately 09:30 in the morning. The earthquake is considered
to have had a seismic intensity of X–XI on the Mercalli In-
tensity Scale, and it was felt all over Europe (Baptista et al.,
1998a). Its magnitude is considered to have been of the or-
der of 8.5 with the epicentre located south/southwest of Cape
São Vicente near the Gorringe Bank although there still per-
sists a degree of uncertainty about the precise location of the
epicentre and the focal mechanism (Baptista et al., 1998b).

The subsequent tsunami caused by the earthquake pro-
duced a large inundation and enhanced the destruction in
Lisbon downtown and other coastal villages such as Sétubal.

According to available descriptions, as a result of the com-
bined action of the earthquake and the tsunami, the city walls
collapsed which increased the damage and destruction of the
inner city. According to a description of the time “the Sea
destroyed the city walls entering the city almost a quarter of
a mile, carrying 2 boats for more than 50 steps (∼45 m) in
land” (Mendonça, 1758), “Letters by the last post notify that
no traces are left of St Ubes [Setúbal], the repeated shocks
and the vast surf of the sea having jointly concurred to swal-
low it up. It could withstand them, as it was situated at the
head of a small gulf formed by the tide at the mouth of the
[Sado]. . .” URBAN, (1755).

The level of destruction is recorded in other writings of
the time, such as the example of the annotation made by the
priest of Saint Julian Church: “By 9:30 of November, 1, 1755,
a great calamity occurred in Portugal and Spain and some
other European countries. The fatal calamity of an earth-
quake that lasted for a period of 8 minutes during which time
this noble village was destroyed, as was the case with Lisbon
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Table 2. Domain Resolution.

Level Grid Grid Size
Resolution Lines× Columns

1 0.01◦ 1000× 700
2 250 m 269× 388
3 50 m 224× 249
4 10 m 300× 650
5 2 m 396× 936

and all the territories adjacent to the water: the main de-
struction occurred in this village of Setúbal in which almost
all the houses and churches were destroyed, including our
church of S. Julian (...). and more than four thousand people
died in this village, not only as a consequence of the earth-
quake, but due to the action of the sea which on this fatal day
inundated the village three times (...).”

3 Hydrodynamic model

In order to evaluate the potential effects of a tsunami event
on the downtown area of Setúbal and Tŕoia peninsula, a
number of numerical simulations considering different po-
tential earthquake sources have been performed using MO-
HID modelling system, which is a three-dimensional finite
volume model developed by IST (Technical University of
Lisbon) and Hidromod (Martins et al., 2001). MOHID has
the ability to simulate flows over complex bathymetries and it
has been widely used to simulate flows ranging from shallow
coastal systems (Vaz et al., 2009) to deep ocean environments
(Riflet et al., 2008). The model uses Navier-Stokes primi-
tive equations with Boussinesq and hydrostatic assumptions.
MOHID is a 3-D baroclinic model. However, in this case
due to the barotropic nature of the processes involved and in
order to increase computational efficiency, a 2-D approach
(only one vertical layer) was followed. The model takes
into consideration the existence of moving boundaries which
allows the simulation of the inundation processes (Martins
et al., 2001). At the bottom, advective fluxes are imposed
as null and the diffusive flux of momentum is estimated by
means of a bottom stress calculated by a non-slip method
with a quadratic law that depends on the near-bottom veloc-
ity. This quadratic law is derived from the logarithmic law
of the wall near boundaries characteristic of boundary lay-
ers, as the bottom velocities are located half a grid box above
the bottom. This term is calculated semi-implicitly following
Backhaus (1983) for numerical stability reasons. The model
solves a semi-implicit ADI algorithm to compute the water
level evolution with two time levels per iteration. The two
components of the horizontal velocity are globally centred in
time t+dt /2 leading to a second order time accuracy (Martins
et al., 2001). MOHID allows the user to construct a tree of

Fig. 3. Time series location points for the Portuguese coast.

nested models with no limitations on the number of nesting
levels (Braunschweig et al., 2004). Between nesting levels a
radiation boundary condition proposed by Flather (1976) is
used. A one-way nesting approach with interpolation in the
horizontal and linear interpolation in the vertical and in time
is followed. A detailed description of the nesting methodol-
ogy is presented in Leitão et al. (2005).

The system also allows adding the tide level based on
global tide solution FES2004 (Lyard et al., 2006).

