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Abstract. A stochastic model based on a non-homogeneougategory concerns temporal and spatial-temporal stochastic
Poisson process, characterised by a time-dependent inteprocess models which try to summarize the main rainfall fea-
sity of rainfall occurrence, is employed to explain seasonaltures by a few parameters, providing an understanding of the
effects of daily rainfalls exceeding prefixed threshold val- hierarchical structure of the rainfall process. In particular,
ues. The data modelling has been performed with a partithese models follow a point process approach based upon
tion of observed daily rainfall data into a calibration period the use of Poisson and Poisson-cluster processes for explain-
for parameter estimation and a validation period for check-ing the joint or separate arrival and magnitude processes of
ing on occurrence process changes. The model has been aghaily rainfalls (Waymire and Gupta, 1981a, b, ¢; Kavvas and
plied to a set of rain gauges located in different geographi-Delleur, 1981; Yevjevich and Dyer, 1983; Rodriguez-lturbe
cal areas of Southern Italy. The results show a good fit foret al., 1984, 1987; Onof et al., 2000).

time-varying intensity of rainfall occurrence process by 2- This latter approach has been used for a long time as a tool
harmonic Fourier law and no statistically significant evidencefor the stochastic modelling of rainfall, combining in differ-

of changes in the validation period for different threshold val- ent ways the basic Poisson process of storm arrivals with the
ues. Neyman-Scott or the Bartlett-Lewis point processes. In more
recent developments, rainfall variables, such as the duration
and intensity of a rainy event, have been treated as correlated
variables or, alternatively, correlation has been introduced
using independent superposed point processes to represent
the different kinds of storms in a region (Cowpertwait et al.,
%007; Leonard et al., 2008). The statistical properties of the
superposed process are normally obtained by aggregation of

different models that can be used may be classified into fouFhe PrOpemes of each independent.process. In Oth‘?r words,
categories (Onof et al., 2000). The first category is formed byspatlal-ternppra[ models can be flexibly structgr_ed with con-
meteorological models, which involve complex sets of differ- tinuous distributions of storm types, thus providing a param-

; ; - .__eter configuration that can be efficiently fitted to a large range
ential equations in order to represent the complete physicaf .c' cO™ ) . ;
d P P phy of historical rainfall records (Cowpertwait, 2010). Point pro-

processes controlling precipitation and other weather vari- ) .
ables. The second one is represented by stochastic modef§ss rainfall models are generally fitted to the observed sam-
properties using derived moments and model functions.

which describe the spatial evolution of the rainfall process inP'e d fiti I db . b d
a scale-independent approach, like the multi-scaling modelé good fitis usually assessed by comparing observed prop-

(Lovejoy and Schertzer, 1990; Gupta and Waymire, 1994) erties of data not used to estimate the model parameters with
A third one is formed b3; statis,tical models (single or, multi- eguivalent properties simulated using the fitted model (En-

site temporal), able to represent spatial non-stationarity an%ekhal?? etal, 1?85; Cowp(;ar;walt etal, 200|7)' This proce-
temporal trend (Stern and Coe, 1984). Finally, the fourth ure, if successfully extended to extreme values, can certify

the model suitability, due to the sensitivity of the distribu-
tions of the extremes to any departures in the good fitting of
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1 Introduction

Investigations on daily rainfall time series may contribute at
various levels to the assessment of the existence of tempor
and spatial variability in the rainfall field characteristics. The
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Alternatively, in order to reproduce the temporal and/or spring-summer period is detected (Fig. 1). Moreover, the sta-
spatial non-stationary features in both the analysis and théistical features of the storm occurrence process can be influ-
simulation of rainfall variability, the generalized linear mod- enced by the threshold chosen for extracting exceedance val-
els (GLMs) can be applied (Chandler and Wheater, 2002ues from the basic rainfall time series. Both the problems of
Wheater et al., 2005). These models explain daily rain-choosing threshold value and selecting the criteria for retain-
fall variability by using probability distributions in which ing peaks represent some of the main difficulties classically
the probability of rainfall occurrence is modelled separatelyassociated with the POT analysis. This approach, a kind of
from the amount of rain if non-zero. By developing appropri- compromise between annual maxima frequency and classical
ate methods of spatial-temporal disaggregation of daily raintime series modelling, requires the analysis of both the mag-
falls, GLMs can also be linked to the single-site models tonitude and the arrival time of storm peaks, neglecting the au-
provide multi-site sequences incorporating sub-daily tempo-ocorrelation structure of the basic data. The higher rainfall
ral structure. values of different sets of consecutive rainy days are gen-

