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Abstract. Dynamics of large amplitude internal waves fluid is carried horizontally for long distances for both types
in two-layers of shallow water is considered. It is of bottom and surface internal waveslgxworthy, 198Q
demonstrated that in laboratory experiments the subsurfac@ung et al, 1982 Stamp and Jackal995. Scotti and
waves of depression over a shelf may be simulated byPineda(2004 have recently observed bore-like structures
internal symmetric solitary waves of the mode 2 (“lump-like” with trapped cores in the near shore area of the Atlantics.
waves). The mathematical model describing the propagatiofhe transition from wave-like motion to the separate moving
and decaying of large internal waves in two-layer fluid is soliton-like waves (“solibores”) containing trapped dense
introduced. It is a variant of Choi-Camassa equations withcore is the common feature of the run-up process of internal
hydrostatic pressure distribution in one of the layers. It iswaves. It can be observed in any shelf zone with high internal
shown that the numerical scheme developed for the Greenwave activity as well as in laboratory experiments.

Naghdi equations in open channel flows may be applied for The run up of internal waves in near shore waters is very
the description of large amplitude internal waves over a shelfsimilar to the run up of surface long waves (tsunami waves),
but the process of internal wave breaking and dissipation is
not quite understood. In contrast to the energy dissipation
mechanism for surface solitary waves in a homogeneous
fluid, the energy dissipation in internal waves is closely

Propagation of hiah amplitude internal waves in a Shehcconnected with the entrainment and mixing in stratified shear
pag 9 P flows. Recently, the structure of such a flow has been

zone 1S th? very |mporfcant physical mechanism of COaLStalactively studied both theoretically and experimentally. In
water ventilation. The internal waves are able to transport

. . . ; . ._stratified water reservoirs, internal waves with a trapped core
cold water, lift up sediments, intensify mixing processes in

shallow waters, etc. Such high-energetic mechanisms Ogave been found in the bottom layeSdotti and Pineda

- . . . . . 004 and the surface layeHglfrich and Melville 2006,
the shelf venplatlon can effe_ctlvely intensify the b'OIOQ'CaI and at the interface between homogeneous fluid layers of
and hydrological processes in coastal waters. In particular,,. . :
o . different densities $tevens et al.2005. Intrusion flows
they can redistribute the waste waters and influence the ) . .
in the form of symmetric solitary waves at the interface

water quality in near shore area. Nonlinear internal waves i veen fluids have been studied using experimental and

\?vizigatgdr:yhtldﬁz aasn YﬁlloiZnt;%otIZﬁnl?;ngﬁg?n ?:a::cs)\f'gtheoretical methodsBenjamin 1967 Davis and Acrivos
pography piay P ergy 1967 Maxworthy, 198Q Kao and Pap198Q Tung et al,
from the large-scale motion to small-scale mixing. Very . . :
. 71982 Hohji et al, 1995 Stamp and Jackd 995 Schmidt
often the wave fronts take the form of solitary wave trains . S . .
and Spigel2000. Interest in this class of flows is motivated

with the large ra_atio of the wave amplitude to th_e upper by their unique ability to transfer mass along high-gradient
layer depth Kielfrich and Melvills 2009. Propagating to interlayers in a stratified fluid due to the initial horizontal

shore, th_ey transform into the Igrge a_mphtude internal Waves  omentum. Solitary-wave flow is similar to vortex-ring flow
of elevation. The large amplitude internal waves can be

identified by “closed streamline” regions in which trapped (Akhmetoy, 2009, with the entrainment of the surrounding

fluid and the vertical velocity component in rotational motion
Correspondence toV. Liapidevskii
BY (liapid@hydro.nsc.ru)

being effectively suppressed by stable stratification.
Published by Copernicus Publications on behalf of the European Geosciences Union.
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to the viscosity of water. In the first series of experiments

