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Abstract. Flash flood events are floods characterised by a
very rapid response of basins to storms, often resulting in
loss of life and property damage. Due to the specific space-
time scale of this type of flood, the lead time available for
triggering civil protection measures is typically short. Rain-
fall threshold values specify the amount of precipitation for
a given duration that generates a critical discharge in a given
river cross section. If the threshold values are exceeded, it
can produce a critical situation in river sites exposed to al-
luvial risk. It is therefore possible to directly compare the
observed or forecasted precipitation with critical reference
values, without running online real-time forecasting systems.
The focus of this study is the Mignone River basin, located in
Central Italy. The critical rainfall threshold values are eval-
uated by minimising a utility function based on the infor-
mative entropy concept and by using a simulation approach
based on radar data. The study concludes with a system
performance analysis, in terms of correctly issued warnings,
false alarms and missed alarms.

1 Introduction

Classical real-time flood forecasting systems generally must
run hydrological models in real-time. The time required for
the model to run can be greater than the lead time available
for issuing alerts in basins subject to flash flooding. A flood
warning system based on a comparison of observed or fore-
casted precipitation and critical rainfall values could provide
decision-makers with relatively simple, clear, and immediate
messages. Rainfall thresholds specify the amount of precipi-
tation for a given duration that generates a critical discharge
in a given river cross section. If the thresholds are exceeded,
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it can produce a critical situation in river sites exposed to al-
luvial risk, triggering prevention operations and emergency
system alerts (Georgakakos, 1995).

In this work the critical rainfall thresholds for the Mignone
River cross section are defined using an entropy-based deci-
sion approach and a simulation approach based on radar data,
in order to establish rainfall warning values for critical flood
events. First, an overview of the entropy concept is given.
Second, the methodology for rainfall thresholds estimation is
presented and applied to the case study of the Mignone River.
Finally, the reliability of rainfall thresholds is evaluated and
results are discussed.

2 The entropy concept

The entropy concept was introduced by Clausius in 1864
(from ancient Greek en, “inside”, and troph, “change”) to ex-
plain heat behaviour at different temperatures. The entropy
of a system is given by the sum of the entropy of each part of
the system, so that form subsystems,H is

H =

m∑
i=1

Hi =

m∑
i=1

k lnpi, (1)

whereHi is the entropy of each subsystemi, pi is the prob-
ability of being in the ith state andk is a positive constant.
Assumingk = 1 and the base of logarithm as 2, the measure
of entropy is in bit (as in this work). The most probable distri-
bution of the energy in a system is one for which the entropy
of the whole system would be equal to its maximum value:

H =

m∑
i=1

k lnpi = max
.

(2)

Heuristic entropy can be interpreted as a measure of the un-
certainty about the occurrence of a certain event (Papoulis,
1991). The probabilityP(A), for example, of an eventA,
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can be defined as the measure of the uncertainty about the
occurrence or not-occurrence ofA. If Ai events are a parti-
tion of the eventU , so that each event is incompatible with
others (AiAj =∅ for i 6= j), and the union of all the events is
U itself (U = A1 ∪A2 ∪ ...An), then the measure of the un-
certainty ofU is H(U) and it is the entropy of the partition
of U . The functionalH(U) was derived from a number of
postulates, such as:

1. H(U) is a continuous function ofpi = P(Ai);

2. if p1=. . . =pN = 1/N , thenH(U) is an increasing func-
tion of N ;

3. if a new partitionB is formed by subdividing one of the
sets ofU , thenH(B) >H(U),

it can be shown that the sum:

H(U) = −p1log2p1− ...−pN log2pN (3)

satisfies the postulates and is unique within a constant factor.

2.1 Discrete random variable (RV) type

Suppose thatx is a discrete type of RV taking the valuexi

with probability

P {X = xi} = pi . (4)

The events{X = xi} are mutually exclusive and their union
is the certain event; hence they form a partition. This parti-
tion will be denoted byUx .

The entropyH(X) of a discrete-type RVX is the entropy
H(Ux) of its partitionUx (Papoulis, 1991):

H(X) = H(UX) = E
[
−log2p(X)

]
= −

∑
i

pi log2pi . (5)

2.2 Continuous random variable (RV) type

The entropy of a continuous-type RV cannot be so defined
because the events{X = xi} do not form a partition. The en-
tropy of a continuous type RVX is by definition the integral
(Papoulis, 1991):

H(X) = −

∞∫
−∞

f (x)log2f (x)dx. (6)

The integration extends only over the region wheref (x) 6= 0
becausef (x)lnf (x) = 0 if f (x) = 0.

3 Flood rainfall thresholds

Generally, rainfall thresholds identify precipitation critical
values, which could be used in the context of landslides and
debris flow hazard forecasting (Neary and Swift, 1987; An-
nunziati et al., 1999; Crosta and Frattini, 2000), as well as in

flood forecasting or warning (Carpenter et al., 1999; Mancini
et al., 2002; Georgakakos, 2006; Martina et al., 2006). In the
context of flood warning, when critical values are exceeded,
flooding is expected. Rainfall thresholds specify the amount
of precipitation for a given duration that generates a critical
discharge in a given cross section.