With reference only to the temporal variability of the rain- erally assumed as rainfall peaks, thus, practically assuring
fall process, the stochastic point process models, describetihe independence required for the Poisson process. For the
above, are widely used for at-site analysis of storm occur<choice of threshold value, which directly influences the dis-
rences, in order to explain the intermittent feature of rainfallstribution of peaks, some statistical tests and practical guide-
and simulate inter-storm periods. Nevertheless, the stochadines are available (Lang et al., 1999).
tic models often hypothesize temporal stationary processes. Adopting a non-homogeneous Poisson process, the occur-
In this case, the apparent seasonal periodicity exhibited byence probability of: events in a time period [r + Ar] is
the frequency of the rainfall phenomena can be modelled agiven by:

a stationary stochastic process in short temporal intervals, A o—Ariia
in which the behaviour can be considered reliably homoge—leyAl (n) = —LI+AL ' Arssar>0 n=0,1,...(1)
neous. n!

Another approach of functional type, aimed to cope with The mean number of evenls ,, o, depends on both time
seasonal and trend variability of the storm occurrences, isnd intervalAz:
based on temporally non-homogeneous stochastic point pro- AL
cesses with time depending parameters (Sirangelo, 1994, Pyg, .\ = (¢, Ar) :/ A(x) dx )
jol et al., 2007). In this case, great attention has to be paid t
to the parsimony of the models, as regards the number of paghere the lawa(.) represents the temporal variation of the
rameters and the bias introduced into the generation of Sy ensity function of the occurrence process. For a homoge-
thetu_: series, and to the influence of thresh(_)ld values in eXya0us Poisson process the functiar) is constant, there-
tractmg a peak storm database from daily ramfe_lll_s data. fore, it holdSA, 4 ar = A - At.

In this work, the procedure adopted for explaining the oc-  actyally, the temporal variation of intensity implies
currence process of daily rainfalls greater t.han the pref'xe_‘%hanges in some properties of the homogeneous Poisson pro-
threshold values is a non-homogeneous Poisson model, Withesses. In particular, the times between consecutive events,
temporal variation of intensity expressed by using Fourieryhich are independent and exponentially distributed in the

series. The model has been applied to a set of rain gaugesse of homogeneous process, are distributed with the fol-
located in different geographical areas of Southern Italy. Thﬁowing conditional probability density:

proposed procedure constitutes the first step of a more com-

prehensive peak-over-threshold (POT) analysis, in which thepr, |7, ;.71 (Tal Ta—1...T1)
occurrence and exceedance of rainy events globally depend _ Tt
on rainfall threshold values. =A@+t tT)e A ®)

With this position, the waiting times form a Markov chain
with transition density (Snyder, 1975):

A(x)dx

2 Non-homogeneous Poisson model for storm

occurrence = fu Mx)dx 4)

Pwiwi_q (wilw;—1) =A(w;)e

The storm occurrence process, as successive clusteraegharacterised by the following joint probability density:
events, has been explained by several researchers as the result

of specific atmospheric conditions able to generate climaticPwi,..., W, (W1, ..., Wy)

perturbations (Waymire and Gupta, 1981a, b, ¢; Smith and n o

Karr, 1983; Chang et al., 1984; Onof et al., 2000). This pro- = [Hl(wi)] e TROA << wy (5)
cess is generally non-homogeneous in time, as shown for a i=1

typical rain gauge of Southern Italy where a marked reduc-

tion of occurrence intensity related to daily rainfalls during

Nat. Hazards Earth Syst. Sci., 11, 165868 2011 www.nat-hazards-earth-syst-sci.net/11/1657/2011/



B. Sirangelo et al.: Daily rainfalls through non-homogeneous Poissonian processes 1659

Table 1. Main statistics of daily rainfall occurrence process for the selected rain gauges.