(24
4 (a) (experiment |, Fig. 1a), the tank geometry was chosen
A D as gymmetric rglative to the plarbez H. The density
H — distribution, which was established between the layers at
__/\ rest, was also symmetric and was well approximated by the
P & formula
ﬁM p(y)=p2+ (P2 5 Po) tanh<y H), (1)
H 1)
A h u where p2 = (po + p1)/2, 28 is the characteristic thickness
z(x) of the pycnocline,pp and p; are asymptotic values of
0 i & the density in the upper and lower homogeneous layers,
v respectively.
(] The length of the compartment with the mixed fluid of
7w density po was chosen so that the only one solitary wave
at the interface was produced. The wave of amplitude 2
H D A was also symmetric and exceeded the interlayer thickness
= considerably 4 > 4).
a /K\ The aim of experiment | was to simulate the large-
h u amplitude waves of depression spreading on near surface
0 4 x/ﬂz(x) pycnocline. The symmetry of the second mode internal
solitary waves generated in experiment | ensured that only

the lower part of the flow & y < H was considered. It
Fig. 1. A sketch of the lock problema) solitary wave at the  follows from the flow symmetry that the corresponding
interface, experiment [p) shoaling solitary wave, experiment II. Reynolds stress component vanished atH.

In experiment Il, a solitary wave of elevation was
generated in the bottom layer of densityand, in contrast to
experiment I, was propagating under the action of the bottom

The mathematical model, which is an extension of friction force (Fig. 1b). It has been shown @avrilov and
the Green-Naghdi model and includes the turbulent layerLiapidevskii(2010 that an initially symmetric solitary wave
has been developed iniépidevskii and Teshukqv2000 can transform quickly in the highly turbulent gravity flow for
for stratified flows governed by entrainment and mixing thin bottom layers. Nevertheless, the dense bottom layer was
processes. Here this model is adapted to unsteady run-ughosen rather thick in experiment Il so that the pycnocline
problems for internal waves of depression and elevation. Thavas above the shelf zone (Fig. 1b). In this case, the wave
plan of the paper is as follows. In Sect. 2, we describeof elevation kept the form of the solitary wave during its
the laboratory experiments on solitary wave generationshoaling.
in two-layer fluid at rest. In Sect. 3, we present a The front propagation speed in both experiments was
brief derivation of the adequate mathematical models forevaluated from video-records obtained by a digital camera
large amplitude solitary wave dynamics and introduce thelocated at 2.5m from the tank (25 frames per s). The flow
numerical algorithm. In Sect. 4, numerical calculations of visualization is demonstrated in Fig. 2, where a photograph

shoaling solitary waves are compared with the experimentabf the bottom solitary wave of elevation (exp. Il) is shown
data. against the background of the luminous screen with a grid

of inclined lines imposed on itHrmanyuk and Gavrilgv
2009. In the zones with a high density gradient, a specific
2 Laboratory experiments distortion of these lines was observed, and in mixing zones,
the optical transparency of the fluid was redudédr{anyuk
Experiments were performed in a laboratory tank (Fig. 1) and Gavriloy 2007). In both types of experiments, the fluid
140cm long, 20 cm wide and 35cm deep. The walls of theof density o, in the left compartment was slightly coloured
test tank were made d?erspex The test tank was divided with an ink solution for visualizing the fluid core trapped by a
by a vertical removable plate in two parts. The geometricalsolitary wave. The bold and the thin lines in Fig. 2 represent
set-up of the experiments is clear from the sketches showithe exact and numerical solutions of model 3, which are
in Fig. 1. A weak solution of sugar in water was used discussed in the following Sects. 3 and 4.
to create the density stratification. In all experiments, the
relative difference in density = (p1 — p2)/p1 was less then
0.005 and the viscosity of the sugar solution is comparable
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Fig. 2. Bottom solitary wave of elevation: Pl dt dt
1 — exact solution of (17); Here g is the gravity accelerationp is the pressure at

2 — numerical solution of model 3 (taken from Fig. 5, thick line);

the background is the photo from experiment I1. interface,p = H/L <1, L is a typical wave length. Note

that the parameteg can be put equal td, but we keep
it in the formulae to have better scaling between horizontal
and vertical axes. The friction termyst are represented as

follows:
w|w| (u—w)lu—w|
3 Mathematical models fr=—c" , +¢j ; ;
3.1 Model 1
_ _ulul (—w)lu—w|
e AT @

As a basic model for description of nonlinear internal
waves, we consider the two-layer shallow water equations The friction coefficientse™, ¢ at the upper and lower
derived in Miyata (2000 and Choi and Camass&1999 boundaries of flow, as well as at the interface are supposed to
for large amplitude, weakly nonhydrostatic long waves. Inbe constants.

