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Abstract. Dynamics of large amplitude internal waves
in two-layers of shallow water is considered. It is
demonstrated that in laboratory experiments the subsurface
waves of depression over a shelf may be simulated by
internal symmetric solitary waves of the mode 2 (“lump-like”
waves). The mathematical model describing the propagation
and decaying of large internal waves in two-layer fluid is
introduced. It is a variant of Choi-Camassa equations with
hydrostatic pressure distribution in one of the layers. It is
shown that the numerical scheme developed for the Green-
Naghdi equations in open channel flows may be applied for
the description of large amplitude internal waves over a shelf.

1 Introduction

Propagation of high amplitude internal waves in a shelf
zone is the very important physical mechanism of coastal
water ventilation. The internal waves are able to transport
cold water, lift up sediments, intensify mixing processes in
shallow waters, etc. Such high-energetic mechanisms of
the shelf ventilation can effectively intensify the biological
and hydrological processes in coastal waters. In particular,
they can redistribute the waste waters and influence the
water quality in near shore area. Nonlinear internal waves
generated by tides as well as by the interaction of flows
with topography play an important role in the energy transfer
from the large-scale motion to small-scale mixing. Very
often the wave fronts take the form of solitary wave trains
with the large ratio of the wave amplitude to the upper
layer depth (Helfrich and Melville, 2006). Propagating to
shore, they transform into the large amplitude internal waves
of elevation. The large amplitude internal waves can be
identified by “closed streamline” regions in which trapped
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fluid is carried horizontally for long distances for both types
of bottom and surface internal waves (Maxworthy, 1980;
Tung et al., 1982; Stamp and Jacka, 1995). Scotti and
Pineda(2004) have recently observed bore-like structures
with trapped cores in the near shore area of the Atlantics.
The transition from wave-like motion to the separate moving
soliton-like waves (“solibores”) containing trapped dense
core is the common feature of the run-up process of internal
waves. It can be observed in any shelf zone with high internal
wave activity as well as in laboratory experiments.

The run up of internal waves in near shore waters is very
similar to the run up of surface long waves (tsunami waves),
but the process of internal wave breaking and dissipation is
not quite understood. In contrast to the energy dissipation
mechanism for surface solitary waves in a homogeneous
fluid, the energy dissipation in internal waves is closely
connected with the entrainment and mixing in stratified shear
flows. Recently, the structure of such a flow has been
actively studied both theoretically and experimentally. In
stratified water reservoirs, internal waves with a trapped core
have been found in the bottom layer (Scotti and Pineda,
2004) and the surface layer (Helfrich and Melville, 2006),
and at the interface between homogeneous fluid layers of
different densities (Stevens et al., 2005). Intrusion flows
in the form of symmetric solitary waves at the interface
between fluids have been studied using experimental and
theoretical methods (Benjamin, 1967; Davis and Acrivos,
1967; Maxworthy, 1980; Kao and Pao, 1980; Tung et al.,
1982; Hohji et al., 1995; Stamp and Jacka, 1995; Schmidt
and Spigel, 2000). Interest in this class of flows is motivated
by their unique ability to transfer mass along high-gradient
interlayers in a stratified fluid due to the initial horizontal
momentum. Solitary-wave flow is similar to vortex-ring flow
(Akhmetov, 2009), with the entrainment of the surrounding
fluid and the vertical velocity component in rotational motion
being effectively suppressed by stable stratification.
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Fig. 1. A sketch of the lock problem:(a) solitary wave at the
interface, experiment I;(b) shoaling solitary wave, experiment II.

The mathematical model, which is an extension of
the Green-Naghdi model and includes the turbulent layer,
has been developed in (Liapidevskii and Teshukov, 2000)
for stratified flows governed by entrainment and mixing
processes. Here this model is adapted to unsteady run-up
problems for internal waves of depression and elevation. The
plan of the paper is as follows. In Sect. 2, we describe
the laboratory experiments on solitary wave generation
in two-layer fluid at rest. In Sect. 3, we present a
brief derivation of the adequate mathematical models for
large amplitude solitary wave dynamics and introduce the
numerical algorithm. In Sect. 4, numerical calculations of
shoaling solitary waves are compared with the experimental
data.