There is a long tradition of rainfall threshold-based
methodologies, although different approaches have been
adopted. The Flash Flood Guidance method (FFG) (Mogil
et al., 1978) was developed by the US National Weather Ser-
vice (NWS) for flash flood warning. FFG is based on the
effective depth of rain of a given duration, taken as uniform
in space and time, necessary to cause minor flooding (e.g.,
2 yr return time flow) at the outlet of the considered basin. If
the FFG is surpassed by rainfall amounts, then flooding in the
basin is considered likely to occur. FFG values are computed
as the flow causing flooding divided by the catchment area
times the Unit Hydrograph’s (Snyder’s or Geomorphologic)
peak value for any specified duration. GIS support is used to
determine the main characteristics of the basin, and region-
alization values are provided to extend the methodology to
other locations (Carpenter et al., 1999).

The key advantage of FFG is that it is possible to
issue warnings without the need to run entire hydro-
meteorological forecasting chains. The limitations of FFG
are in the assumptions of spatially/temporally uniform rain-
fall and linear responses (i.e., that affect the size of the
basins), and the use of regional relationships to make infer-
ences about ungauged locations. FFG performance in un-
gauged basins is poor (Norbiato et al., 2008), because the hy-
drological model parameters cannot be calibrated (Bloeschl,
2005) and it is more difficult to estimate critical discharge
values (Ntelekos et al., 2006).

A different approach was proposed by Mancini et
al. (2002). Threshold values are estimated with an event-
based rainfall-runoff model, which iteratively searches for
the rainfall amount that could produce a critical discharge
or water stage. As input of the rainfall runoff model, syn-
thetic hyetographs with different shapes and durations are
used. This is a deterministic approach and has been used
in previous work (e.g., Montesarchio et al., 2009); it will be
further discussed in Sect. 3.1.

Lastly, a utility function approach couples rainfall and dis-
charge in a probabilistic way (Martina et al., 2006). The
rainfall incorporates the dependence between the cumulated
rainfall volume for the storm duration and the possible con-
sequences on the water level or discharge in a river section as
perceived by the stakeholders. The thresholds therefore cor-
respond to the minimum expected value of an opportunely
chosen Bayesian cost utility function. This approach is used
as a probabilistic approach in the present work and will be
further discussed in Sect. 3.2. Moreover, this approach is ex-
tended by employing an entropy-based decision function to
overcome the subjectivity implied in the Bayesian approach
(Sect. 3.2.2).
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3.1 Deterministic approach for rainfall threshold
evaluation

The deterministic approach needs an opportunely calibrated
rainfall runoff model to simulate basin response to storms.
The inverse hydrologic problem is iteratively solved to iden-
tify, for a given durationd, the cumulative rainfall that cor-
responds to the critical discharge. The identification of the
critical section is usually based on the flooding history of
the river and its hydraulic geometry. When this information
is not available, the critical section can be identified as the
outlet of the basin, where all of the upstream contributions
converge.

Given the hydraulic geometry and the marked critical wa-
ter stage, the critical discharge is estimated by using the
stage-discharge curve (Rosso, 2002). When the discharge
data are unavailable and a hydraulic simulation cannot be
carried out, a regional model can be applied (e.g., the index
discharge method; Darlymple, 1960) in order to identify the
critical discharge. This method is based on statistical region-
alization and allows for the replacement of time with space
and the use of a set of hydrometric observations from a ho-
mogeneous area to replace the lack of hydrometric data in the
critical section. Given a certain return period, the maximum
discharge for the critical section is calculated as the product
of two terms: a scaling factor which is characteristic of the
site, and a dimensionless growth factor which is characteris-
tic of the homogenous region.

In the gauged sections it is clearly possible to calculate
the discharge index directly using the arithmetic mean of the
available data. For the ungauged sections, indirect methods
(e.g., Brath et al., 2001) must be used instead. With this
approach, a critical rainfall threshold is obtained which no
longer refers to the critical discharge but to the different re-
turn periods (i.e., 2, 5, 10, 20, 50, 100 yr). A description of
the procedures which must be carried out in order to eval-
uate the critical rainfall thresholds in different situations is
reported in Montesarchio et al. (2009). The critical refer-
ence discharge could be reached and surpassed for different
space-time configurations of rainfall fields. To simplify, cu-
mulative precipitation (P) can be evaluated globally over the
entire basin, after a time (d) from the beginning of a thun-
derstorm. Rainfall thresholds are generally a function of the
critical cross-section characteristics, but also of the bound-
ary conditions (e.g., soil imbibition condition at the begin-
ning of the event) and the type and temporal evolution of the
rain event. These dependencies can be summarised using the
AMC (Antecedent Moisture Condition) index (SCS, 1971,
1986) and standard hyetograph (Rosso, 2002).

Given hyetograph, rain duration (d) and initial soil imbibi-
tion condition based on the AMC index, the critical depth can
be investigated. Independent simulations can be performed
for all combinations of rainfall durations (3, 6, 12 and 24 h),
hyetographs and AMC classes. The rainfall thresholds are

iteratively identified by trial and error until the critical dis-
charge value is reached.