3.1 Simulations

In this study, three different possible tsunami sources corre-
sponding to different faults and therefore different initial sea
level displacements were simulated. These sources (Fig. 2,
Table 1) representing high, medium and low destructive con-
ditions were adopted from different proposals available in
the literature regarding possible earthquake sources south-
west of the Portuguese coast (Omira et al., 2009; Baptista et
al., 2003).

The most destructive source (Table 1) selected for simu-
lation corresponds to an interpretation of the origins of the
1755 earthquake proposed by Baptista et al. (2003). The two
other possible sources considered, the Gorringe Bank Fault
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Table 3. Results of simulated events for Setúbal.

Scenario Tide Travel Time Wave height Max. Water Max. Inundation Max. Velocity Water Column
(min) (m) Level Inland (m) Distance (m) Inland (m s−1) (m)

MPTF High 30 6.87 7–8 859 > 3 3
G. Bank Low 30 4.98 5–6 206 1.5–2 1.5–2

MPF
High 32 5.19 4–5 578 1.5–2 1.5–2
Low 32 3.26 No Inundation

GBF
High 35 5.05 5–6 419 1–1.5 0.5–1
Low 35 3.13 No Inundation

Fig. 4. Top: time series for source(a), Middle: time series source(b), Bottom: time series for source(c).
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Fig. 5. Set́ubal Inundation areas considering topography only (top)
and including buildings (bottom).

and the Marqûes de Pombal Bank Fault, are based on a study
done by Omira et al. (2009) regarding the design of a Sea-
level Tsunami Detection Network for the Gulf of Cadiz.

The simulations consisted in four level nested grids with a
fifth level only for the city of Śetubal that has incorporated
the detailed building information.

For the first level, the SRTM 30 data were used to build
a computational grid with a resolution of 0.01◦ (Table 2).
The second level (250 m resolution grid) is based on data re-
trieved from a combination of nautical charts and acoustic
surveys. For the third level, a regular grid with 50 m reso-
lution was prepared using a combination of nautical charts
and mostly acoustic surveys. For the fourth level, a 10 m
resolution grid using detailed bathymetric information of the
navigation channels obtained by acoustic surveys was set up.
The lowest level located at the city of Setúbal consists of a
2 m resolution grid including the detailed bathymetry of the
navigation channels and the information on the building char-
acteristics.

Two tide levels, referenced to the Portuguese hydrographic
zero, were selected, given that tide level plays a most relevant
role in the potential inundation areas: a high tide situation
corresponding to a 3.8 m water level and a low tide situation
corresponding to a 1.8 m water level, all altitudes referred to
hydrographic zero.

Fig. 6. Damage calculated by the Damasche tool for the Setúbal
and Tŕoia buildings.

For the region of Setúbal and Tŕoia, a survey of the build-
ing characteristics, roads, parking and marinas was done us-
ing Google Earth, Bing (for 3-D view) and local photog-
raphy. The building vulnerability classification as regards
tsunami hazard was performed according to the classification
adopted in SCHEMA that is principally derived from Leone
et al. (2006), but has been completed and enlarged in order
to include at least all constructions present in all test sites
of the SCHEMA (Scheer et al., 2011). Four main classes of
buildings have been defined in the classification, divided into
sub-classes on the basis of their structural characteristics of
resistance – the lowest class corresponds to light construc-
tions (A), masonry construction and not reinforced concrete
constructions (B, C and D), reinforced concrete constructions
(E) and the higher class corresponds to other constructions (F
and G).

The damage scale adopted in SCHEMA makes use of
6 levels of damage and was adopted from the work of Leone
et al. (2010), Peiris (2007) and Garcin et al. (2007) (Scheer et
al., 2011). The 6 levels correspond to no damage (D0), light
damage (D1), important damage (D2), heavy damage (D3),
partial failure (D4) and collapse (D5).

Nat. Hazards Earth Syst. Sci., 11, 2371–2380, 2011 www.nat-hazards-earth-syst-sci.net/11/2371/2011/
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Table 4. Results for selected locations.

Scenario Location
High Tide Low Tide

Travel Time Wave height Travel Time Wave height
(min) (m) (min) (m)

MPTF G. Bank

Figueira da Foz 77 6.98 78 4.96
Oeiras 38 9 39 6.77
Cabo S̃ao Vicente 15 16.25 15 14.2
Huelva 54 7.94 55 5.82
Cadiz 55 12.1 56 10

MPF

Figueira da Foz 79 5.26 80 3.26
Oeiras 40 6.08 43 3.95
Cabo S̃ao Vicente 15 6.58 15 4.61
Huelva 70 5.20 71 3.18
Cadiz 70 6.48 71 4.59

GBF

Figueira da Foz 77 6.26 78 4.30
Oeiras 42 6.00 43 3.95
Cabo S̃ao Vicente 24 5.27 25 3.29
Huelva 81 4.41 82 2.40
Cadiz 80 4.93 81 3.00

For the evaluation of the damage suffered by the build-
ings, an ArcGis tool developed within the framework of
the SCHEMA project was used. The Damage Assessment
SCHEMA tool (DamASCHE) is able to assess the potential
building damage in an area where a hazard like a tsunami
has been modelled and a building vulnerability matrix exists
(Tinti et al., 2011). In this case, for the damage assessment
the modelled parameter was the water column present in the
inundation area.