2 Laboratory experiments

Experiments were performed in a laboratory tank (Fig. 1)
140 cm long, 20 cm wide and 35 cm deep. The walls of the
test tank were made ofPerspex. The test tank was divided
by a vertical removable plate in two parts. The geometrical
set-up of the experiments is clear from the sketches shown
in Fig. 1. A weak solution of sugar in water was used
to create the density stratification. In all experiments, the
relative difference in densityε = (ρ1−ρ2)/ρ1 was less then
0.005 and the viscosity of the sugar solution is comparable

to the viscosity of water. In the first series of experiments
(experiment I, Fig. 1a), the tank geometry was chosen
as symmetric relative to the planey = H . The density
distribution, which was established between the layers at
rest, was also symmetric and was well approximated by the
formula

ρ(y) = ρ2+
(ρ1−ρ0)

2
tanh

(
y −H

δ

)
, (1)

whereρ2 = (ρ0 + ρ1)/2, 2δ is the characteristic thickness
of the pycnocline,ρ0 and ρ1 are asymptotic values of
the density in the upper and lower homogeneous layers,
respectively.

The length of the compartment with the mixed fluid of
densityρ2 was chosen so that the only one solitary wave
at the interface was produced. The wave of amplitude 2A

was also symmetric and exceeded the interlayer thickness
considerably (A � δ).

The aim of experiment I was to simulate the large-
amplitude waves of depression spreading on near surface
pycnocline. The symmetry of the second mode internal
solitary waves generated in experiment I ensured that only
the lower part of the flow 0≤ y ≤ H was considered. It
follows from the flow symmetry that the corresponding
Reynolds stress component vanished aty = H .

In experiment II, a solitary wave of elevation was
generated in the bottom layer of densityρ1 and, in contrast to
experiment I, was propagating under the action of the bottom
friction force (Fig. 1b). It has been shown inGavrilov and
Liapidevskii(2010) that an initially symmetric solitary wave
can transform quickly in the highly turbulent gravity flow for
thin bottom layers. Nevertheless, the dense bottom layer was
chosen rather thick in experiment II so that the pycnocline
was above the shelf zone (Fig. 1b). In this case, the wave
of elevation kept the form of the solitary wave during its
shoaling.

The front propagation speed in both experiments was
evaluated from video-records obtained by a digital camera
located at 2.5 m from the tank (25 frames per s). The flow
visualization is demonstrated in Fig. 2, where a photograph
of the bottom solitary wave of elevation (exp. II) is shown
against the background of the luminous screen with a grid
of inclined lines imposed on it (Ermanyuk and Gavrilov,
2005). In the zones with a high density gradient, a specific
distortion of these lines was observed, and in mixing zones,
the optical transparency of the fluid was reduced (Ermanyuk
and Gavrilov, 2007). In both types of experiments, the fluid
of densityρ2 in the left compartment was slightly coloured
with an ink solution for visualizing the fluid core trapped by a
solitary wave. The bold and the thin lines in Fig. 2 represent
the exact and numerical solutions of model 3, which are
discussed in the following Sects. 3 and 4.
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Fig. 2. Bottom solitary wave of elevation:
1 – exact solution of (17);
2 – numerical solution of model 3 (taken from Fig. 5, thick line);
the background is the photo from experiment II.

3 Mathematical models

3.1 Model 1

As a basic model for description of nonlinear internal
waves, we consider the two-layer shallow water equations
derived in Miyata (2000) and Choi and Camassa(1999)
for large amplitude, weakly nonhydrostatic long waves. In
the Boussinesq approximation(0 < (ρ1 −ρ2)/ρ1 � 1), the
second mode of internal waves at interfaces generated in
the first series of experiments are symmetric with respect
to the channel midliney = H for initial stratification shown
in Fig. 1a. Therefore, the flow can be considered in the
lower part of the tank(0 < y < H). Let y = h(t,x) and
u = u(t,x) be the depth and the mean velocity of the lower
homogeneous layer with the densityρ1, η = η(t,x) andw =

w(t,x) be the depth and the mean velocity of half of the
intermediate layer with the densityρ2(ρ2 = (ρ0+ρ1)/2,ρ0 <

ρ2).
For non-uniform bottom topographyz = z(x) we have

h+z+η = H, (2)

For the second series of experiments on shoaling solitary
internal waves of elevation (Fig. 1b), the notations are the
same. In this caseρ2 = ρ0 and (2) is fulfilled.

