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Abstract. Ash emitted by volcanic eruptions, even of mod-
erate magnitude, may affect the environment and the health
of humans and animals through different mechanisms at dis-
tances significantly larger than those indicated in the volcanic
hazard maps. One such mechanism is the high capacity of
ash to transport toxic volatiles like fluoride, as soluble con-
densates on the particles’ surface. The mobilization and haz-
ards related to volcanic fluoride are discussed based on the
data obtained during the recent activity of Popocatépetl vol-
cano in Central Mexico.

1 Introduction

Environmental and health effects of potentially toxic ele-
ments released from natural sources have gained much atten-
tion due to the high concentrations these elements may reach
in air, soil and water. Active volcanoes are one of the impor-
tant sources of such elements, not always imposing a con-
sidered hazard to near and remote settlements, as volcanic
clouds may cover extended areas. In addition to the solid
components, the gaseous eruptive column is typically com-
posed of H2O, CO2, SO2, HCl, HF, H2S and volatile metal
and metalloid compounds. Most of these gases may pose
environmental and human health hazards. About 1700 were
killed by CO2 emission from lake Nyos in 1986, and more
than 30 deaths were also attributed to CO2 exposure at lake
Monoun, Cameroon in 1984 (Kling et al., 1987; Baxter et
al., 1989). Sulfur dioxide emissions from Kilauea volcano
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produced some increase in asthma cases in Hilo, Hawaii
(Michaud et al., 2004). Exposure to hydrogen sulfide re-
leased from volcanoes and geothermal systems has also been
linked to adverse health effects like nervous system and res-
piratory problems (Bates et al., 2002; Hansell and Oppen-
heimer, 2004).

The ash released by eruptions may also affect health,
through different mechanisms. The respiratory system and
the eyes comprise of the most vulnerable tissues to ash (Hor-
well et al., 2003; Horwell and Baxter, 2006). In addition,
part of the erupted gases and volatiles are adsorbed on the
ash particles and dispersed by them over extensive areas. El-
ements scavenged by ashes may then be mobilized to the en-
vironment posing a hazard to flora, fauna and human health
beyond regions marked in the hazards maps (Fulignati et al.,
2006; Kockum et al., 2006).

Popocat́epetl is an active volcano surrounded by a large
population in central Mexico (De la Cruz-Reyna and Tilling,
2008). It reawakened in 1994, after nearly 70 yr of quies-
cence with an episode of eruptive activity that continues to
the date of this submission. This activity includes numer-
ous ash emissions associated with phreatic and magmatic
eruptions. Besides Ḿexico City, other highly populated ar-
eas close to the volcano have been reached by ashes dur-
ing the current eruptive episode. Although this episode has
been limited to moderately explosive eruptions (VEI≤ 3),
the history of the volcano shows that it is capable of pro-
ducing major plinian phases and ashfalls that could affect
over 20 000 000 people living within 100 km of the volcano
(Fig. 1) (De la Cruz-Reyna and Siebe, 1997). Furthermore,
even with the moderate ongoing activity, total concentrations
of water-soluble metals and fluoride at Popocatépetl have
reached hazardous levels on some occasions (Armienta et

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


1950 M. A. Armienta et al.: Fluoride in ash leachates

Fig. 1. Locations of Popocatépetl volcano and major cities and
towns. About 20 million people could be potentially affected by
tephra fallout produced by a major eruption.

al., 1998, 2002). This requires a careful assessment, for the
actual environmental hazard of toxic elements depends not
only on their concentrations and toxicity, but also on their
chemical form and prevailing physico-chemical conditions.
In this work, the potential environmental effects of fluoride
carried by ashes emitted by Popocatépetl volcano are evalu-
ated based on its concentrations in aqueous leachates, consid-
ering that environmentally available F in the tephras was pri-
marily estimated by extraction in water (Cronin et al., 2003).

2 The impact of volcanic fluoride

Volcanic fluoride may cause detrimental impacts on the en-
vironment due to its toxicity, and to the large amounts that
may be released by eruptions, the main natural atmospheric
source of fluoride (Bellomo et al., 2007). Fluorine as flu-
orapatite is a constituent of teeth and bones and it is, thus,
required for their health. However, an excess of fluoride
causes diverse negative health effects such as dental or skele-
tal fluorosis, with mottled and harder teeth and bone cal-
cification (Edmunds and Smedley, 1996). Crippling skele-
tal fluorosis is a significant cause of morbidity in a num-
ber of regions of the World. Chronic effects are reported
to have been caused by the ingestion of groundwater con-
taminated by water-rock interaction processes (Fawell et al.,
2006). The World Health Organization established a guide-
line of 1.5 mg l−1 of fluoride in drinking water (WHO, 2004),
a value that has been adopted in Mexico as the potable water
standard (DOF, 2000).