the Boussinesq approximatiaf < (p1 — p2)/p1 < 1), the By virtue of (2), (3) note that
second mode of internal waves at interfaces generated in
the first series of experiments are symmetric with respect? =/hu+nw = Q(t). (5)

to the channel midling = H for initial stratification shown

in Fig. 1a. Therefore, the flow can be considered in the
lower part of the tankO <y < H). Let y=h(t,x) and
u=u(t,x) be the depth and the mean velocity of the lower
homogeneous layer with the density, n =n(¢,x) andw =
w(t,x) be the depth and the mean velocity of half of the
intermediate layer with the densipg (02 = (po+01)/2, po <

02)-
For non-uniform bottom topography= z(x) we have

In experimentg) = 0 and @) can be reduced to the system

of two equations, say, for the dependent variakileand
The travelling waves of2)—(3) describing the large

amplitude solitary waves are discussed in the next section.
In the following subsections, two models, which are the
simplifications of 2)—(3), are introduced. Note, that in
(3) the terms, which have the ordé€r(g), are kept only.
In the case of slowly varying topography £ zo(8x)), we

2 2
4z _ (). Therefore, the term%ﬁh—l(hzdi

dr2 dr2’*
ﬂ(hj%)xzx have the ordero (%) and they are neglected
For the second series of experiments on shoaling solitaryn models 2 and 3. Moreover, if one of the layers is
internal waves of elevation (Fig. 1b), the notations are thethin compared to the wave amplitude, the fluid particles in
same. In this casg, = pg and @) is fulfilled. such a wave move almost with the wave velocity and the
In the Boussinesq approximation, the two-layer shallow corresponding material derivative vanishes in the layer. It
water equations over the uneven bottom take the formresults in the hydrostatic pressure distribution in the layer.

have and

h+z+n=H, (2)

(Helfrich, 2007 For symmetric solitary waves realized in the first series
of experiments (Fig. 1a), the intermediate layer is supposed

he+ (hu) =0, to be hydrostatic and the propagation of the large amplitude
wave of depression in the lower part of the tank«(® < H)

ne+(qw), =0, is governed by model 2, which is introduced in Sect. 3.2.

Solitary waves of elevation, propagating in a thin hydrostatic
bottom layer (Fig. 1b), are described by model 3 in Sect. 3.3.
The effects of the omitted nonhydrostatic components in the
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simplified models on the structure of travelling waves areu; +uu,+bh+z2)x+px=f",
considered in Sect. 3.4. Further, for models 1-3, we chose

the dimensionless variables such tpat=1,b=1, H = 1. B
w; +wwy +—

3n

dzn

272 _ £t

ﬁ) +pox=f". (20)
x

3.2 Model 2

The model 1, in which the hydrostatic intermediate layer Analogously, in view ofg), (4) the system10) is reduced

is supposed and the term@(B8) are kept only, takes in

the dimensionless variables for@gvrilov and Liapidevskii 1+ (qw)y =0,
2009
1
ha+ () =0, M+ (Mw — S —w)?+bn - §n2w§> =fr=/" an
X

e () =0, where

B odih _ —
urtuuy+bh+z)x +px+-(h _2))6 =f, h=1-n—z, u=(Q-—nw)/h,

3h dt

d2

wi+wwe+pe=fT. (6) M=w—u+3%(nzd—:)x=w—u—%<n3wx)x- (12)

In view of (2), (4) the system@) can be written in the form )
Note that (1), (12) can be transformed int®), (7) by

hy+ (hu)y =0, changing dependent variablesandn, u andw. Therefore,
the numerical scheme, developed for model 2, can be easily

Kt—l—<Ku—}(u—w)z—i—b(h—i—z)—éhzuf) =f"—f*, () applied to model 3. In the next section, we show that
2 2 x the solutions of the models 2 and 3 give the effective
Here approximation of solutions of model 1 for large amplitude

solitary waves of depression or elevation propagating along
n=1-h—z, w=(Q—hu)/n, thin initially unpertubated layer.