For the larger computing scales, times series based on the
study from Baptista et al. (2003) corresponding to different
locations along the Portuguese coast (Fig. 3) were also ana-
lyzed.

4 Results and discussion

4.1 Coastal scale

For the most destructive scenario (Fig. 2: source a), the first
wave to reach the Sado Estuary (Table 3) has a height of
about 7 m and takes about 30 min to travel from the source
to Set́ubal. During the simulation period the highest wave
registered measures approximately 9 m and occurs one hour
and twenty minutes after the beginning of the event. If we
consider a set of synthetic mareograms as described in Ta-
ble 4, selected to output time series, the most significant one
is the Cape of S̃ao Vicente where the wave arrives just fifteen
minutes after the beginning of the event with a wave height of
16 m. As for the other relevant locations selected along the

Portuguese coast, Oeiras (near Lisbon), was hit 8 min later
than Set́ubal with a 9 m wave.

In the case of the moderated scenario (source b in Fig. 2)
event, the first wave took approximately 32 min to reach the
Sado Estuary with a height of about 5 m. In comparison with
the previous scenario, this is almost 2 m lower. The Cape of
São Vicente registered an initial wave of about 6.5 m, which
took approximately fifteen minutes to arrive and the wave ar-
rived at Oeiras 8 min after reaching Sado with a height of
approximately 6 m and Figueira da Foz registered a wave
measuring 5 m 39 min after arriving in Oeiras. In the case
of the weaker scenario (source c in Fig. 2), the arrival of the
first wave occurs five minutes later than the time that was
computed for the first event, corresponding to a travel time
of 35 min.

When comparing these results with the gathered informa-
tion and the results achieved by Omira et al. (2009) and Bap-
tista et al. (2003), the MOHID model generally exhibits sig-
nificant agreement. The differences registered may be due to
the different models used: SWAN (Mader, 1988) for the first
study and an implementation of COMCOT (Liu et al., 1998)
for the second, the consideration of high tide and low tide,
the grid resolution, and also bathymetric data.

The overall results for all the referred stations can be seen
in Table 3 and Fig. 4.

4.2 Local scale

Using the local scale results obtained for the 10 m grid, it
was possible to make a detailed evaluation of the extension
and relevance of the most probable inundation areas, both
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Table 5. Damage Table.

Class Hmin Hmax Damage Class Hmin Hmax Damage

A 0 0 0 C 4 6 3
A 0 1.8 1 C 6 8 4
A 1.8 2.2 2 C 8 9999 5
A 2.2 2.6 3 D 0 0 0
A 2.6 3.8 4 D 0 2 1
A 3.8 9999 5 D 2 4.5 2
B 0 0 0 D 4.5 6.5 3
B 0 2 1 D 6.5 9 4
B 2 3 2 D 9 9999 5
B 3 4 3 E 0 0 0
B 4 5 4 E 0 3 1
B 5 9999 5 E 3 6 2
C 0 0 0 E 6 9.5 3
C 0 2.5 1 E 9.5 12.5 4
C 2.5 4 2 E 12.5 9999 5

Fig. 7. Secondary vulnerability factors zones.

in what concerns the Tróia peninsula and Setúbal city. In
the case of Tŕoia Peninsula, the most affected areas are the
beach and the tip of the peninsula where the Tróia resort is
located. The inundation in these areas can reach up to 600 m
inland and a water level of 8 to 9 m can be reached around the
buildings area. In these areas velocities higher than 3 m s−1

were calculated.

For Set́ubal city, in the case of the stronger event, the max-
imum water level lies between 6 and 8 m and one can see that
the entire shoreline suffers a relevant impact. The inundation
can reach 850 m inland, causing the inundation of the his-
torical centre. Here, velocities can range from 0.6 m s−1 to
higher than 3 m s−1, although the analysis of the velocities
must be done with some caution since the values reached in
low water or land areas are expected not to be very trustwor-
thy due to the limitations of the computational process and
the complexity of the geometry.