Frequency of
Code Rain gauge Elevation (m) Years No.ofdata Rainy days rainy days

Western rain gauges

1010 Cosenza 250 80 28791 9118 0.317
1030 S. Pietro in Guarano 640 71 25230 7284 0.289
1040 Rende 482 71 25474 7720 0.303
3060 Paola 97 69 24715 7690 0.311

Eastern rain gauges

1590 Belvedere Spinello 330 69 24577 5098 0.207
1620 Verzino 550 67 24 345 6116 0.251
1650 Strongoli 342 69 24917 5571 0.224
1680 Crotone 6 79 27801 6647 0.239

To ensure parsimony of the model, Fourier series has to be
limited to an optimal number of harmonies,, matched with
the goal of the proposed procedure:

0.5

gy f oW

03} A(t)= §a0+kgl[akck (t) +bisi (1] (8)

‘7 ] By integrating the Eq. (2) with the expressions (7) and (8)

JAN ‘FEB ‘ MAR ‘ APR‘ MAY | JUN ‘ JuL ‘ AUG ’ SEP ‘ ocT l NOV ‘ DEC

Mean occurrence intensity (days-1)

one obtains:
0.1
A 1 At—i—P il At H_At
==a — =S| —= | | akc -
. ] t, t+At 2 0 p k:1k k 2 kCk 2
ain gauge Al
e +by sk <t+7)i| 9)
B 0 1é‘;ear (d;j’g) = w £ For time intervals equal to 1yr, independently on the time
valuer, the mean number of events ;. », becomes:
Fig. 1. Example of time variability of the intensity function of daily 1
rainfall occurrences. At yp= éaoP (10)

Moreover, it is well known that a non-homogeneous Poisson
2.1 Temporal variation of rainfall occurrence intensity process for rainfall occurrences can be transformed into a ho-
mogeneous and unit one through a suitable transformation of
Meteorological phenomena show statistically significant seafhe time variable (Cox and Isham, 1980). The transformation
sonal and daily features due to the revolution of the EarthiS based on the inverse function of Eq. (2), i.e.:
ar_ound itself and the sun. Thus, the temporal variation OfAt*(At) :inf{w: At trw > At} Af=0 (11)
rainfall occurrence intensity(z) can be expressed through ’
the Fourier series as a function of periBd= 1 year: Operatively, starting from the representation of the function
Att+a¢ in Which r =0 and Ar = w varying from O to P
1 0 (Fig. 2), a subdivision of the intervf0; Ao,p] into n, equal
A1) = E“OJFZ[“ka () +brsi (1)] (6)  subperiods is carried out on the vertical axis. Therefore, it
k=1 is possible to determine the corresponding partition of the
period P on the horizontal axis, thus, providimg time sub-

wherec (1) ands (¢) indicate the functions: periods.

o an . an 7
sk(t)_SIn<? t) ck(t)—COS<? t) (7)
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The evaluation of the optimal number of harmonigsin ' R e S G
Eq. (8) plays a crucial role in parameters estimation @) . £ w e E s
function. In technical literature, cross-validation techniques .~ ] ‘ s %5 X
are mostly adopted (Picard and Cook, 1984; Cressie, 1993 .~ ‘
Balachandrudu et al., 2009), but a limit of these methods
consists of the assumption that the residuals, between sam-
ple and theoretical values, are independent and Gaussian diEig. 4. Daily rainfall series of Calabria region used in the present
tributed. These hypotheses need further studying (Cressi€d-
1993). Consequently in this work, besides the application
of cross-validation techniques and, in particular, the evalua-
tion of Cross Validation Error (CVE) (Balachandrudu et al.,
2009), we propose a more robust procedure, which is base
on the property that a non-homogeneous Poisson process ¢
be transformed into a homogeneous one (Sect. 2.1).

In detail, for each rain gauge and for a prefixed number a2, evaluation of the parameterg and ay, by, with k =
of harmonicsiy,, the cross-validation approach concerns the 1, ..., nj, of Eq. (8) by using least squares method and

Instead, the procedure based on the transformation of a
on-homogeneous process into a homogeneous one consists
f the following steps, again for each rain gauge and for a
%?efixed number of harmonies,:

following steps: considering the whole data sample;

al. the whole data sample is partitioned imonot over-  p2. subdivision of the period into n, subperiods through
lapped subsamples; the partition of the segmef0; Ao, ] (Fig. 2);

bl. a single subsample is withheld and the remaining sub-¢2. application of two Hald tests (1952), aimed at verifying
samples are used to estimate the pqrameteasldak, that the number of occurrences, related to each subpe-
bi, withk =1, ..., np, of Eq. (8) by using least squares riod, may be derived from the same homogeneous Pois-
method; son process (see Appendix Al).

cl. the mean-squared difference between the theoretical, this case, the optimal number of harmonigscoincides
and sample values related to the withheld subsample igyith the minimum number which satisfies the statistical tests
computed; concerning the point (c2).