3n dt

We will apply Egs. {)—(8) for numerical calculations of For t.he models 1-3, we construct.travellmg waves, i.e.,
non-stationary problems, concerning the propagation of larg&olutions of Egs. 3), (6), (10), which depend on the
amplitude solitary waves of depression over a shelf. Thevariable§ =.x — Dr(D = cons). Such solutions exist for
variablesh andK are considered as the dependent variablesNondissipative flows over a flat bottora*(= 0, ¢ =0,
describing time evolution of the flow, and the velocity= ~ ¢(¥) =0). Let's consider the solitary waves satisfying for

u(t,x) can be restored for giveh, h,, K from the linear || — 0 the following conditions

ODE h—ho, h'—0, h"—0. (13)

K:u_erﬁ(hZ@) :u_w_3£h<h3ux> . (8) 3.4 Travelling waves
X X

1-z 0
1—h—Z"'"1-h—; ™ ©) (here and below, the prime denotes differentiation with
respect to the variablg). For model 1 the solitary waves
%have been investigated irClhoi and Camassd999, for
. . . ) model 2 (and, consequently, for model 3) they have been
ézi? :fgog the Green-Naghdi model, will be discussed in the constructed irGavrilov and Liapidevski{2009. It is shown
A in Gavrilov and Liapidevski{2010 that for models 1-3 the
33 Model 3 velocity distribution and the profiles of solitary waves can be
represented in the form

ghzuxx +Bhhuy, —

The realization of such approach, which is analogous t
the method of calculations developed lre(Metayer et al.

The next model describes the propagation of large amplitud _ .
waves of elevation in the case of thin initial bottom Iayer%(D_”) =hoD,  (1=m(D—w)={A—ho)D (14)
(Fig. 1b). Now the bottom layer is supposed to be hydrostaticy g

and the model 3 can be derived froB) (n a similar way to

(6), namely, model 1

o (hu)x =0, 3(h—ho)? (Fr2— h+ h?
(W2 = Gy() = — 0 —1O) ( 3 . (15)

ne+(w)y =0, BFre(hg(L—h)+(1—ho)“h)

Nat. Hazards Earth Syst. Sci., 11, P5-2011 www.nhat-hazards-earth-syst-sci.net/11/17/2011/
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model 2

3(h —ho)*(Fr?—h+h?)
)2 = Go(h) = , 16
(h')?=Ga(h) FEC— (16)
model 3

3(h—ho)2(Fr2—h+h?
(W2 = Gay = 1O ), (17)

BFr2(1—ho)?h

HereFr=D/+/bH = D is the Froude number. It follows
from (15)—(17) that the solitary waves exist for

W —h+Fré=(h—ht)(h—h") >0,

where
L 1E£V1-4Fr2
hf=s—— . (18)
2
Therefore, the admissible intervals foare
O<ho<h<h~, ht<h<ho<l (19)
Note also that
1
Fr<_ 20
<3 (20)

is the necessary condition of solitary wave existence.

It is worthy to note that the function§1(k) and G2(h)
have the common limit fohg — 1
Go(h)=38"1(1—h) (Fr2 —h +h2)/Fr2. (1)
The same is true for the functios, (k), Gz(h) whenhg —
0

Ga(h)=36"1h (FrZ—h+h2) JFr2. (22)
Fori =0,1,2,3,4 the equation
(W) =Gi(h) (23)

specifies the profile of symmetric solitary waves for

admissible intervals
O<hg<h<h~, hT<h<hg<l

The solution of 23) can be found in quadratures

h
e=tin = [ 01234 (24)
him

ds
VGi(s)’
Here h,, = h* for a wave of depression ang, = h~ for
a wave of elevation. The solution24) for Fr =0.49 and
B=1(=0,1,2,3,4) are shown in Fig. 3. Since the change
of dependent variable — 1—/ does not vary the function
G1(h) and transforms the functio2(h) into G3(h), the
solitons of elevation, calculated fdrp=¢ < h—, and the
solitons of depression, calculated fas=1—¢ > k™, have

www.nat-hazards-earth-syst-sci.net/11/17/2011/
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Fig. 3. Solitary waves in two-layer fluid represented 84) for
i=0,1,2,3,4:Fr=0.49,6=1,; =0.2.