In the Boussinesq approximation, the two-layer shallow
water equations over the uneven bottom take the form
(Helfrich, 2007)

ht +(hu)x = 0,

ηt +(ηw)x = 0,

ut +uux +ρ−1
1 px +βh−1

(
1

3
h2d2

1h

dt2
+

1

2
h2d2

1z

dt2

)
x

+ b(h+z)x = −β

(
1

2

d2
1h

dt2
+

d2
1z

dt2

)
zx +f − , (3)

wt +wwx +ρ−1
1 px +

β

3η

(
η2d2

2η

dt2

)
x

= f + ,

b =
(ρ1−ρ2)g

ρ1
,

d1

dt
= (∂t +u∂x),

d2

dt
= (∂t +w∂x) .

Here g is the gravity acceleration,p is the pressure at
interface,β = H/L � 1, L is a typical wave length. Note
that the parameterβ can be put equal to1, but we keep
it in the formulae to have better scaling between horizontal
and vertical axes. The friction termsf ± are represented as
follows:

f +
= −c+

w|w|

η
+ci

(u−w)|u−w|

η
;

f −
= −c−

u|u|

h
−ci

(u−w)|u−w|

h
. (4)

The friction coefficientsc±, ci at the upper and lower
boundaries of flow, as well as at the interface are supposed to
be constants.

By virtue of (2), (3) note that

Q = hu+ηw = Q(t). (5)

In experimentsQ ≡ 0 and (3) can be reduced to the system
of two equations, say, for the dependent variablesh and
u. The travelling waves of (2)–(3) describing the large
amplitude solitary waves are discussed in the next section.
In the following subsections, two models, which are the
simplifications of (2)–(3), are introduced. Note, that in
(3) the terms, which have the orderO(β), are kept only.
In the case of slowly varying topography (z = z0(βx)), we

have
d2

1z

dt2 = O(β). Therefore, the terms12βh−1(h2 d2
1z

dt2 )x and

β(h
d2

1z

dt2 )xzx have the orderO(β2) and they are neglected
in models 2 and 3. Moreover, if one of the layers is
thin compared to the wave amplitude, the fluid particles in
such a wave move almost with the wave velocity and the
corresponding material derivative vanishes in the layer. It
results in the hydrostatic pressure distribution in the layer.

For symmetric solitary waves realized in the first series
of experiments (Fig. 1a), the intermediate layer is supposed
to be hydrostatic and the propagation of the large amplitude
wave of depression in the lower part of the tank (0< y < H )
is governed by model 2, which is introduced in Sect. 3.2.
Solitary waves of elevation, propagating in a thin hydrostatic
bottom layer (Fig. 1b), are described by model 3 in Sect. 3.3.
The effects of the omitted nonhydrostatic components in the
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simplified models on the structure of travelling waves are
considered in Sect. 3.4. Further, for models 1–3, we chose
the dimensionless variables such thatρ1 = 1, b = 1, H = 1.

3.2 Model 2

The model 1, in which the hydrostatic intermediate layer
is supposed and the termsO(β) are kept only, takes in
the dimensionless variables form (Gavrilov and Liapidevskii,
2009)

ht +(hu)x = 0,

ηt +(ηw)x = 0,

ut +uux +b(h+z)x +px +
β

3h
(h2d2

1h

dt2
)x = f − ,

wt +wwx +px = f + . (6)

In view of (2), (4) the system (6) can be written in the form

ht +(hu)x = 0,

Kt +

(
Ku−

1

2
(u−w)2

+b(h+z)−
β

2
h2u2

x

)
x

= f −
−f +, (7)

Here

η = 1−h−z, w = (Q−hu)/η,

K = u−w+
β

3h

(
h2d1h

dt

)
x

= u−w−
β

3h

(
h3ux

)
x
. (8)

We will apply Eqs. (7)–(8) for numerical calculations of
non-stationary problems, concerning the propagation of large
amplitude solitary waves of depression over a shelf. The
variablesh andK are considered as the dependent variables,
describing time evolution of the flow, and the velocityu =

u(t,x) can be restored for givenh, hx , K from the linear
ODE

β

3
h2uxx +βhhxux −

1−z

1−h−z
u = −

Q

1−h−z
−K. (9)

The realization of such approach, which is analogous to
the method of calculations developed in (Le Metayer et al.,
2010) for the Green-Naghdi model, will be discussed in the
Sect. 3.6.