3.2 Probabilistic approach for rainfall threshold evalu-
ation

To evaluate the threshold values corresponding to the mini-
mum expected value of an opportunely chosen function, the
joint cumulative distribution of cumulated rainfall and the
corresponding peak discharge must be defined. Also, when
a probabilistic approach is used, the soil moisture conditions
affect the threshold values. Using a hydrological simulation
approach, the peak discharge was evaluated for each AMC
class.

3.2.1 Bayesian approach

The “convenience” concept is introduced in relation to dam-
age perception, and is measured by a Bayesian utility func-
tion that also includes immeasurable damages derived by
missed alarms. The utility function is dependent on the criti-
cal discharge value (Martina et al., 2006), such that:

U(q,v|VT,T )=

{
a

1+be−c(q−Q∗)
if v ≤ VT

C0+
a′

1+b′e−c′(q−Q∗)
if v ≥ VT

,

(7)

where:q is the discharge value;Q∗ is the critical discharge
value for the river critical cross section;v is the cumulated
rainfall value; VT is the critical threshold value;T is the
storm duration (3, 6, 12, 24 h); anda, b, c andC0, a′, b′,
c′ are proper parameters.

The utility functionU(q,v|VT,T ) for values ofv <VT ex-
presses damage perception if the alert is missed. There are
negligible costs if the effective dischargeq is lower thanQ∗,
while the cost increases rapidly ifq is higher thanQ∗. For
values ofv > VT, the function expresses damage perception
if the alert is issued. Costs are initially higher in the lat-
ter scenario than in the no-alarm case because of the oper-
ative costs associated with triggering civil protection mea-
sures; however, the costs grow slowly ifq is higher thanQ∗.

The parametersa, b, c andC0, a′, b′, c′ change with the
importance given to the possible combination of actions (i.e.,
issuing an alert or not) and actual process (i.e., the critical
discharge is surpassed or not).

Regarding the liability of the decision-maker in determin-
ing whether or not to issue an alarm, three cases can be distin-
guished (FLOODsite, 2008): the “real” case, the “risk prone”
case and the “risk averse” case. A different set of parameters
(a, b, c andC0,a

′, b′, c′) corresponds to each case, resulting
in different costs. The parameters of the utility function are
summarized in Table 1.

In the “risk averse” case, since the costs associated with
a false alarm are negligible, issuing false alarms is preferred
over risking the possibility of a missed alarm. The costs of
failing to issue an alarm can grow rapidly in a real emer-
gency, and the difference in maximum cost between alarm
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Table 1. Utility function parameters (FLOODsite, 2008).

alarm no alarm

parameters (C) a b c a′ b′ c′ Co

“Risk averse” case 10× 106 2 0.020 3× 106 60 0.030 7× 103

“Risk prone” case 10× 106 500 0.023 7× 106 1000 0.027 15× 103

“Real” case 10× 106 200 0.025 5× 106 800 0.030 10× 103

and no-alarm scenarios is great. In the “risk prone” case
some costs for flood events are considered more acceptable
than false alarm costs. Areas of low economic value can be
affected by low intensity floods, while more valuable areas
(economically and socially) will be affected for a higher re-
turn period. False alarm costs are higher than in the pre-
vious case, because resources must be employed when the
alarm is issued. In the “real” case, the real experiences of
decision-makers in issuing alarms are evaluated. The cost
of a false alarm is evaluated operatively (e.g., 50 employees
and their equipment). The missed alarm cost grows when the
discharge exceeds the project reference value for structural
protection measures. The functions corresponding to each
risk case are shown in Fig. 1.

The most convenient threshold valueVT is identified (for
each durationT = 3, 6, 12, 24 hours) by minimising the ex-
pected utility cost function:

VT = MinVT 〈E{U(q,v|VT,T )}〉 =

= MinVT

〈
+∞∫
0

+∞∫
0

U(q,v|VT,T )f (q,v|T )dqdv

〉
,

(8)

wheref (q,v|T ) is the joint distribution of cumulated rainfall
volume and peak discharge (as determined in Sect. 4.3) and
U(q,v|VTT ) is the utility function.

3.2.2 Utility-entropy function

The definition of measure of risk based on the expected
values of utility and entropy (Yang and Qiu, 2005) is de-
fined on the basis of the classical decision model under risk.
Three parts are defined: the state space2 = {θ}, the ac-
tion spaceA = {a}, and the payoff functionX = X(a,θ),
defined forA × Q. The decision model is thereforeG =

(Q,A,u), whereu = u(X) is the decision maker’s utility
function. Suppose that at least two actions exist in action
space, so the decision-maker’s utility function is nonnegative
and the meana ∈ A{|E[u(X(a,θ))]|} exists. When the mean
a ∈ A{|E[u(X(a,θ))]|} is nonzero, the measure of risk when
taking an actiona is defined as:

Fig. 1. Utility functions for different risk cases. The dotted line
represents the function if the alert is issued, the solid line if not.