the profiles, which are symmetric relative to the lipne=

1/2. Therefore, it is sufficient to consider only the waves
of elevation. It follows from Fig. 3 that fokg= 0.2 the
solutions of model 1 (curve 1; EG5) and model 3 (curve 3;
Eqg. 16) are close to each other, in contrast to the solution
of model 2 (curve 2; Eql7). Note also that forig < 0.1

the profiles of large amplitude solitary waves practically
coincide. Therefore, for numerical calculations of non-
stationary problems on nonlinear wave propagation in two-
layer flow, we shall use the more simpler models 2 and 3.
The limiting case of the solitary wave witiy =0 (curve O;
Eq.21) is also shown in Fig. 3. It was mentioned above that
the wave amplitude is the same as for the waves 1 and 2,
but the solution withig =0 is not soliton since, in view of
(21), (24), the length of the wave is finite in contrast to the
waves withig > 0. The solitary waves of depression which
are plotted in the upper part of Fig. 3 are analogous to the
considered wave of elevation. The curves are represented by
(24) fori =1,2,3,4.

3.5 Solitary waves in homogeneous fluid

Forh « H andp™ =0, p~ = 1 the model 2 transforms in the
dispersive shallow water equations for open channel flows
(Green and Naghdl976 Serre 1953

h+ (hu); =0,
2
hzﬂ —
dr?
X

Analogously to 7), Egs. @5) can be rewritten as follows
(Gavrilyuk and Teshukgw2001)

hi + (hu), =0,

ut+uux+g<h+z>x+%

_ulul

—c —

(25)

(26)

1 p _uful
Kz+ <KM—§M2+g(h +Z)— Ehzui)x = —C T,

where K :u+3ﬁh(h2 %) = u—4 (hPuy),. We will
X

Nat. Hazards Earth Syst. Sci.,23,, 201



22 N. Gavrilov et al.: Large amplitude internal solitary waves over a shelf

introduce in the next section the numerical scheme for 1.8
two-layer flows, which can also be applied f@&6]. This whoh 000000 == p=1.0
approach is promising in the nonlinear wave shoaling ¢ —— B=0.5
problem due to its insensitivity to the small bottom 1.6
perturbations. But here we consider only the solitary waves
over an even bottom to find the proper value of the scaling
coefficientg from the experimental data for homogeneous 1 4
fluid.

The functionG2(h) in (16) for the case under considera-

tion takes the formNliles, 1986 1.2
3(h —ho)?(D?—gh
(h/)2= ( 0) ( > 8 ) 27)
pD?hy 1.0
In Fig. 4, the dependenck/ho = ¢(t/+/gho), calculated 12 1; 1l6 1I8 2'0 2'2 x/hy 24

from (27) for fixed xo =& + Dr and for two values of
parameterg (8 =0.75 and g = 1) is compared with the Fig. 4. Surface soliton: 1 and 2 are exact solutions &) (with
experimental data fromJénsen et 312003. Experimental £ =1, =05, correspondingly; 3 — experiment idefsen et 3l.
solitary waves in Jensen et al2003 (experiment 4,xg = 3.

3.37m, ho=0.2m) have been generated by moving a wall
in an unperturbated layer of water. We can see that theequations
Green-Naghdi equations with =1 give the wave profile,

which is too wide, and the valug = 0.75 fits better for  , + (hu), =0,

high amplitude solitary waves. For internal waves considered

in experiments | and I, the coefficient depends on (u—w),+(u2/2—w2/2+h> =0,

the stratification and two-layer scheme of flow is just the *

approximation of the real flow. Nevertheless, we could hu+(1—mhw=0. (28)
chqose Fhe fixed value of the paramegemamely, = 0.5, _ The characteristics o2@) have the form

which gives the reasonable agreement between numerical
calculations and experimental data for the non-stationarydx
problem considered in next subsection. dar

A—2n)(u—w)£VhA—h)(1— (u—w)?). (29)