3.3 Model 3

The next model describes the propagation of large amplitude
waves of elevation in the case of thin initial bottom layer
(Fig. 1b). Now the bottom layer is supposed to be hydrostatic
and the model 3 can be derived from (3) in a similar way to
(6), namely,

ht +(hu)x = 0,

ηt +(ηw)x = 0,

ut +uux +b(h+z)x +px = f − ,

wt +wwx +
β

3η

(
η2d2

2η

dt2

)
x

+px = f + . (10)

Analogously, in view of (2), (4) the system (10) is reduced
to

ηt +(ηw)x = 0,

Mt +

(
Mw−

1

2
(u−w)2

+bη−
β

2
η2w2

x

)
x

= f +
−f −, (11)

where

h = 1−η−z, u = (Q−ηw)/h,

M = w−u+
β

3η

(
η2d2η

dt

)
x

= w−u−
β

3η

(
η3wx

)
x
. (12)

Note that (11), (12) can be transformed into (6), (7) by
changing dependent variablesh andη, u andw. Therefore,
the numerical scheme, developed for model 2, can be easily
applied to model 3. In the next section, we show that
the solutions of the models 2 and 3 give the effective
approximation of solutions of model 1 for large amplitude
solitary waves of depression or elevation propagating along
thin initially unpertubated layer.

3.4 Travelling waves

For the models 1–3, we construct travelling waves, i.e.,
solutions of Eqs. (3), (6), (10), which depend on the
variable ξ = x − Dt(D ≡ const). Such solutions exist for
nondissipative flows over a flat bottom (c±

= 0, ci = 0,
z(x) ≡ 0). Let’s consider the solitary waves satisfying for
|ξ | → 0 the following conditions

h → h0, h′
→ 0, h′′

→ 0. (13)

(here and below, the prime denotes differentiation with
respect to the variableξ ). For model 1 the solitary waves
have been investigated in (Choi and Camassa, 1999), for
model 2 (and, consequently, for model 3) they have been
constructed inGavrilov and Liapidevskii(2009). It is shown
in Gavrilov and Liapidevskii(2010) that for models 1–3 the
velocity distribution and the profiles of solitary waves can be
represented in the form

h(D−u) = h0D, (1−h)(D−w) = (1−h0)D (14)

and

model 1

(h′)2
= G1(h) =

3(h−h0)
2(Fr2

−h+h2
)

βFr2(h2
0(1−h)+(1−h0)2h)

, (15)
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model 2

(h′)2
= G2(h) =

3(h−h0)
2(Fr2

−h+h2
)

βFr2h2
0(1−h)

, (16)

model 3

(h′)2
= G3(h) =

3(h−h0)
2(Fr2

−h+h2
)

βFr2(1−h0)
2h

. (17)

HereFr =D/
√

bH = D is the Froude number. It follows
from (15)–(17) that the solitary waves exist for

h2
−h+Fr2

= (h−h+)(h−h−) > 0,

where

h±
=

1±

√
1−4Fr2

2
. (18)

Therefore, the admissible intervals forh are

0< h0 ≤ h ≤ h−, h+
≤ h ≤ h0 < 1. (19)

Note also that

Fr ≤
1

2
(20)

is the necessary condition of solitary wave existence.
It is worthy to note that the functionsG1(h) andG2(h)

have the common limit forh0 → 1

G0(h) = 3β−1(1−h)
(
Fr2

−h+h2
)
/Fr2. (21)

The same is true for the functionsG1(h), G3(h) whenh0 →

0

G4(h) = 3β−1h
(
Fr2

−h+h2
)
/Fr2. (22)

For i = 0,1,2,3,4 the equation

(h′)2
= Gi(h) (23)

specifies the profile of symmetric solitary waves for
admissible intervals

0≤ h0 < h< h−, h+
≤ h ≤ h0 ≤ 1.