d1. the point (b1) and (c1) are repeated for each subsampleb Ahs rhegards tze applica_Ltion of thedleast fs_qulares methlod to
The average of the squared differences over the numPOth the procedures (points al and a2), firstly a sample es-

ber of withheld subsamples provides the cross validate&'r:nat'on of the qcc:jcu_r rencellntens(,jlty may be obtained. For
square error; its square root represents the CVE. this SCOpe, consl grmg =Llyran ,CO”SEGQG”WP years
of rainfall observations, each year is subdivided intovery

The optimal number of harmonieg, is characterised by the short time interval of sizé\¢ (three or five days); in this way
minimum value of the CVE. nm, p represents the number of sample occurrences related to
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Fig. 6. Evaluation ofao/z for each analysed rain gauge and thresh-
old values.

Considering the sum of the occurrences:
) _ N )
np) __ n .
s\ _Xi‘ni’jh j=12..ng (14)
1=

for each of the joint set of sub-periods, it can be hypoth-
esized that variabl§"" is Poisson-distributed. The appli-
cation of Hald tests (see Appendix Al) is aimed at verify-
ing that all thes "’ variables derive from the same homoge-
neous Poisson process.

The procedures described in this section can be used for
modelling the temporal variability of intensity referred to

Fig. 5. Cross validated error (CVE) values estimated for eachstorm occurrences of daily rainfall heights exceeding any

threshold value and the number of harmonics(&@rCosenza and

(b) Crotone rain gauges. The minimum CVE values occur for

np=2.

them™ interval of thep! year (Fig. 3). Therefore, the sam-
ple evaluation of occurrence intensity is obtained as:

1 &
Am=—
n==D

p=1

and applying the least squares method the parameters

Nm,p
At

Eq. (8) are evaluated as:

1 1 nr 2 nr

anz Eﬂ;)»m ap = ;mX:;)\.ka (wc,m)
2 U

bk:-ZAmsk(u}C,m) k=12, ... n,
nTm:l

wherew, ,, is the temporal centre of the™ time interval

At.

Once partitioned the period into n; subperiods (Fig. 2),
on the basis of the function; ;4 A, which depends on the
number of harmonica;, (Eq. 9), it has been indicated as
nf”]’) the sample occurrences related to & sub-period

(j=1,...,ny) intotheiMyear (=1, ...,np).

www.nat-hazards-earth-syst-sci.net/11/1657/2011/

m=1 2,...,nr

threshold valud’, defined as:
T=u+K-o (15)

whereu is the expected value of daily rainfadt,is the stan-
dard deviation an&k =1, 2, 3, ... IfK =0, it is assumed
T =0.1mm.

3 Dataset

c1Ihe procedure has been applied to 8 daily rainfall series (Ta-

ble 1) located in Calabria region (Southern lItaly), out of
which 4 belong to the western zone and 4 to the eastern
zone of the region (Fig. 4). The choice of the database has
been based on length and completeness of the time series.
In particular, the time series have been selected on the ba-
sis of availability of at least 50yr in the time period 1921-
1986, chosen as the calibration period, and of all the years of
observation in the subsequent validation period 1987-2001,
where the daily rainfall occurrence process variability is un-
der hypothesis. The mean number of observation years of
the dataset during the period 1921-2001 is 71.9, with a max-
imum of 80 yr (Cosenza rain gauge), while the mean values
of daily rainfall frequency are 0.305 and 0.230, respectively,
for the western and eastern sets of rain gauges.

Nat. Hazards Earth Syst. Sci., 116656852611
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Fig. 7. Cosenza (1010) and Crotone (1680) rain gauge: sampling vs. theoretical distribution of intensity fu@gtiyrusing Fourier series

with 2 harmonics, folk =0 (a), K =1 (b), K =2 (c) andK =3 (d).