. Equations 28) are hyperbolic fotu —w| < 1. The character-
3.6 Non-stationary problem istics 29) are used in the Riemann solver construction and
for time step definition. The numerical algorithm fof) (
In real stratified fluids, solitary waves cannot propagate at §11) can be realized in a similar way to the constructed one
constant velocity due to the dissipation of energy. Frictionjn (Le Metayer et al.2010. For (7) the time evolution of
and entrainment of surrounding fluid lead to a deceleration;gnservative variables:( K) is calculated by a Godunov’s
of wave. Note that energy dissipation in a solitary wave type scheme, then the functionsandu, are restored from
is caused also by mass loss during its propagation. For ghe ordinary differential equationdf. This provides the
two-layer scheme of flow, such effects can be simulated byinfinite velocity of perturbation propagation faf)(in spite of
including the friction termsf* in the models 1-3. the fact that28) is hyperbolic for the moderate velocity shear
For numerical treatment of non-stationary problems, wejn the |ayers. A numerical scheme fdrlj can be constructed
confine ourselves to the models 2 and 3, which are morgynajogously. In all calculations presented in the paper the
simpler then model 1, because they are similar in structurgyoundary conditions are= 0, w =0 at the side walls of the
to the Green-Naghdi equations for a one-layer flui@ (  ank. As the initial conditions, we use the exact soluti24 (
Metayer et al. 2019. We apply the numerical scheme describing a solitary wave for the corresponding model. The
developed in (e Metayer et al. 2010 for (6) and (10).  topographyy = z(x) is also included, when the problem on
As the governing equations, we consider the equivalengpe solitary wave shoaling is considered.
forms (7) and (1) with dependent variables:( K) for
model 2 and§, M) for model 3 Gavrilov and Liapidevskii 4 Shoaling internal waves
2010. The numerical scheme is formally a version of
the Godunov's scheme, in which the fluxes through theln this section, we consider the results of numerical
lateral boundaries of the meshes are calculated by a Riemargalculations of the solitary wave propagation over a shelf
solver. For 7) and (1) the equilibrium system without in the frame of models 2 and 3. The results are compared
dispersion g =0) is represented by two-layer shallow water with corresponding experimental data from laboratory

Nat. Hazards Earth Syst. Sci., 11, P5-2011 www.nhat-hazards-earth-syst-sci.net/11/17/2011/
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experiments | and Il. To specify the model coefficients, the  y, cin
evolution of solitary waves of depression and elevation in a
horizontal channel is considered first.

4.1 Solitary waves in a horizontal channel
Numerical calculations of the symmetric internal waves of 47
the second mode along the pycnocline has been considered
in (Gavrilov and Liapidevskji2009 2010 (the model 2).

It has been shown that Eq®) (represent the form and the
decay rate of internal solitary waves in accordance with the 2 [
laboratory experiments. It was found that the main input in =
the energy dissipation of waves was given by the interfacial
friction term

(e —w)lu—w|

f_ Z_CIT, 0 40 80 X, cin

since c* \_/ar_‘iShed due to the symmetry of flow and the fig 5. Solitary wave evolution: numerical calculation by model 3
bottom friction could be neglectedc™ =0). In all  (Ar=4s, thick line corresponds to curve 2 in Fig. 2).
calculations the valug = 0.012 was chosen. In the present

paper, we again put = 0.012 for models 2 and 3. The
coefficientse™, ¢~ for model 3 were chosen a$ =0.004,  waves depicted by thick lines in Fig. 6d correspond to the
but their values didn't influence essentially the numericalwaves shown in Fig. 6a—c. We can see from Fig. 6 that
solutions of the non-stationary problem for relatively thick in spite of the rather steep shelf slope in the experiment
initial bottom layers. In models 2 and 3 describing solitary (¢« = 8°), model 3 gives a realistic description of solitary
wave propagation in a stratified fluid, we ptit= 0.5 for all wave transformation over the shelf.
calculations mentioned in the paper. As was mentioned in Sect. 2, we consider the second
The numerical calculation of the solitary wave propagationmode solitary wave to simulate a large amplitude subsurface
over a horizontal bottom is shown in Fig. 5 (the model 3). internal wave of depression in a shelf zone. It is possible so
The exact solution24) with i =3, hg=0.135, Fr=0.48, far that the waves are symmetric relative to the plareH.
H =10cm, was used as initial data. The calculated waveThe transformation of a solitary wave in the second mode
profiles are depicted with the fixed time interval (4s in in the vertical channel contraction (experiment I) is shown
dimensional variables corresponding to the experiment llin Fig. 7. The thick lines represent the numerical solution
shown in Fig. 2). One of the profiles (thick line in Fig. 5) is of (6) (model 2), so they are symmetric relative to the plane
shown in Fig. 2 (curve 2) together with the exact solution of y = H. The shoaling solitary internal wave, calculated 6 (
(17) (curve 1) and the experimental photo as the backgroundtransformed over the shelf in the “top-table” wave calculated
The bold points in Fig. 5 are the crest positions of the waveby 2-D model for continuously stratified fluid inL&mb,
of elevation found from the experiment. One can see from2003. In experiment | (Fig. 7), the wave crest started to
Fig. 5 that the mathematical model 3 describes the decay ofiatten over the shelf slope, but due to flow instability the first
the solitary wave and its phase position adequately. Notanode was generated and the wave lost its symmetry. This
also that the solitary wave lost its initial symmetry during resulted in the more intensive loss of mass by the wave than
propagation due to friction effects. The shedding rate ofpredicted by the mathematical model. Nevertheless the main
mass from the wave can also be found by the numericafeatures of the wave evolution was captured by the model.
calculations.