R(a) = λHa(θ)+(1−λ)E[(u(X(a,θ))]

/meana∈A{|E[u(X(a,θ))]|}, (9)

where λ is a constant (0< λ < 1), R(a) denotes the
risk of taking an actiona, and Ha(θ) represents the en-
tropy of the distribution of the corresponding state. When
meana∈A{|E[u(X(a,θ))]|} = 0, then for any actiona ∈ A →

E[u(X(a,θ))] = 0. In this caseR(a) = Ha(θ).
This measure of risk is defined as the expected value of the

utility entropy (EU-E). The entropy is the objective measure
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of the uncertainty of the state of natureθ . The constantλ
is defined as the “tradeoff coefficient” and it reflects a trade-
off between the subjective utility of a decision-maker’s ac-
tion and the objective uncertainty of its corresponding state.
When the decision-maker wants the expected utility to have
a greater effect, thenλ = 0; when the decision-maker wants
an expected utility to have a smaller effect, thenλ = 1.

The EU-E measure is relative. It depends on the expected
function of entropy and utility and on the expected value of
every action. The tradeoff coefficient provides a balance of
these factors that can be used for the decision-maker’s sub-
jective valuation. The expected value of utility reflects the
subjective preference, while the entropy represents the ob-
jective uncertainty about a decision.

The utility function is introduced according to Bayesian
decisional theory and represents the cost of flood damages in
cases where an alarm was either issued or missed during a
flood event (Martina et al., 2006), as shown in Eq. (7). The
parameters of the general decision model are explained in
Sect. 4.5.2.

4 Case study

4.1 Basin characteristics

The Mignone River in Italy originates at the confluence be-
tween the Scatenato, Coriglione and Biscione ditches, at
633 m a.s.l. The total length is 62 km, from the Sabatini
Mountains (northeast to Lake Bracciano) to the Tyrrhenian
Sea (between Tarquinia and Civitavecchia).

Near Rota (from the hydrographical left), the Mignone
River receives the Verginese ditch tributary and, near Monte
Romano (from hydrographical right) it receives the Vesca
Stream. The overall contribution is scarce and the hydraulic
behaviour is variable, which is typical of a torrential regimen.
The basin area is characterized by hilly zones with some re-
lief with steep slopes corresponding to the water-engraved
valley. The total area is about 560 km2, with an average ele-
vation of 233 m a.s.l. The basin has an essentially horizontal
development, bounded in the North by the Cimini Mountains
and hill relief towards the sea (near Tarquinia), and in the
South by the Sabatini and Tolfa Mountains. Geologically,
the Mignone River basin is characterized by volcanic rocks
(25 %) in the mountainous areas, while further downstream
there are sands and conglomerates (14 %), clay (9 %), and an-
thropogenic rocks (2 %), but mainly flysch (41 %), as well as,
of course, alluvial deposits along the river (9 %). There are
no carbonates. The Mignone River area was influenced by
the explosive activity of the Vulsini, Vico Lake and Cimino
complex, alternating layers of clay and marl. The Mignone
River therefore has a low permeability which implies that the
flows range from very low to very high values, depending on
the rain regimen.

Fig. 2. Study area and radar position. The red dot in the lower
right-hand corner represents the position of the Polar 55C radar. A
2 km× 2 km grid was overlaid over the map of entire basin, located
in the Northeast with respect to the radar. The green dots represents
the available rain gauge stations in the study area.

4.2 Data set

Information about historical Mignone River flood events
is available on the Sistema Informativo Catastrofi Idrogeo-
logiche (SICI) of the Consiglio Nazionale delle Ricerche-
Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeo-
logiche CNR-GNDCI website. The preliminary historical-
documentary analysis was used to identify the critical
hydraulic cross-section with the monitored cross-section
“S.S. Aurelia” (drainage area 440 km2), near which the
Mignone River overflowed three times during the last century
(8 November 1934, 27 December 1959, 16 November 1962).
Given cross-section geometry and the stage-discharge curve
used by the authorities, it was determined that the critical
reference dischargeQ∗

= 131.0 m3 s−1 (Montesarchio et al.,
2009). To the critical reference discharge corresponds a re-
turn period of 1.25 yr, evaluated with a partial duration se-
ries method. It means that reaching critical conditions in
Mignone River basin is quite common, and having a skilled
warning system available would prevent damage and loss.

4.2.1 Hydrometric and pluviometric data

Hydrometric and pluviometric data (from 1999 until 2008)
were used both for marginal and joint distribution fitting. Hy-
drometric data were used also to perform the calibration and
verification of the rainfall-runoff model, which is based on
radar data. A summary of flood events affecting the Mignone
River basin from 1999 to 2007 can be found in Montesarchio
et al. (2009).
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Fig. 3. Joint probabilities distributions for rainfall depth-cumulated rainfall (3, 6, 12, 24 h), for soil AMCIII condition.

Hydrometric and pluviometric data of the years 2009 and
2010 are used to add a short validation period to test the effi-
ciency of rainfall thresholds based warning system.

4.2.2 Radar data

The Polar 55C radar is located 15 km southeast of Rome,
Italy, in the Tor-Vergata research centre. The Polar 55C is a
C-band Doppler weather radar with polarization agility and
a 0.9◦ beam width. The radar is capable of transmitting and
receiving horizontally and vertically polarized signals on al-
ternate pulses, which allows the reflectivity factor (Zh), the
differential reflectivity (Zdr), and the differential phase shift
(8dp) to be measured.