Effects of large fluoride concentrations on livestock are
comparable to those on humans (Weinstein and Davison,
2004). Fluoride excess caused by volcanic activity has also

affected animals by direct ingestion of volcanic ash, or inges-
tion of contaminated water and crops (Bellomo et al., 2007).
Iceland has been repeatedly affected by eruptions of fluoride-
bearing ash. In 1693, the first fluorine intoxication of animals
due to a volcanic eruption was reported from emissions of
Hekla volcano (Thorarinsson, 1979). In 1783, ashfall and
gases of Lakagigar volcano caused the death of tens of thou-
sands of sheep, cattle and horses (Cronin et al., 2003). Flu-
oride concentrations from 350 to 4300 µg g−1 on forage cov-
ered by ash, and ashes containing up to 2000 ppm water sol-
uble fluorine emitted by Hekla in 1970, resulted in the death
of about 1500 ewes and 6000 lambs (CSLP, 1971; Thorarins-
son, 1979), and ash from the 1973 eruption of Eldfell, on the
island of Heimaey caused vegetation damage.

High concentrations of fluoride released by other volca-
noes have also produced serious environmental damage. In
1988, about 10 000 farm animals were affected by fluoride-
bearing ashes from the Lonquimay volcano eruption in Chile
(SEAN, 1989a), killing more than 4000 heads (goats, sheep,
cattle and horses). Furthermore, dental fluorosis (incisors at-
trition and brown or black spotted discolouration) was ob-
served in cattle near Lonquimay two years after the erup-
tion (SEAN, 1989b, c; Araya et al., 1993). Similarly, ashfall
from Ruapehu volcano eruptions caused the death of thou-
sands of sheep in 1995–1996 probably by fluorosis. Enamel
and dentine fluoride enriched bands were observed in imma-
ture surviving animals. In this case, ashes were enriched with
fluorine not only by adsorption processes within the eruptive
column, but also from the hydrothermal activity present in
the volcano before the eruption (Cronin et al., 2003).

Fluoride doses about 100 mg kg−1 of body weight are
acutely lethal in most mammals (Weinstein and Davison,
2004). Concentrations above 250 mg kg−1 dry weight in
grass can kill sheep in 2 to 3 days (Thorarinsson, 1979).
About 40 ppm dry weight has been considered as the max-
imum acceptable fluoride concentration for beef or dairy cat-
tle to avoid chronic fluorosis (Araya et al., 1993; Weinstein
and Davison, 2004).

Ingestion of fluoride may also pose a significant risk to
wildlife. Deer affected by osteofluorosis were observed near
aluminium smelters and other industrial facilities like ther-
mal power plants in various countries (Kierdorf et al., 1999;
Kierdorf and Kierdorf, 2003; Zemek et al., 2006). Other
wild animals like field voles (Microtus agrestis), wood-
mice (Apodemus sylvaticus), moles (talpa europaea), shrews
(Sorex araneus) and cotton rats (Sigmodon hispidus), were
also affected by fluoride emission from an aluminium smelter
in Wales (Boulton et al., 1994; Weinstein and Davison,
2004). Bison and mule deer showed osteofluorosis around
hot springs of Yellowstone National Park, USA, and India
(Dwivedi et al., 1997; Patra et al., 2000; Weinstein and Davi-
son, 2004).

Vegetation may also be affected by excessive fluoride
causing margin and leaf tip necrosis, chlorotic, red-brown
points of leaves and deformation of fruits. Fluoride may
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affect plants either from gaseous emissions of HF or from
absorption by roots from fluoride-enriched soils. However,
the phytotoxicity of fluoride absorbed from soils by roots is
much less significant than that from airborne fluoride as HF
(Kabata-Pendias and Pendias, 2001; Weinstein and Davison,
2004). The effect of the continuous degassing of Mount Etna
volcano in Italy on vegetation growing on the volcano flanks
was studied by D’Alessandro et al. (2008). Surprisingly,
the impact of this emission (considered as the main natural
source of fluorine to the troposphere) on vegetation was only
visible in pine needles. The authors ascribed this fact to the
morphology and height of the volcano and the neutralizing
action of Ca deposits derived from limestone dusts, as well
as the possible development of plant resistance to volcanic
gas exposure.