3.1 Calibration of the non-homogeneous Poisson model

For each prefixed threshold valuk &0, 1, 2, 3), the pa-

The resultn, = 2 is also confirmed by the application of
the cross-validation approach. As examples, Fig. 5 illus-
trates the CVE evaluation related to Cosenza and Crotone

rameters estimation of the non-homogeneous Poisson modehin gauges, for which the data sample was partitioned into
for different numbers of harmonics has been obtained withN = 10 subsamples.

reference to the observed data during the period 1921-1986 £, a5ch analysed rain gauge and threshold value, Fig. 6

(calibration period) under the hypothesis of unchanged dailyg

rainfall process. The values of the parametef,Sa,E"h) and

hows the evaluation af / 2, which represents the expected
value of intensityA(z) on the whole period? (see Egs. 8

b,(("”) have been obtained by means of least squares methagind 13). Fork =0 (i.e. considering the occurrences of daily

through Eq. (13) by considerings equal to 5 days (Fig. 3
and Table 2). For each threshold, Hald tests showedthat

rainfall heights greater than 0.1 mm) there are no significant
differences between the two zones. Focusing attention on

2 satisfies the hypothesis of homogeneity for the transformeceach threshol& > 1, it can be noticed that the western zone

occurrence process by using= 10 (see Appendix A2).

Nat. Hazards Earth Syst. Sci., 11, 165868 2011

is characterised by higher values with respect to the eastern
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Table 2. Parameters estimation for non-homogeneous Poisson model through least square method applied to daily rainfall occurrence proces:

1663

(data belong to the calibration period 1921-1986; Fourier seriesayith2 harmonics).

Code Rain gauge K ap al b1 an by
1010 Cosenza 0 0.253 0.0374 0.0186-0.0127 -0.0143
1 0.133 0.0496 0.0057 —0.0018 —-0.0058
2 0.077 0.0341 -0.0014 0.0022 —-0.0046
3 0.043 0.0218 —-0.0019 0.0026 —-0.0024
1030 S.Pietroin Guarano 0 0.237 0.0394 0.01730.0124 -0.0146
1 0.144 0.0502 0.0078 —0.0069 —0.0052
2 0.085 0.0378 —0.0007 0.0012 —-0.0043
3 0.043 0.0207 -0.0022 0.0011 -0.0041
1040 Rende 0 0.251 0.0388 0.0178-0.0161 -0.0147
1 0.123 0.0475 0.0056 —0.0036 —0.008
2 0.073 0.0345 0.0003 0.0019-0.0032
3 0.040 0.0223 -0.0018 0.0045 -0.0027
3060 Paola 0 0.254 0.0391 0.0178-0.0164 —0.0156
1 0.140 0.0465 0.0015 —0.0053 -0.0079
2 0.081 0.0304 -0.0018 -0.0017 -0.0077
3 0.046 0.0183 -0.003 0.0002 -0.008
1590 Belvedere Spinello 0 0.219 0.0463 0.0108-0.0110 -0.0102
1 0.077 0.0255 -0.0048 -0.0028 -—0.005
2 0.047 0.0199 -0.0051 -0.0008 -—0.0035
3 0.031 0.0137 —-0.0052 -0.0003 -0.0036
1620 Verzino 0 0.255 0.0502 0.0169-0.0110 -0.0083
1 0.079 0.0289 —0.0035 -0.0003 -0.0063
2 0.045 0.0193 -0.0047 -0.0021 -—-0.0042
3 0.030 0.0143 -0.0034 -0.0011 -0.0022
1650 Strongoli 0 0.237 0.0611 0.0168-0.0134 —-0.0078
1 0.075 0.0287 —0.0038 -0.0025 -0.0051
2 0.046 0.0206 -0.004 -0.0011 -0.004
3 0.031 0.015 -0.0027 -0.0009 -0.0037
1680 Crotone 0 0.239 0.0663 0.0181-0.0099 —-0.0083
1 0.075 0.0329 -0.0083 -0.0037 -0.0072
2 0.046 0.0213 —-0.0064 -0.0014 —-0.0045
3 0.031 0.0147 -0.0063 -0.0015 -0.0037

zone (about twice), that is the frequency of heavy daily rain-3.2 Check on occurrence process changes

falls is greater in the western part of the region.
As an example, the fit of(¢) theoretical distribution

In order to test the hypothesis that the daily rainfall occur-

through the Fourier series with 2 harmonics on sampling octence process preserves the same behaviour in more recent
currence process referred to each threshold value is showtime periods, the theoretical distribution of intensity func-

in Fig. 7 for Cosenza and Crotone rain gauges, as the repton A(¢), evaluated for each threshold value in the calibra-
resentative stations of western and eastern zones, respetien period 1921-1986 (Sect. 3.1), has been also adopted for
tively. Analysing the diagrams, it can be noted that, exceptthe 15-yr observation data collected in the validation period

for K =0, in the winter period the occurrence intensity)