Radar measurements are obtained by averaging 64 pulses
with a range-bin resolution of 75 m covering a 120 km radius
from the radar site. The temporal resolution is 5 min. To re-
move the spurious returns from the data, an algorithm based
on polarimetry is applied (Lombardo et al., 2006a).

The following Z − R relation was obtained for the C-
band radar using a nonlinear regression analysis (Russo et
al., 2005):

R = 7.27×10−2Z0.62
h , (10)

whereZh is the reflectivity factor (mm6 m−3) andR is the
rainfall rate (mm h−1).

Radar data provide fine space-time resolution rainfall,
useful for hazard nowcasting (Lombardo et al., 2006b,
2009), flood forecasting (Russo et al., 2006; Montesarchio
et al., 2009) and sewer system monitoring (Giulianelli et al.,
2006). On the other hand, despite continuous technologi-
cal progress, the available instruments used to measure rain-
fall across several spatio-temporal scales remain inaccurate
(Villarini et al., 2007), implying inaccuracies in rainfall esti-
mates.

In this work we are assuming that uncertainties in radar-
derived precipitation estimates are negligible, even if it is
well known that these estimates are affected by sources of un-
certainty (Wilson and Brandes, 1979; Krajewski and Smith,
2002; Habib et al., 2004; Germann et al., 2006; Ciach et al.,
2007; Villarini and Krajewski, 2010a). However, in these
studies operative radar networks are examined. The Polar
55C is a research radar, with higher measuring performance
than operative network. So the radar-rainfall estimates are
considered error-free (see also Ntelekos et al. (2006) for a
similar application).

After the transformation from polar to Cartesian coordi-
nates was performed, a 2 km× 2 km grid was overlaid over
the map of entire basin (Fig. 2). For each temporal interval
the values of the rainfall rate were obtained at each pixel,
and thus it was possible to calculate the cumulative rainfall
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Table 2. Marginal distributions parameters of observed cumulated valuesv and corresponding peak dischargeq, sorted by duration.

Duration
AMC Data

Distribution
Parameters

Class series values

3 h

I v (mm) exponential λ = 0.29
q (m3 s−1) Frechet α = 3.03;ε = 1.36

II v (mm) exponential λ = 0.29
q (m3 s−1) Frechet α = −3.15; ε = 1.52

III v (mm) exponential λ = 0.29
q (m3 s−1) Frechet α = −3.27; ε = 1.70

6 h

I v (mm) exponential l= 0.17
q (m3 s−1) Frechet α = 1.87; ε = 1.80

II v (mm) exponential λ = 0.17
q (m3 s−1) Frechet α = 1.77; ε = 2.00

III v (mm) exponential λ = 0.17
q (m3 s−1) Frechet α = 1.70; ε = 2.22

12 h

I v (mm) exponential λ = 0.11
q (m3 s−1) log-normal µ = 2.68;σ = 0.77

II v (mm) exponential λ = 0.11
q (m3 s−1) log-normal µ = 2.33;σ = 0.72

III v (mm) exponential λ = 0.11
q (m3 s−1) log-normal µ = 2.56;σ = 0.76

24 h

I v (mm) exponential λ = 0.04
q (m3 s−1) log-normal µ = 3.19;σ = 0.77

II v (mm) exponential λ = 0.04
q (m3 s−1) log-normal µ = 3.54;σ = 0.83

III v (mm) exponential λ = 0.04
q (m3 s−1) log-normal µ = 3.88;σ = 0.86

by radar with a temporal resolution of 30 min. The radar data
have only been available since 2008; as such, a total of five
events were used to calibrate the model in the saturated soil
condition (i.e., AMCIII). More events, not used in calibration
phase, are used also to test the warning procedures.

4.3 Fitting marginal and joint distribution

Given the dependence of rainfall threshold values on soil
moisture conditions, it would have been optimal to initially
subdivide the available data based on AMC condition and
then further subdivide by duration. However, subdividing
the data according to AMC classes created very short data
series, thereby increasing the uncertainty of the statistical in-
ference process. Therefore, the series were classified firstly
according to their duration, and then used in a hydrological
simulation framework to obtain also different AMC series.
The distributions fitting the cumulated rainfallv and the peak
dischargeq and their parameters are summarized in Table 2.

The marginal probability distributions were determined
in order to obtain the joint distributions; the marginals were
processed through the Normal Quantile Transformation
(NQT) (Kelly and Krzystofowicz, 1997) and by a meta-
Gaussian relationship:

h(q,v) =
f (q)g(v)√

1−γ 2

exp

{
−

γ

2(1−γ 2)

[
γ

[
Q−1(F (q))

]2
(11)

−2
[
Q−1(F (q))

][
Q−1(G(v)

]
+γ

[
Q−1(G(v)

]2
]}

,

whereZi = Q−1(F (qi)) andWi = Q−1(G(vi)) are the in-
verse of the standard normal distribution functions derived
from the parameters of the marginal series,f (q) andg(v) are
the marginal density functions andγ is related to the Pearson
correlation coefficientρ betweenZ andW :

ρ = (6/π)arcsin(γ /2). (12)

For each duration:

h(q,v) = h(q,v|T ), (13)

whereT is 3, 6, 12 or 24 h. In Fig. 3 the calculated joint
distributions are shown for the AMCIII soil condition.
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Table 3. Parameters values for models calibrated with radar data.