The solution of (23) can be found in quadratures

ξ = ξi(h) = ±

∫ h

hm

ds
√

Gi(s)
, i = 0,1,2,3,4. (24)

Here hm = h+ for a wave of depression andhm = h− for
a wave of elevation. The solutions (24) for Fr = 0.49 and
β = 1 (i = 0,1,2,3,4) are shown in Fig. 3. Since the change
of dependent variableh → 1−h does not vary the function
G1(h) and transforms the functionG2(h) into G3(h), the
solitons of elevation, calculated forh0 = ζ < h−, and the
solitons of depression, calculated forh0 = 1−ζ > h+, have

Fig. 3. Solitary waves in two-layer fluid represented by (24) for
i = 0,1,2,3,4: Fr = 0.49,β = 1, ζ = 0.2.

the profiles, which are symmetric relative to the liney =

1/2. Therefore, it is sufficient to consider only the waves
of elevation. It follows from Fig. 3 that forh0 = 0.2 the
solutions of model 1 (curve 1; Eq.15) and model 3 (curve 3;
Eq. 16) are close to each other, in contrast to the solution
of model 2 (curve 2; Eq.17). Note also that forh0 < 0.1
the profiles of large amplitude solitary waves practically
coincide. Therefore, for numerical calculations of non-
stationary problems on nonlinear wave propagation in two-
layer flow, we shall use the more simpler models 2 and 3.
The limiting case of the solitary wave withh0 = 0 (curve 0;
Eq.21) is also shown in Fig. 3. It was mentioned above that
the wave amplitude is the same as for the waves 1 and 2,
but the solution withh0 = 0 is not soliton since, in view of
(21), (24), the length of the wave is finite in contrast to the
waves withh0 > 0. The solitary waves of depression which
are plotted in the upper part of Fig. 3 are analogous to the
considered wave of elevation. The curves are represented by
(24) for i = 1,2,3,4.

3.5 Solitary waves in homogeneous fluid

Forh � H andρ+
= 0,ρ−

= 1 the model 2 transforms in the
dispersive shallow water equations for open channel flows
(Green and Naghdi, 1976; Serre, 1953)

ht +(hu)x = 0,

ut +uux +g(h+z)x +
β

3h

(
h2d2

1h

dt2

)
x

= −c−
u|u|

h
. (25)

Analogously to (7), Eqs. (25) can be rewritten as follows
(Gavrilyuk and Teshukov, 2001)

ht +(hu)x = 0,

Kt +

(
Ku−

1

2
u2

+g(h+z)−
β

2
h2u2

x

)
x

= −c−
u|u|

h
, (26)

where K = u+
β
3h

(
h2 d1h

dt

)
x

= u−
β
3h

(
h3ux

)
x
. We will
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introduce in the next section the numerical scheme for
two-layer flows, which can also be applied for (26). This
approach is promising in the nonlinear wave shoaling
problem due to its insensitivity to the small bottom
perturbations. But here we consider only the solitary waves
over an even bottom to find the proper value of the scaling
coefficientβ from the experimental data for homogeneous
fluid.

The functionG2(h) in (16) for the case under considera-
tion takes the form (Miles, 1986)

(h′)2
=

3(h−h0)
2(D2

−gh
)

βD2h2
0

. (27)

In Fig. 4, the dependenceh/h0 = ϕ(t/
√

gh0), calculated
from (27) for fixed x0 = ξ + Dt and for two values of
parameterβ (β = 0.75 andβ = 1) is compared with the
experimental data from (Jensen et al., 2003). Experimental
solitary waves in (Jensen et al., 2003) (experiment 4,x0 =

3.37 m, h0 = 0.2 m) have been generated by moving a wall
in an unperturbated layer of water. We can see that the
Green-Naghdi equations withβ = 1 give the wave profile,
which is too wide, and the valueβ = 0.75 fits better for
high amplitude solitary waves. For internal waves considered
in experiments I and II, the coefficientβ depends on
the stratification and two-layer scheme of flow is just the
approximation of the real flow. Nevertheless, we could
choose the fixed value of the parameterβ, namely,β = 0.5,
which gives the reasonable agreement between numerical
calculations and experimental data for the non-stationary
problem considered in next subsection.

3.6 Non-stationary problem

In real stratified fluids, solitary waves cannot propagate at a
constant velocity due to the dissipation of energy. Friction
and entrainment of surrounding fluid lead to a deceleration
of wave. Note that energy dissipation in a solitary wave
is caused also by mass loss during its propagation. For a
two-layer scheme of flow, such effects can be simulated by
including the friction termsf ± in the models 1–3.