In Table 4 an overall view of the results on the synthetic
mareograms for the different sources can be seen.

For the city of Set́ubal, a fifth computing level including
the building information was modelled with the main pur-
pose of evaluating to what extent the inclusion of this infor-
mation might influence the conclusions concerning the inun-
dation areas. In order to do this simulation, it was necessary
to build a computational grid with accuracy enough to be able
to represent the buildings and the roads in between them. Al-
though the results of these simulations need to be carefully
analyzed, as they may lead to a false impression of accuracy
due to the extreme detail of the flow, they are extremely use-
ful if used as a sensitivity analysis. A major conclusion is
that the building information can take a significant role, both
in the way the inundation occurs and in what concerns its ex-
tension (Fig. 5). Comparing the results with topography only
and with the extra flow propagation obstacles composed by
the buildings, one may, at least, have a confidence interval in
what concerns the mapping of the inundation areas.

4.3 Vulnerability analysis

For sources a and b, a comparison of high and low tide impact
was done for the local scenarios of Tróia and Set́ubal. The
maximum of all modelled scenarios at low and high tide was
extracted and mapped showing the relevance of the tide level
in the inundation areas.

In Set́ubal the building classification can go from C to G.
The D class is mostly located in the historical part of the town
and is also the most common class found. The C class can
be found mostly near the fishing marina and refers to some
old fisherman houses. The G class are warehouses, impor-
tant buildings and administrative buildings. Here, the max-
imum inundation observed from all the modelled scenarios

Nat. Hazards Earth Syst. Sci., 11, 2371–2380, 2011 www.nat-hazards-earth-syst-sci.net/11/2371/2011/
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can reach the old town centre affecting administrative build-
ings, restaurants and warehouses. The highest level of dam-
age (Fig. 6, Table 5) suffered by buildings in Setúbal for all
the scenarios is D2.

In the case of Tŕoia, some A class structures used as beach
support infrastructures that can be found on the beach may
suffer D5 damage levels. Nevertheless, most of the build-
ings in this area can be classified as D or F and only show
vulnerability to damages of D1 class level.

In what concerns the routes classification, it was con-
cluded that the streets in Setúbal and Tŕoia cover a wide
width range scale (1 to 10 m wide). In a worst-case scenario,
all the roads near the seaside are affected; such is the case
of the main road that crosses the town centre and is linked to
the other major access points to the town. Inside the histori-
cal area there are mostly narrow streets that serve mainly for
the local population and commerce. With an event like that
of source a), all these roads would remain inundated and this
would limit rescue efforts. In the case of Tróia, the streets
are narrow and there is only one road that goes in and out of
the resort. With an event like that of source one, the streets
are at a high risk to remain flooded.

An additional factor that can contribute to increasing the
damage are the parking areas located near shore, as a car may
easily float and hit buildings (Fig. 7). Similar secondary dam-
age factors may be identified in the marinas, as the parked
cars, docked boats and fishing devices, such nets and traps,
may become additional damage factors for people, buildings
and rescue crews.

5 Conclusions

In order to perform an evaluation of the vulnerability asso-
ciated with the occurrence of a tsunami event in the Setúbal
area, we made a number of high resolution wave propaga-
tion simulations considering different potential earthquake
sources with different magnitudes. As a result, detailed inun-
dation maps combined with the available information of the
local infrastructures were able to produce high scale vulner-
ability maps, escape routes and emergency routes maps.

The results show that significant population areas are at
risk to be affected; such are the cases of Setúbal and Tŕoia
where urban development should be carefully planned taking
into consideration the vulnerability of the areas to a tsunami
event.

With the implementation of the early warning system,
which is designed to provide a tsunami warning with a time
delay of 10 min for confirmation, the Civil Protection Au-
thorities will have a maximum time interval of approximately
20 min to activate mitigation measures against the occurrence
of a tsunami. It should also be taken into consideration that,
as in 1755, for such an event a previous earthquake had likely
already occurred.

The type of information provided by high resolution mod-
els, such as the one presented in this paper, can be very use-
ful in the development of maps for identifying risk areas,
creating evacuation plans, deployment of signalization for
evacuation routes, and deployment of rescue teams and ade-
quate equipment. If used in combination with other emer-
gency plans that already exist, it will contribute to better
and quicker responses, save rescue crew lives and avoid con-
straints caused by a previous earthquake. It will also con-
tribute to improve the flow of general information to the pop-
ulation through lectures, brochures, radio, and newspapers.
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