3 Environmental setting at Popocat́epetl

Popocat́epetl (5452 m a.s.l.) is located in central México
(19.02◦ N, 98.62◦ W) in the eastern-central portion of the
Mexican Volcanic Belt. It is the second highest volcano
in México and the youngest within the Sierra Nevada,
a volcanic range which extends in a roughly N-S direc-
tion. This range also includes a large complex of overlap-
ping cones called Iztaccı́huatl volcano (19.18◦ N, 98.64◦ W,
5286 m a.s.l.).

Both, Popocat́epetl and Iztacćıhuatl volcanoes have a pro-
nounced altitudinal gradient with climates ranging from
temperate to cold depending on height. Rapidly decay-
ing glaciers partially cover the summit areas of both vol-
canoes. In 1947, the zone comprising Popocatépetl and
Iztacćıhuatl volcanoes was officially declared “Natural Na-
tional Protected Area” considering its unique flora and fauna,
and is currently known as the Izta-Popo National Park. The
Popocat́epetl’s height favours a flora and fauna diversity that
changes with altitude. A temperate coniferous forest is dom-
inated by oak (Quercus rugosa), cypress (Cupressus lusitan-
ica), Oyamel or sacred fir (Abies religiosa) and pine (Pinus
hartwegii), in the altitude range of 2850 to 3900 m. Grass-
lands (Hilaria cenchroides, festuca amplissima), oak, fir and
pine are also found between 2300 and 2700 m, and alpine
grassland predominates at the highest altitude (ca. 4000 m)
whereHagrostis tolucensis, Calamagrostis intermedia, and
Arenaria bryoides, among other species have been identi-
fied (Beaman, 1962, Rzedowski, 1979; Almeida et al., 1994;
Velasquez et al., 2001; Sánchez-Gonźalez and Ĺopez-Mata,
2003; Herńandez-Garćıa and Granados-Sánchez, 2006).

Fauna is also diverse at Popocatépetl, and jointly with Iz-
tacćıhuatl accounts for over 10 % of the total Mexican mam-
malian species. A total of 52 mammal species within 37 gen-
era and 16 families inhabit the study area. Rodents domi-
nate, represented by 5 families and 21 species, followed by
carnivores, bats and insectivores. Fir forests are very im-
portant for squirrels (Sciurus and Spermophylus), racoons

Table 1. Sampling site locations and dates.

Sampling Sampling Date Site
site (day-month-year) Number

Tochimilco 15-03-1996 6
Volcano slopes 4100 m a.s.l. 11-04-1996 1
Volcano slopes 4000 m a.s.l. 18-09-1996 1
Atexcac 06-03-1997 10
Tlamacas 21-06-1997 2
Santiago Xalitzintla 01-01-1998 4
Ecatzingo 24-11-1998 7
Tetela del Volćan 30-11-1998 9
Amecameca 04-09-2000 8
Tlamacas 13-12-2000 2
Tochimilco 18-12-2000 6
Km 13 Amecameca-Tlamacas Road 05-07-2001 3
Amecameca 15-08-2001 8
Tlamacas 23-01-2002 2
Tetela del volćan 18-06-2002 9
Amecameca 23-06-2003 8
Amecameca 19-07-2003 8
Cuautla 09-01-2005 11
San Pedro BJ 01-12-2005 5

(Procyon), and skunks (Conepatusand Mephitis), among
others. Tropicalpine grasslands are a restricted habitat for the
volcano mouse (Neotomodon), and preferential habitat for all
ground-specialised genera (e.g.,Microtus, Sorex, Mustela).
About one fifth of the species are endemic, such as the
mouse (Neotomodon alstoni and Reithodontomys chrysop-
sis) as well as other 24 subspecies. Five of the species are
endangered like “Teporingo” or volcano’s rabbit (Romerula-
gus diaza) (Velázquez, 1988; Velázquez et al., 2001).