For numerical treatment of non-stationary problems, we
confine ourselves to the models 2 and 3, which are more
simpler then model 1, because they are similar in structure
to the Green-Naghdi equations for a one-layer fluid (Le
Metayer et al., 2010). We apply the numerical scheme
developed in (Le Metayer et al., 2010) for (6) and (10).
As the governing equations, we consider the equivalent
forms (7) and (11) with dependent variables (h, K) for
model 2 and (h, M) for model 3 (Gavrilov and Liapidevskii,
2010). The numerical scheme is formally a version of
the Godunov’s scheme, in which the fluxes through the
lateral boundaries of the meshes are calculated by a Riemann
solver. For (7) and (11) the equilibrium system without
dispersion (β = 0) is represented by two-layer shallow water

Fig. 4. Surface soliton: 1 and 2 are exact solutions of (27) with
β = 1, β = 0.5, correspondingly; 3 – experiment in (Jensen et al.,
2003).

equations

ht +(hu)x = 0,

(u−w)t +
(
u2/2−w2/2+h

)
x
= 0,

hu+(1−h)w = 0. (28)

The characteristics of (28) have the form

dx

dt
= (1−2h)(u−w)±

√
h(1−h)(1−(u−w)2). (29)

Equations (28) are hyperbolic for|u−w| < 1. The character-
istics (29) are used in the Riemann solver construction and
for time step definition. The numerical algorithm for (7),
(11) can be realized in a similar way to the constructed one
in (Le Metayer et al., 2010). For (7) the time evolution of
conservative variables (h, K) is calculated by a Godunov’s
type scheme, then the functionsu andux are restored from
the ordinary differential equation (9). This provides the
infinite velocity of perturbation propagation for (7) in spite of
the fact that (28) is hyperbolic for the moderate velocity shear
in the layers. A numerical scheme for (11) can be constructed
analogously. In all calculations presented in the paper the
boundary conditions areu = 0, w = 0 at the side walls of the
tank. As the initial conditions, we use the exact solution (24),
describing a solitary wave for the corresponding model. The
topographyy = z(x) is also included, when the problem on
the solitary wave shoaling is considered.

4 Shoaling internal waves

In this section, we consider the results of numerical
calculations of the solitary wave propagation over a shelf
in the frame of models 2 and 3. The results are compared
with corresponding experimental data from laboratory
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experiments I and II. To specify the model coefficients, the
evolution of solitary waves of depression and elevation in a
horizontal channel is considered first.

4.1 Solitary waves in a horizontal channel

Numerical calculations of the symmetric internal waves of
the second mode along the pycnocline has been considered
in (Gavrilov and Liapidevskii, 2009, 2010) (the model 2).
It has been shown that Eqs. (6) represent the form and the
decay rate of internal solitary waves in accordance with the
laboratory experiments. It was found that the main input in
the energy dissipation of waves was given by the interfacial
friction term

f −
= −ci

(u−w)|u−w|

h
,

since c+ vanished due to the symmetry of flow and the
bottom friction could be neglected(c−

≡ 0). In all
calculations the valueci = 0.012 was chosen. In the present
paper, we again putci = 0.012 for models 2 and 3. The
coefficientsc+, c− for model 3 were chosen asc±

= 0.004,
but their values didn’t influence essentially the numerical
solutions of the non-stationary problem for relatively thick
initial bottom layers. In models 2 and 3 describing solitary
wave propagation in a stratified fluid, we putβ = 0.5 for all
calculations mentioned in the paper.

The numerical calculation of the solitary wave propagation
over a horizontal bottom is shown in Fig. 5 (the model 3).
The exact solution (24) with i = 3, h0 = 0.135, Fr = 0.48,
H = 10 cm, was used as initial data. The calculated wave
profiles are depicted with the fixed time interval (4 s in
dimensional variables corresponding to the experiment II
shown in Fig. 2). One of the profiles (thick line in Fig. 5) is
shown in Fig. 2 (curve 2) together with the exact solution of
(17) (curve 1) and the experimental photo as the background.
The bold points in Fig. 5 are the crest positions of the wave
of elevation found from the experiment. One can see from
Fig. 5 that the mathematical model 3 describes the decay of
the solitary wave and its phase position adequately. Note
also that the solitary wave lost its initial symmetry during
propagation due to friction effects. The shedding rate of
mass from the wave can also be found by the numerical
calculations.