AMCIII Class Subbasin Subbasin

S.S. Aurelia Rota

Initial Abstraction Ratio 1 1
Potential Retention Scale Factor 0.35 0.35
Time of Concentration (h) 6.11 3.55
Storage Coefficient (h) 8.28 3.08
Lag (min) 192.82 –

4.4 Simulation model

A rainfall-runoff model was implemented, through which the
behavior of the basin was simulated. The calibrated model
was used to solve the inverse hydrological problem in the
critical section.

The rainfall-runoff model used in this work is semi-
distributed, so that the spatial variability of the physical pro-
cesses can be taken into account. Even though the critical
rainfall threshold is expressed in terms of cumulative rain-
fall, it is important to assess the response of the basin in case
of a distributed spatial input, as the critical situation can also
be caused by localized rainfall.

In order to outline the rainfall-runoff transformation in
both sub-basins, a modified Clark model was employed (Pe-
ters and Easton, 1996; Kull and Feldmann, 1998); this per-
mits a semi-distributed approach to be used, which takes
into account the spatial variability of the physical processes.
In order to outline the hydrological losses, a SCS-CN grid
model (SCS, 1971, 1986) and Lag model were used to out-
line the propagation of the full flood wave (Pilgrim and
Cordery, 1993).

Figure 4 shows the calibration and verification of the hy-
drological model for the AMCIII class. Table 3 summarizes
the values of the model’s parameters. In order to evaluate
the performance of the model, the following two indicators
were considered: the Root Mean Squared Error (RMSE) and
the efficiency coefficient (CE). Their values are 59.46 m3 s−1

and 0.24, respectively.

4.5 Rainfall thresholds evaluation

4.5.1 Bayesian approach

The Bayesian approach is described in Martina et al. (2006).
Here, only graphical and numerical results related to the
Mignone River case study are reported (Fig. 5, Table 4).
For each AMC condition, three curves were obtained, corre-
sponding to the various risk cases. Clearly, higher saturation
will result in lower corresponding threshold values.

Fig. 4. Calibration and validation of the AMCIII class hydrologic
model for the Mignone River basin on the basis of the observed
hydrographs at the “Aurelia” gauge station in December 2008 with
radar data.

4.5.2 Utility-entropy approach

Given the measure of risk of Eq. (9), it is possible to eval-
uate rainfall thresholds as follows. Given aVT value, let2
be the space of possible state of nature,A the space of action
and X the space of consequences of associations between
actions and state of nature. Hence,2i = {θ1, θ2} has two
dimensions whereθ1 corresponds to the critical discharge
being surpassed, andθ2 corresponds it not being surpassed.
A = {a1,a2,} has two dimensions wherea1 corresponds to is-
suing an alarm when the rainfall threshold is surpassed, and
a2 corresponds to issuing an alarm when the rainfall thresh-
old is not surpassed. Finally, spaceX = X(a,θ), defined in
the spaceA×2, has as componentsx11 (correctly issued
alarm),x12 (missed alarm),x21 (false alarm), andx22 (not
event, no alarm).

The conditional entropy is defined as:

H(x|y) =

+∞∫
−∞

f (x|y)log2f (x|y)dx. (14)
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Table 4. Threshold values evaluated by each method for the Mignone river basin.

VT(mm)

Method
AMC Duration

3 6 12 24class (h)

“real” case 20.09 21.41 25.71 34.94
I “prone” case 20.02 21.01 25.02 33.05

“averse” case 20.82 21.82 26.41 36.83

“real” case 18.27 19.28 20.54 24.94
Bayesian II “prone” case 18.01 19.01 20.01 23.83

“averse” case 18.55 19.55 21.09 26.05

“real” case 16.27 17.28 19.99 22.97
III “prone” case 16.01 17.01 19.80 22.02

“averse” case 16.55 17.55 20.18 23.92

“real” case 21.11 21.72 26.18 36.61
I “prone” case 20.04 21.02 25.03 33.09

“averse” case 21.40 22.29 27.15 39.62

Utility- “real” case 18.28 19.28 20.93 25.92
Entropy II “prone” case 18.03 19.01 20.02 23.85
(λ = 0.5) “averse” case 18.91 19.86 21.70 27.68

“real” case 16.49 17.28 20.14 23.81
III “prone” case 16.03 17.01 19.81 22.05

“averse” case 16.90 17.55 20.42 25.31

I 22.88 23.54 29.12 47.00
Entropy II 19.89 20.69 23.35 32.00
(λ = 1) III 17.85 18.66 21.07 29.00

Hyeto 1 32.50 33.00 35.50 42.50
Model

III
Hyeto 2 32.20 32.40 33.50 36.20

Radar Hyeto 3 32.50 33.20 36.50 44.50
Hyeto 4 32.30 32.80 34.80 40.00

In the rainfall threshold case it is:

Ha(ϑ |v) = H(q|v) = −

+∞∫
−∞

f (q,v)

f (v)
log2

(
f (q,v)

f (v)

)
dq, (15)

whereH(q|v) can assume:

H(q|v >VT) = −

+∞∫
−∞

f (q,v)

f (v >VT)
log2

(
f (q,v)

f (v >VT)

)
dq (16)

or

H(q|v <VT) = −

+∞∫
−∞

f (q,v)

f (v <VT)
log2

(
f (q,v)

f (v <VT)

)
dq. (17)

The parameterλ can be varied in order to adjust the weights
of the objective and subjective components. Let us consider
two cases. A total of nine threshold values are obtained in

the case of a perfect tradeoff between objective and subjec-
tive components (λ = 0.5) (Table 4). In the second case, the
tradeoff coefficientλ is equal to 1; therefore, in Eq. (9) only
the component related to entropy is considered. The thresh-
old values obtained are a minimization of Eq. (15), regardless
of the perception of the decision-maker. In this case a single
curve of the threshold values for each AMC condition is ob-
tained (Fig. 7).

4.5.3 Radar based simulation approach

The inverse hydrological problem was solved by identifying
the configuration of the rainfall field that leads to exceed-
ing the critical discharge (see Sect. 3.1). Table 4 summarises
rainfall threshold values corresponding to each rainfall con-
figuration, for the AMCIII soil condition.
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Fig. 5. Threshold values evaluated by Bayesian approach for the
Mignone River basin: “real” case (solid line), “prone” case (dotted
line) and “averse” case (dashed line) for the AMCIII soil condition
(upper panel) and uncertainty associated with “real” case threshold
(lower panel).

5 Reliability evaluation

To estimate the reliability of rainfall thresholds, it is neces-
sary to investigate the presence of any missed or false alarms.
A missed alarm (MA) is defined as when the flood event
exceeds the critical reference discharge in the critical cross-
section, but the recorded precipitation does not exceed the
rainfall threshold. A false alarm (FA) is when the rainfall
threshold is surpassed, but the observed discharge is lower
than the critical reference discharge.

Obviously, FAs and especially MAs, invalidate the reli-
ability of rainfall thresholds as a warning tool. A possible
way to assess the performance of the proposed method is
to use a two-by-two contingency table (Mason and Graham,
1999). The table is structured as follows: the n observations
are divided in EventE (critical discharge surpassed) and Not
EventE′ (critical discharge not surpassed). If an event oc-
curred and a warning was issued the outcome is a hit (withh

being the total number of hits); if an event did not occur but

Fig. 6. Threshold values evaluated via the utility-entropy mea-
sure of risk approaches (λ = 0.5) for the Mignone River basin:
“real” case (solid line), “prone” case (dotted line) and “averse” case
(dashed line) for AMCIII soil condition (upper panel) and uncer-
tainty associated with “real” case AMCIII threshold (lower panel).

a warning was issued the outcome is a false alarm (withf

being the total number of false alarms); if an event occurred
but a warning was not issued the outcome is a missed alarm
(with m being the total number of misses); if an event did not
occur and a warning was not issued the outcome is a correct
rejection (withc being the total number if correct rejections).
The total number of warnings isw, the total of no warnings
w′, the total number of eventse and not-eventse′.

The performance can be evaluated in terms of the hit rate
(proportion of events for which a warning is correctly pro-
vided) and false alarm rate (proportion of not events for
which a warning is incorrectly provided), defined as follows
(Mason, 1982):

hit rate =
h

h+m
=

h

e
= p(w|E) (18)

Nat. Hazards Earth Syst. Sci., 11, 2061–2074, 2011 www.nat-hazards-earth-syst-sci.net/11/2061/2011/



V. Montesarchio et al.: Rainfall threshold definition using an entropy decision approach 2071

Fig. 7. Threshold values evaluated via the utility-entropy measure
of risk approach (λ = 1) for the Mignone River basin, for all the
AMC conditions: AMCI (dashed line), AMCII (dotted line) and
AMCIII (solid line) in the upper panel. Uncertainty associated with
the AMCIII threshold is in the lower panel.

and

false alarm rate=
f

f +c
=

f

e′
= p(w|E′) (19)

The hit rate can be considered as the probability of detection
and provides an estimate of the probability that an event will
be forewarned, while the false-alarm rate can be considered
as the probability that a warning will be incorrectly issued.
For a warning system with no skills, warning and events are
independent, so that:

p(w|E) = p(w|E′) = p(w). (20)

When a threshold-based forecasting system has some skill,
the hit rate exceeds the false-alarm rate. The performance
can be measured by (Gandin and Murphy, 1992):

skillscore=
h

e
−

f

e′
.

(21)

A performance is considered good is when skillscore> 0.

Table 5. Two-by-two contingency table for assessing the efficiency
of rainfall threshold evaluation methodologies.