4.2 Solitary waves over a shelf 5 Conclusions

Let us consider first the transformation of the solitary wave The amplitude of the internal waves propagating in a two-
of elevation over a shelf realized in experiment Il. The layer fluid may exceed many times the initial depth of one of
evolution of the solitary wave is shown in Fig. 6. The thick the layers without considerable breaking in contrast to the
lines represent the numerical solutions d0); The initial high amplitude surface waves. Therefore, internal waves
position of the solitary wave in two-layer fluid and the shelf can transport mass and momentum over a large distance
form are shown in Fig. 6d. The wave profiles calculatedin the coastal waters. The mathematical models 2 and 3
through the fixed time interval (4 s in dimensional variables with the hydrostatic pressure distribution in one of the layers
of experiment Il) are drown in Fig. 6d together with the show that the formation of large-amplitude solitary waves
experimental crest positions of the wave (bold points). Thein a two-layer fluid in a channel of finite depth is due to

www.nat-hazards-earth-syst-sci.net/11/17/2011/ Nat. Hazards Earth Syst. Sci.,25,, 2001



24 N. Gavrilov et al.: Large amplitude internal solitary waves over a shelf

y, cm . (@ Ycm _ ]

NN

60 80 x,em 100
L CI
d @

v
:"?M

220072 AN

80 100 x,cm 120 . F :

0 40 80 x,cm

Fig. 6. Solitary wave over a shelf: thick lines — numerical calculations by model 3 corresponding to experimental data; bold points —
experimental positions of the wave crests.
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Fig. 7. Transformation of the second mode solitary wave in a vertical channel contraction: thick line — numerical (symmetric) solution by
model 2.
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dispersion effects in the outer layer. Therefore, for theGreen, A. E. and Naghdi, P. M.: A derivation of equations for wave
models considered above, soliton-like solutions have a limit propagation in water of variable depth, J. Fluid Mech., 78, 237—
as the thickness of one of the layers tends to zero. Laboratory 246, 1976.
experiments on shoaling internal waves have demonstrateHe'f”Ch‘ K. R.: Decay and return of internal.solitary waves with
that the generation and decay of large amplitude internal rotation, Phys. Fluids., 19(2), 026601, doi:10.1063/1.2472509,
x:;/eerselguzgi\ggsl?ﬁ;]zuslgcrgr?g gl?dgfz(;)rpl)brggi:ﬁz{;\ttiz(; w;:l?r\:\éHelfrich, K. R. and Melville, W. K.: Long nonlinear internal waves,

. - . Annu. Rev. Fluid Mech., 38, 395-425, 2006.
terms representing the turbul_ent fr|ct|qn at the mterface.HohjL H., Matsunaga, N.. Sugihara, Y., and Sakai, K.
Models 2 and 3 are rather simple variants of the Green- gyperimental observation of internal symmetric solitary waves
Naghdi equations in open channel flows, which are applied in a two-layer fluid, Fluid Dyn. Res., 15, 89-102, 1995.
for description of large amplitude internal waves in a shelf Jensen, A., Pedersen, G. K., and Wood, D. J.: An experimental
zone. It is shown that the numerical scheme developed for study of wave run-up at a steep beach, J. Fluid Mech., 486, 161—
the open channel flows may be applied for description of 188, 2003.
large amplitude internal waves over a shelf. Kao, T. W. and Pao, K. H.-P.: Wave collapse in the thermocline and

internal solitary waves, J. Fluid Mech., 97, 115-128, 1980.