4.2 Solitary waves over a shelf

Let us consider first the transformation of the solitary wave
of elevation over a shelf realized in experiment II. The
evolution of the solitary wave is shown in Fig. 6. The thick
lines represent the numerical solutions of (10). The initial
position of the solitary wave in two-layer fluid and the shelf
form are shown in Fig. 6d. The wave profiles calculated
through the fixed time interval (4 s in dimensional variables
of experiment II) are drown in Fig. 6d together with the
experimental crest positions of the wave (bold points). The

Fig. 5. Solitary wave evolution: numerical calculation by model 3
(4t = 4 s, thick line corresponds to curve 2 in Fig. 2).

waves depicted by thick lines in Fig. 6d correspond to the
waves shown in Fig. 6a–c. We can see from Fig. 6 that
in spite of the rather steep shelf slope in the experiment
(α = 8◦), model 3 gives a realistic description of solitary
wave transformation over the shelf.

As was mentioned in Sect. 2, we consider the second
mode solitary wave to simulate a large amplitude subsurface
internal wave of depression in a shelf zone. It is possible so
far that the waves are symmetric relative to the planey = H .
The transformation of a solitary wave in the second mode
in the vertical channel contraction (experiment I) is shown
in Fig. 7. The thick lines represent the numerical solution
of (6) (model 2), so they are symmetric relative to the plane
y = H . The shoaling solitary internal wave, calculated by (6)
transformed over the shelf in the “top-table” wave calculated
by 2-D model for continuously stratified fluid in (Lamb,
2003). In experiment I (Fig. 7), the wave crest started to
flatten over the shelf slope, but due to flow instability the first
mode was generated and the wave lost its symmetry. This
resulted in the more intensive loss of mass by the wave than
predicted by the mathematical model. Nevertheless the main
features of the wave evolution was captured by the model.

5 Conclusions

The amplitude of the internal waves propagating in a two-
layer fluid may exceed many times the initial depth of one of
the layers without considerable breaking in contrast to the
high amplitude surface waves. Therefore, internal waves
can transport mass and momentum over a large distance
in the coastal waters. The mathematical models 2 and 3
with the hydrostatic pressure distribution in one of the layers
show that the formation of large-amplitude solitary waves
in a two-layer fluid in a channel of finite depth is due to
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Fig. 6. Solitary wave over a shelf: thick lines – numerical calculations by model 3 corresponding to experimental data; bold points –
experimental positions of the wave crests.

Fig. 7. Transformation of the second mode solitary wave in a vertical channel contraction: thick line – numerical (symmetric) solution by
model 2.
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dispersion effects in the outer layer. Therefore, for the
models considered above, soliton-like solutions have a limit
as the thickness of one of the layers tends to zero. Laboratory
experiments on shoaling internal waves have demonstrated
that the generation and decay of large amplitude internal
waves in a two-layer fluid may be described by the shallow
water equations of the second order approximation with the
terms representing the turbulent friction at the interface.
Models 2 and 3 are rather simple variants of the Green-
Naghdi equations in open channel flows, which are applied
for description of large amplitude internal waves in a shelf
zone. It is shown that the numerical scheme developed for
the open channel flows may be applied for description of
large amplitude internal waves over a shelf.

Acknowledgements.The authors are grateful to the referees for
their constructive comments. This work was supported by the
Ministry of Education and Science of the Russian Federation (Grant
No. 2.1.1/3543), the Russian Foundation for Basic Research (Grant
No. 10-01-00338), Integration project of the Siberian Division of
the Russian Academy of Sciences No. 65, and Programme of the
Russian Academy of Sciences No. 2.14.

Edited by: E. Pelinovsky
Reviewed by: two anonymous referees

References

Akhmetov, D. G.: Vortex Rings, Springer, Berlin-Heidelberg, 2009.
Benjamin, T. B.: Internal waves of permanent form in fluids of great

depth current, J. Fluid Mech., 29, 559–592, 1967.
Choi, W. and Camassa, R.: Fully nonlinear internal waves in a two-

fluid system, J. Fluid Mech., 386, 1–36, 1999.
Davis, R. E. and Acrivos, A.: Solitary internal waves in deep water,

J. Fluid Mech., 29, 593–608, 1967.
Ermanyuk, E. V. and Gavrilov, N. V.: Interaction of internal gravity

current with a submerged circular cylinder, J. Appl. Mech. Tech.
Phy., 46(2), 216–223, 2005.