Forestry (especially wood production), agriculture and
cattle raising are the main economic activities in the area.
Livestock includes cattle, pigs, sheep, chicken, goats and
horses. Agriculture is limited to the low-lands. Main crops
are maize, barley, oat, bean, wheat, forage, fruit trees, sugar
cane and some vegetables (Hernández-Garćıa and Granados-
Sánchez, 2006; Romero et al., 1999).

4 Analytical methods

Samples (non-exposed to rain) from various Popocatépetl
volcano eruptions occurred between 1996 and 2005 were col-
lected at different distances from the vent, in the range from
about half a kilometre to 39 km (Table 1, Fig. 2). Aque-
ous ash leachates were obtained by agitating 1:25 ash-to-
water ratio (1 g of the quartered ash added to 25 ml of deion-
ized water) for 2 h, and then centrifuging at 3500 rpm for
15 min. The water-ash mixture was then filtered through
0.45 µm Millipore filters. Fluoride concentrations were mea-
sured in the solution by potentiometry, using an Orion EA
940 ion analyser with selective electrodes. To measure pH,
1 g of ash was agitated for 90 min with deionized water,
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Fig. 2. Location of ash-sampling sites: 1 (4100 m a.s.l., on the volcano slope); 2 (Tlamacas); 3 (km 13 Tlamacas-Amecameca road); 4
(Santiago Xalizintla); 5 (San Pedro BJ); 6 (Tochimilco); 7 (Ecatzingo); 8 (Amecameca); 9 (Tetela del Volcán); 10 (Atexcac); 11 (Cuautla).

pH was measured in the slurry with a conductimeter PC18
calibrating with pH 4, 7 and 9 buffers at room tempera-
ture (20◦C). This methodology was developed based on the
capabilities of our laboratory and the compositional range
of leachates. It has been tested against the Taylor and
Stoiber (1973) and Varekamp et al. (1984) methods as re-
ported in Armienta et al. (1998), and fulfils all recommen-
dations given by the International Volcanic Health Hazard
Network IVHHN (http://www.ivhhn.org/index.php?option=
com content&view=article&id=100). In all cases, duplicate
samples were analysed and results accepted when differences
were less than 10 %. Calibration solutions were prepared
with reagent grade salts dried overnight, deionized water, and
class A volumetric material.

5 Results and discussion

Soluble concentrations of fluoride in ash samples of var-
ious eruptions are shown in Fig. 3. Concentrations
ranged over a two-orders of magnitude, from 5 mg kg−1 to
513 mg kg−1. The highest contents in leachates were de-
tected on 24 November 1998 (513 mg kg−1) at Ecatzingo;
20 December 2000 (338 mg kg−1) at Tochimilco, 15 Au-
gust 2001 (306 mg kg−1) at Amecameca; and 11 May 1997
(275 mg kg−1) at Santiago Xalizintla. These ash samples
corresponded to episodes of new dome emplacement or
to increased rates of dome growth as indicated by the
monitoring data of the Mexican National Center for Dis-
aster Prevention (CENAPRED). Such data include aerial

Fig. 3. Fluoride concentrations in leachates (mg kg−1) of various
eruption dates.

photographs, seismic signals (VT events, tremors) and in-
creased incandescence inside the crater, detected by the vol-
cano video monitors (http://www.cenapred.unam.mx/popo/
UltimaImagenVolcanI.html).

Although concentration variations with distance have been
observed at specific eruptions (Armienta et al., 2002), a gen-
eral trend cannot be unraveled from the whole dataset. How-
ever, since the amount of ash-deposited fluorine is inversely
correlated with particle size, and small particles may be car-
ried far away from the vent depending on wind velocity
and column height, important amounts of fluoride may be
found on soils and vegetation far away from the vent. This
behaviour was observed in the eruptions of 30 April 1996
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Table 2. Dietary tolerance to fluoride.

Species F mg kg−1 Ash ingestion (g) to

dry weight*
reach dietary tolerance
levels at Popocatépetl**

Young beef 40 78
Mature beef 50 97
Feeder lamb 150 292
Horse 60 117
Finishing pig 150 292
Breeding ewe 60 117
Chicken 300 585
Hen 400 780