AcknowledgementsThe authors are grateful to the referees for Lamb, K. G.: Shoaling solitary internal waves: on a criterion for
their constructive comments. This work was supported by the the formation of waves with trapped cores, J. Fluid Mech., 478,
Ministry of Education and Science of the Russian Federation (Grant 81-100, 2003.
No. 2.1.1/3543), the Russian Foundation for Basic Research (Grartte Metayer, O., Gavrilyuk, S., and Hank, S.: A numerical scheme
No. 10-01-00338), Integration project of the Siberian Division of  for the Green-Naghdi model, J. Comput. Phys., 229(6), 2034~
the Russian Academy of Sciences No. 65, and Programme of the 2045, 2010.

Russian Academy of Sciences No. 2.14. Liapidevskii, V. Yu. and Teshukov, V. M.: Mathematical Models
of Long-Wave Propagation in an Inhomogeneous Fluid, Izd. Sib.

Edited by: E. Pelinovsky Otd. Ross. Akad. Nauk, Novosibirsk, 2000 (in Russian).

Reviewed by: two anonymous referees Maxworthy, T.: On the formation of nonlinear internal waves

from the gravity collapse of mixing regions in two and three
dimensions, J. Fluid Mech., 96, 47-64, 1980.

References Miles, J. F.: Stationary transcritical channel flow, J. Fluid Mech.,
162, 489-499, 1986.

Akhmetov, D. G.: Vortex Rings, Springer, Berlin-Heidelberg, 2009. Miyata, M.: A note on broad narrow solitary waves, IPRC Report

Benjamin, T. B.: Internal waves of permanent form in fluids of great  00-01, SOEST, University of Hawaii, Honolulu, 00-05, 47 pp.,

depth current, J. Fluid Mech., 29, 559-592, 1967. 2000.
Choi, W. and Camassa, R.: Fully nonlinear internal waves in a two-Schmidt, N. P. and Spigel, R. H.: Second-mode internal
fluid system, J. Fluid Mech., 386, 1-36, 1999. waves |, Il, Proc. of the 5th Int. Symp. on stratified flows
Davis, R. E. and Acrivos, A.: Solitary internal waves in deep water,  (Vancouver, Canada), 10-13 July 2000, Univ. of British
J. Fluid Mech., 29, 593-608, 1967. Columbia, Vancouver, 809-820, 2000.

Ermanyuk, E. V. and Gavrilov, N. V.: Interaction of internal gravity Serre, F.: Contribution a I'etude des ecoulements permanents et
current with a submerged circular cylinder, J. Appl. Mech. Tech.  variables dans les canaux, Houille Blanche, 8(3), 374-388, 1953

Phy., 46(2), 216—223, 2005. (in French).

Ermanyuk, E. V. and Gavrilov, N. V.: A note on the propagation Scotti, A. and Pineda, J.: Observation of very large and steep
speed of a weakly dissipative gravity current, J. Fluid Mech., internal waves of elevation near the Massachusetts coast,
574, 393-403, 2007. Geophys. Res. Lett., 31, L22307, 1-5, 2004.

Gavrilov, N. V. and Liapidevskii, V. Yu.: Symmetric solitary waves Stamp, A. P. and Jacka, M.: Deep-water internal solitary waves, J.
at the interface between fluids, Dokl. Ross. Akad. Nauk, 429(2), Fluid Mech., 305, 347-371, 1995.

187-190, 2009. Stevens, C. L., Fisher, T. S. R., and Lawrence, G. A.: Turbulent
Gavrilov, N. V. and Liapidevskii, V. Yu.: Finite-amplitude solitary layering beneath the pycnocline in a strongly stratified pit lake,

waves in a two layer fluid, J. Appl. Mech. Tech. Phy., 51(4), 471-  Limnol. Oceanogr., 50(1), 197—206, 2005.

481, 2010. Tung, K.-K., Chan, T. F., and Kubota, T.: Large amplitude internal

Gavrilyuk, S. L. and Teshukov, V. M.: Generalized vorticity waves of permanent form, Stud. Appl. Math., 66, 1-44, 1982.
for bubbly liquid and dispersive shallow water equations,
Continuum Mech. Therm., 13, 365-382, 2001.

www.nat-hazards-earth-syst-sci.net/11/17/2011/ Nat. Hazards Earth Syst. Sci.,25,, 2001