Ermanyuk, E. V. and Gavrilov, N. V.: A note on the propagation
speed of a weakly dissipative gravity current, J. Fluid Mech.,
574, 393–403, 2007.

Gavrilov, N. V. and Liapidevskii, V. Yu.: Symmetric solitary waves
at the interface between fluids, Dokl. Ross. Akad. Nauk, 429(2),
187–190, 2009.

Gavrilov, N. V. and Liapidevskii, V. Yu.: Finite-amplitude solitary
waves in a two layer fluid, J. Appl. Mech. Tech. Phy., 51(4), 471–
481, 2010.

Gavrilyuk, S. L. and Teshukov, V. M.: Generalized vorticity
for bubbly liquid and dispersive shallow water equations,
Continuum Mech. Therm., 13, 365–382, 2001.

Green, A. E. and Naghdi, P. M.: A derivation of equations for wave
propagation in water of variable depth, J. Fluid Mech., 78, 237–
246, 1976.

Helfrich, K. R.: Decay and return of internal solitary waves with
rotation, Phys. Fluids., 19(2), 026601, doi:10.1063/1.2472509,
2007.

Helfrich, K. R. and Melville, W. K.: Long nonlinear internal waves,
Annu. Rev. Fluid Mech., 38, 395–425, 2006.

Hohji, H., Matsunaga, N., Sugihara, Y., and Sakai, K.:
Experimental observation of internal symmetric solitary waves
in a two-layer fluid, Fluid Dyn. Res., 15, 89–102, 1995.

Jensen, A., Pedersen, G. K., and Wood, D. J.: An experimental
study of wave run-up at a steep beach, J. Fluid Mech., 486, 161–
188, 2003.

Kao, T. W. and Pao, K. H.-P.: Wave collapse in the thermocline and
internal solitary waves, J. Fluid Mech., 97, 115–128, 1980.

Lamb, K. G.: Shoaling solitary internal waves: on a criterion for
the formation of waves with trapped cores, J. Fluid Mech., 478,
81–100, 2003.

Le Metayer, O., Gavrilyuk, S., and Hank, S.: A numerical scheme
for the Green-Naghdi model, J. Comput. Phys., 229(6), 2034–
2045, 2010.

Liapidevskii, V. Yu. and Teshukov, V. M.: Mathematical Models
of Long-Wave Propagation in an Inhomogeneous Fluid, Izd. Sib.
Otd. Ross. Akad. Nauk, Novosibirsk, 2000 (in Russian).

Maxworthy, T.: On the formation of nonlinear internal waves
from the gravity collapse of mixing regions in two and three
dimensions, J. Fluid Mech., 96, 47–64, 1980.

Miles, J. F.: Stationary transcritical channel flow, J. Fluid Mech.,
162, 489-499, 1986.

Miyata, M.: A note on broad narrow solitary waves, IPRC Report
00-01, SOEST, University of Hawaii, Honolulu, 00-05, 47 pp.,
2000.

Schmidt, N. P. and Spigel, R. H.: Second-mode internal
waves I, II, Proc. of the 5th Int. Symp. on stratified flows
(Vancouver, Canada), 10–13 July 2000, Univ. of British
Columbia, Vancouver, 809–820, 2000.

Serre, F.: Contribution a l’etude des ecoulements permanents et
variables dans les canaux, Houille Blanche, 8(3), 374–388, 1953
(in French).

Scotti, A. and Pineda, J.: Observation of very large and steep
internal waves of elevation near the Massachusetts coast,
Geophys. Res. Lett., 31, L22307, 1–5, 2004.

Stamp, A. P. and Jacka, M.: Deep-water internal solitary waves, J.
Fluid Mech., 305, 347–371, 1995.

Stevens, C. L., Fisher, T. S. R., and Lawrence, G. A.: Turbulent
layering beneath the pycnocline in a strongly stratified pit lake,
Limnol. Oceanogr., 50(1), 197–206, 2005.

Tung, K.-K., Chan, T. F., and Kubota, T.: Large amplitude internal
waves of permanent form, Stud. Appl. Math., 66, 1–44, 1982.

www.nat-hazards-earth-syst-sci.net/11/17/2011/ Nat. Hazards Earth Syst. Sci., 11, 17–25, 2011