* National Research Council (1974); Weinstein and Davison (2004)
** considering the maximum fluoride concentration

and 17 October 1998 where the highest fluoride concen-
trations (41 mg kg−1 and 124.2 mg kg−1, respectively) were
measured at the farthest sampling locations (55.8 and 29 km
respectively; Armienta et al., 2002). Both of these eruptions
emitted ash clouds that produced light ashfalls on Mexico
City, nearly 70 km NNW of the volcano. Moreover, a thin
ash layer does not hinder grazing and sticks easily to vege-
tation, leading to a fluorosis hazard to humans and animals
at even further distances (Thorarinsson, 1979; Armienta et
al., 2002). Whether these amounts of fluoride in ash repre-
sent a serious fluorosis hazard to fauna is a question that may
not be unequivocally answered from the available informa-
tion. It may be argued that rain will rapidly wash the fluoride
away and remove fine layers of ash so exposure would be
very limited over time. As an example, we may estimate the
exposure to ash fluoride during the initial stage of the cur-
rent Popocat́epetl activity. Martin del Pozzo et al. (2008)
calculate that 1.181× 106 m3 of ash was emitted between
21 December 1994 to 12 March 1995, with F concentrations
ranging between 20 and 100 mg kg−1 (Fig. 3). Those months
correspond to the lowest rain precipitation, averaging about
6 mm per month. The resolution of the published isopachs
(Martin del Pozzo et al., 2008) do not allow for the estimation
at what distance from the emission centre such rainfall will
wash the fluoride before it produces significant health dam-
age to fauna, but the order of magnitude estimates suggest
that it probably may not involve a very large area. However,
between 1997 and 2003 (particularly on 30 June 1997) simi-
lar volumes (up to 1.1× 106 m3) of ash were emitted in a day
(Martin del Pozzo et al., 2008), i.e., an emission rate about
two orders of magnitude greater than in 1994. Although sum-
mer rain fall may exceed winter precipitation by a factor of
about 20, it is very difficult with the available data to estimate
the extent at which hazardous exposure of fauna to fluoride
may occur. Furthermore, during December 2000, the vol-
cano registered even higher magma eruption rates, forming
the largest lava dome and producing frequent ash columns

Fig. 4. pH values measured in leachates of the ash samples listed in
Table 1.

rising 5 km above the crater level. The ash emitted during
this episode also transported high concentrations of leach-
able fluoride (up to 338 mg kg−1). Although dwellers in the
exposed zone were evacuated for over a week, animals re-
mained in the area. Forage covered by ashes would reach
dietary tolerance for herbivorous livestock according to Ta-
ble 2. Due to their low fluoride tolerance, young cows would
be the most sensitive farm animal group at Popocatépetl, fol-
lowed by mature cows, horses and breeding ewe. Regard-
ing wild animals, although no evidence was found of injuries
caused by volcanic fluoride for the specific species living at
Popocat́epetl, a similar susceptibility to voles (Schroder et
al., 2003) may be expected in volcano mouse and other ro-
dents and terrestrial mammals. Volcano rabbit (one of the
endangered species at Popocatépetl) might also be at risk due
to their feeding habits, small size and mouth proximity to the
soil. In addition, direct ingestion of sludge and soil enriched
in fluoride by grazing cattle has been considered as an im-
portant source of fluoride as is herbage (Kabata-Pendias and
Pendias, 2001). In fact, cotton rats exposed to petrochemical
wastes presented fluorosis, and their fluoride concentrations
in bones were strongly correlated with total F content in soils
(Schroder et al., 2003). The main hazard to people would be
related to water contamination. In many rural settlements,
and even in some urban areas around Popocatépetl, drinking
water is not always available from a piped water supply sys-
tem. It is, thus, common that people store drinking water in
large containers that may not be properly covered. In such
conditions, water may have reached the Mexican drinking
water standard (1.5 mg l−1) by mixing 7.8 g of ashes of the
Popocat́epetl’s eruption with the highest fluoride content in a
litre of water. With regards to this, the vulnerability of peo-
ple dwelling around Popocatépetl has been reduced through
the persistent warning about the health problems caused by
ash, and repeated recommendations about covering water de-
posits. However, animals (wild and livestock) may remain
exposed to fluoride-polluted water.
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Fig. 5. Fluoride concentrations (mg kg−1) in leachates of the sam-
ples listed in Table 1.