Method Observations Alarms Not alarms Total
W W ′

EventE 19 6 25
Bayesian Not eventE′ 13 9 22
Real case Total 32 15 47

Utility- Event E 24 1 25
Entropy Not eventE′ 12 10 22
(λ = 0.5) Total 36 11 47

EventE 23 2 25
Entropy Not eventE′ 7 15 22
(λ = 1) Total 30 17 47

EventE 10 1 11
Radar Not eventE′ 4 4 8

Total 14 5 19

EventE 20 5 25
Raingauge Not eventE′ 8 14 22

Total 28 19 47

The contingency tables corresponding to the Bayesian ap-
proach (real case), utility-entropy measure of risk (λ = 0.5),
utility-entropy measure of risk (λ = 1), hydrologic simula-
tion based on radar data (AMCIII condition) and raingauge
data (all AMC conditions) are reported in Table 5.

The reliability of the estimated rainfall thresholds is eval-
uated performing a back analysis on the flood events of the
period 1998–2010. The last two years of the dataset were not
used in the calibration phase, but only in the validation stage.

Even if the numerical values of rainfall thresholds are quite
similar, the analysis of the performance of each methodology
offers interesting results.

The best performance in terms of hits is for the utility-
entropy approach measure of risk (λ = 0.5), followed by the
utility-entropy measure of risk (λ = 1).

The methods based on hydrological simulation performed
quite well, especially using radar data (high number of hits,
only one MA). The presence of false alarms seems to be re-
lated to an overestimation of the cumulative rainfall obtained
from radar data. However, the results of efficiency based on
radar measures are influenced by the limited availability of
data (only the AMCIII conditions were examined).

The worst performance is obtained with the Bayesian ap-
proach. In fact, the number of hits and false alarms is com-
parable, and the number of missed alarms is high. This is
probably influenced by the utility function parameters that
need a calibration on the examined river basin.

The previous results are synthetically summarized by the
skill scores (Table 6). All the methodologies have a pos-
itive skill score, ranging from 0.17 (Bayesian method) to
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Table 6. Reliability summary analysis: values of hit rate, false alarm rate and skill score are presented in order to compare the methodologies.

Bayesian UE-Risk Entropy
Hydrologic Hydrologic

(λ = 0.5) (λ = 1)
simulation simulation
(radar data) (rain gauge)

Hit rate 0.76 0.96 0.92 0.91 0.80
False alarm rate 0.59 0.55 0.32 0.50 0.36
skill score 0.17 0.41 0.60 0.41 0.44

Fig. 8. Threshold values evaluated by hydrological model calibrated
with radar data for AMCIII soil conditions (upper panel) and uncer-
tainty associated with hyeto 1 threshold for the Mignone River basin
(lower panel).

0.60 (entropy approach). It is interesting to highlight that
the thresholds evaluated via hydrological simulation (rain
gauge data) offer the same skill score as the utility-entropy
approach measure of risk.

Fig. 9. Threshold values evaluated by a hydrological model cali-
brated with raingauge data for AMCIII soil conditions (upper panel)
and uncertainty associated with hyeto1 threshold for the Mignone
River basin (lower panel).

The skill scores are therefore encouraging for the effi-
ciency of the proposed methodologies as flood warning tools
in a future operative framework. However, a wider data set is
need to achieve more accurate reliability evaluation of each
examined methodology.
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6 Discussion and conclusions

This work presents a simplified model for the management
of alert systems used for flood events. Values in excess of a
threshold trigger prevention actions and an emergency sys-
tem alert. The definition of threshold values is obtained via
a probabilistic approach and by a simulation model based on
weather radar data.

Two probabilistic methodologies were compared by back
analysis. In the Bayesian approach proposed by Martina et
al. (2006), rainfall threshold values depend on the decision-
maker’s perception of risk. Using the utility-entropy risk
function approach, a combination of objective (represented
by the entropy function) and subjective (represented by the
expected value of the utility function) components permits
the evaluation of rainfall threshold values, weighing the sub-
jective perception of the stakeholder by using the opportune
value of the trade-off coefficient. By imposing a balance
parameterλ = 1, the subjective perception of the decision-
maker does not affect the determination of threshold values,
which are obtained exclusively by minimizing the informa-
tion entropy. This methodology is thus more objective and
offers the best performance in terms of skill score. Thresh-
olds obtained by hydrological simulation based on weather
radar data perform quite well, but there is still a need for more
data in order to achieve more accurate performance testing.

A question of growing importance is the study of uncer-
tainty of estimated rainfall threshold values (Ntelekos et al.,
2006; Villarini et al., 2010b). In fact, every proposed ap-
proach to rainfall threshold evaluation is affected by various
sources of uncertainty. For example, considering the hydro-
logical model, the uncertainties related to the inputs (rain-
gauge data, radar data, discharge data evaluated with rating
curve, basin characterization) influenced the outputs (cali-
brated basin parameters and simulated discharges). In this
work only an overall evaluation of uncertainty is performed.
As shown in the lower panel of Figs. 5–9, the confidence
intervals (95 % and 99 %) of the proposed rainfall thresholds
were evaluated. Clearly, the greater the source of uncertainty,
the wider the confidence intervals.

Future studies should investigate more carefully the influ-
ence of each component on rainfall threshold values. Asso-
ciating an uncertainty value to rainfall thresholds allows the
users to make optimal decisions about issuing or not issuing
flood warnings.
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