1987-2001.

of Cosenza is about twice as hlgh as the Crotone one, con- For each rain gauge, by using the Monte Carlo approach,

firming what has been shown in Fig. 6.

www.nat-hazards-earth-syst-sci.net/11/1657/2011/

1000 synthetic generations of a 15-yr period of daily rainfall

occurrences have been carried out and, for every simulation,
samplei(r) has been estimated. This procedure has been
adopted because of the complexity of determining analytical
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statistical confidence intervals referred to the sample intenimportant, as more than 95% of the sample occurrence inten-

sity A(1). sities are inside the statistical bounds evaluated by synthetic
Sample intensity, theoretical function of the calibration pe- 9€neration.

riod and 95% confidence interval, evaluated by Monte Carlo A further test has been performed for each rain gauge:

approach, are reported, as an example, for one rain gaugeonsidering the different threshold values, the root-mean-

of each zone (Cosenza and Crotone) in Figs. 8-9. The difsquare error (RMSE), evaluated between the theoretical

ferences between the sample and theoretiGalappear not  and the sample of recorded data, and the corresponding 95%
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Fig. 10. Sample root-mean-square error (RMSE) and 95% one-tailed confidence intervals=for(a), K =1 (b), K =2 (c)andK =3
(d).

one-tailed confidence interval, evaluated from the RMSE val-the property that a non-homogeneous Poisson process can be
ues between the sampldr) of each synthetic series and transformed into a homogeneous one.
the theoretical one, were obtained and reported in Fig. 10. The theoretical distribution so obtained has been adopted
Analysing these results, it may be observed that the westerio verify possible changes afr) function for the validation
zone is characterised by differences, between saiipjeof period (1987-2001), by using the Monte Carlo approach to
the 1987-2001 period and theoretizét), which are higher  generate synthetic series of rainfall occurrences. The results
than those concerning the eastern zone. This different beshowed that the differences between the sample and the the-
haviour between western and eastern zones emerges by cooreticalA(z) behaviour do not appear significant. Moreover,
sidering threshold values > 1. However, for each zone and a statistical test based on RMSE has shown that the hypoth-
threshold, these deviations are statistically acceptable, as aflsis of the same(z) theoretical distribution for calibration
the sample RMSEs are inside their 95% confidence intervaland validation periods cannot be rejected at 5% significance
As a conclusion, the hypothesis that the occurrence profevel. Therefore, there is no statistically significant evidence
cess of the observed rainfall, referred to the validation pe-of rainfall occurrence process changes for more recent peri-
riod, derives from the samk(r) theoretical distribution of ods in the analysed area.
the calibration period cannot be rejected at 5% significance Further applications of the non-homogeneous Poisson
level. model will concern the joint analyses of the storm occurrence
process with the precipitation height marks, interpreted by
using a temporally homogeneous model in suitable sub-year
4 Conclusions intervals.

In this paper, a non-homogeneous Poisson model has been

adopted for the stochastic interpretation of the seasonal variAppendix A

ability concerning the daily rainfall occurrence process in 8

rain gauges selected among the longest data series in two diffl  Theory of Hald tests
ferent zones of the Calabria region (Southern Italy).

The procedure applied to a calibration time interval (1921_Once partitioned the period into n, subperiods, on the ba-

1986) shows that a Fourier series with 2 harmonics repre—SIS of the functionA.,.+a: (Fig. 2) which depends on the

sents a good fit for explaining the variability of the occur- humber of harmonics,,, let ”l(n;) be the occurrences re-
rence intensity function(s) for all the rain gauges, consid- lated to the;™ sub-period { =1, ...,n;) into thei" year
ering different threshold values (POT analysis). Thisresultisi =1, ...,np), nff”’) may be assumed as identically Poisson-
obtained by carrying out both a classical approach concernglistributed with parameter:

ing cross-validation and a more robust technique related to
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Table Al. Results from the application of Hald tests.