Fluoride-enriched ashes settled on soils may also affect the
vegetation around Popocatépetl. However, the total fluoride
contents in ash-contaminated soils may not be available for
plant uptake, since fluoride absorption depends on various
other factors, such as soil type, pH, organic matter, and Ca
and Al contents. Concentrations of fluoride in the plant roots
are proportional to the soil solution concentration (Weinstein
and Davison, 2004). In addition, fluoride is most readily ab-
sorbed by plants at low pH values, at which it is more soluble.
Fluoride solubility in soils of Austria showed a minimum at
pH 6.0–6.5 and increased at a pH less than 6.0, and higher
than 6.5 (Wenzel and Blum, 1992). It has also been found
that aluminium-fluoride complexes increase plant uptake. On
the other hand, fluoride adsorption on aluminium minerals
decreases its lability (Longanathan et al., 2001). Formation
of Al-F complexes thus explain the high solubility at low pH,
and desorption from soil the solubility raise at high pH (Wen-
zel and Blum, 1992; Longanathan et al., 2001).

Samples from the Popocatépetl area show near neutral to
slightly basic pH values, except in those collected near the
vent (Fig. 4). Concentrations of fluoride in leachates in the
same sites are shown in Fig. 5. On the other hand, vegetation
may assimilate F in its soluble form. Hence, a close relation-
ship between the concentration of soluble F in the soil and in
the plants should be expected (Egli et al., 2004). Experimen-
tal studies with artificial soil solutions, jointly with geochem-
ical modelling, showed that fluorine is mostly as fluoride in
the soil solution (Stevens et al., 2000). Concentrations in ash-
leachates may, thus, provide a good proxy to fluoride levels
available to vegetation uptake from volcanic ashes.

Histological and structural effects resulting from fluorine
exposure have been studied for some of the most represen-
tative plants present at Popocatépetl or for similar species.
Shrinkage of chloroplasts in subnecrotic zones and fewer
chloroplasts lamellae in maize were reported by Lhoste and
Garrec (1975). Inhibition of H+ pumping and ATPase ac-
tivity in maize roots vesicles by LiF and AlF3 was reported

by Façanha and de Meis (1995). Pinus effects identified by
various studies include changes in phloem and occlusion of
resin canals, dilatation of thylakoids, cell vacuolization and
increase in endoplasmic reticulum (Weinstein and Davison,
2004).

Aluminium and calcium are known to be strong binders
for F in soil (Rai et al., 2000). Manoharan et al. (2007),
demonstrated that fluoride in soils decreased the growth of
roots of barley in slightly acid soil pH values (4.25 to 5.48).
This effect was due to the increase in the concentration of Al-
F complex formation in the soil and was more pronounced
at the lowest pH. Around Popocatépetl, slightly acid values
were measured in ash samples with a pH range from 4.3 to
6.4 and highly soluble fluoride contents from 43 mg kg−1 at
a pH of 4.4 to 512.5 mg kg−1 at a pH of 6.3 (Figs. 4 and
5). Barley crops raised in agricultural fields within that range
may, thus, be affected by ash-fallout. More acid values of the
ash were measured nearer to the active crater, but no agricul-
tural activity is developed there.

6 Conclusions

Although there is no evidence that fluoride transported by
volcanic ash has so far posed an acute problem to organisms
exposed to the ashfall, it is clear that Popocatépetl volcano
has the potential to produce larger, fluoride-rich eruptions.
Therefore, soluble fluoride concentrations in ash emitted by
some eruptions may pose a risk to humans, animals and veg-
etation around that volcano. Evaluation of such hazard is
essential to design appropriate mitigation measures. Young
cows would be the grazing animals most affected by fluoride-
enriched ashes. Small wild mammals would also be at risk.
This is particularly relevant for the volcano rabbit (Romeru-
lagus diaza) and other endangered species at Popocatépetl.
Effects of fluoride rich ashfall on vegetation are controlled
by additional factors such as soil pH, as well as Ca and Al
content.

As risk-reduction actions, fluoride must be analysed for
the significant Popocatépetl eruptions, i.e., all events gener-
ating ash columns large and dense enough to produce col-
lectable ashfall deposits, and this systematic sampling and
analysis should be included in the protocols of the prevention
plans. Special care has to be taken to protect cattle from eat-
ing ash-covered herbage and drinking ash-contaminated wa-
ter. While evident practical difficulties exist to protect wild
animals from volcanic activity, endangered mammals should
be protected from other human activities that may further re-
duce their populations. Agricultural practices such as adding
limestone to soil to decrease fluoride solubility would pre-
vent growth problems in prone crops.
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mano, Ĺımites permisibles de calidad y tratamientos a que debe
someterse el agua para su potabilización, Diario oficial de la Fed-
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