Daily rainfalls through non-homogeneous Poissonian processes

np=0 np=1 np=2
Code Rain gauge K Haldl Hald2 Haldl Hald2 Haldl Hald2
1010 Cosenza 0 37.8% 2044 57.8% 34.3 100.0% 4.1
1 20.0% 456.0 97.8% 8.9 100.0% 4.3
2 222% 378.7 80.0% 18.8 100.0 % 53
3 24.4% 280.3 86.7% 15.6 100.0% 11.0
1030 S.PietroinGuarano 0 37.8% 1948 62.2% 34.7 100.0% 3.3
1 178% 380.8 86.7% 145 100.0% 2.0
2 178% 350.9 93.3% 10.4 100.0% 6.7
3 222% 2224 97.8% 9.9 100.0% 8.5
1040 Rende 0 40.0% 192.3 53.3% 41.8 100.0% 5.6
1 20.0% 395.0 86.7% 18.0 100.0% 4.9
2 20.0% 3395 86.7% 145 100.0% 7.1
3 26.7% 267.8 97.8% 10.0 100.0% 4.6
3060 Paola 0 37.8% 186.0 55.6% 37.8 100.0% 35
1 20.0% 321.3 88.9% 16.6 100.0% 4.8
2 222% 242.7 80.0% 175 100.0% 2.2
3 26.7% 1757 91.1% 140 100.0% 1.7
1590 Belvedere Spinello 0 289% 229.7 62.2% 37.3 100.0% 10.0
1 222% 181.2 93.3% 10.8 100.0% 3.6
2 24.4% 183.3 97.8% 6.4 100.0% 4.7
3 356% 149.8 68.9% 23.1 100.0% 11.0
1620 \Verzino 0 31.1% 2256 84.4% 15.4 100.0% 55
1 222% 213.6 88.9% 13.9 100.0% 6.2
2 289% 1814 88.9% 13.0 100.0% 7.9
3 31.1% 155.7 93.3% 11.5 100.0% 7.6
1650 Strongoli 0 244% 356.1 66.7% 30.7 100.0% 2.3
1 20.0% 231.7 93.3% 13.5 100.0% 9.0
2 24.4% 1999 93.3% 12.8 100.0% 9.1
3 26.7% 159.1 97.8% 7.8 100.0% 4.2
1680 Crotone 0 20.0% 4754 68.9% 30.6 100.0% 9.7
1 133% 376.2 88.9% 14.3 100.0 % 6.7
2 222% 262.3 97.8% 8.6 100.0% 6.0
3 20.0% 2133 84.4% 20.9 100.0% 115

WFij
Aﬁnh) :/ 2.0 (x)dx (A1)
wrij
wherew; ;; andwr ;; are, respectively, initial and final val-
ues of sub-period in the original time scale. If we consider
the sum of the occurrences:

("h) Zn(”") j=212,... ng

for each of the joint set of sub-periods, it can be hypoth-

esized that variabléﬁ"”) is yet Poisson-distributed with pa-
rameters:

(nn) __
9j =

(A2)

np A (A3)
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This hypothesis can be verified by means of two homogene-
ity tests both proposed by Hald (1952). The first test com-
pares the values of the meam@i‘h ande'™ for any chain

of period j; and j». The test |s venﬂed if all comparlsons
between couplegi =1, 2, .. ny_1 andjo=j1+1, .

are fulfilled. Statistically, the single hypothe@ﬁ‘” _9("”

has to be rejected if:

S("h)
Fsample= % > F1g4o2(f1, f2) (A4)
1+ Smin
WhereS,(ﬁ;))( and S are maximum and minimum values

min
of couple[Sj(.’l“”), S}Z’l)], and F1_qy/2(f1, f2) is the leo/2
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value of Fisher’s distribution with freedom degre¢gs= Cox, D. and Isham, V.: Point processes, Chapman & Hall, London,
2[1+S" ] and fo = 2. UK, 1980.

The second test concerns the verification of contemporary-ressie, N. A. C.: Statistics for Spatial Data, Wiley, New York, NY,
") PR 1993.
equal values of the meaﬁé” for all the sub-periodg =1,

Entekhabi, D., Rodriguez-lturbe, I., and Eagleson P.: Probabilis-
2, ...,ns. The test can be appliedsifp > 5 andS;."”) > 5. tic representation of the temporal rainfall process by a modified
A ) () ) Neyman-Scott rectangular pulses model: Parameter estimation

. 'I;hg _:ypothesm9jl - sz =...=0" has to be re and validation, Water Resour. Res., 25, 295-302, 1989.
jected It Gupta, V. K. and Waymire, E. C.: A statistical analysis of mesoscale

/ /2 rainfall as arandom cascade, J. Appl. Meteor, 32, 251-267, 1994.

2 mas—mag 2 Hald, A.: Statistical theory with engineering applications, Wile
—-n, — Z . ( ) A5 ’ .. y g g pp ’ y!
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