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Abstract. A stochastic model based on a non-homogeneous
Poisson process, characterised by a time-dependent inten-
sity of rainfall occurrence, is employed to explain seasonal
effects of daily rainfalls exceeding prefixed threshold val-
ues. The data modelling has been performed with a parti-
tion of observed daily rainfall data into a calibration period
for parameter estimation and a validation period for check-
ing on occurrence process changes. The model has been ap-
plied to a set of rain gauges located in different geographi-
cal areas of Southern Italy. The results show a good fit for
time-varying intensity of rainfall occurrence process by 2-
harmonic Fourier law and no statistically significant evidence
of changes in the validation period for different threshold val-
ues.

1 Introduction

Investigations on daily rainfall time series may contribute at
various levels to the assessment of the existence of temporal
and spatial variability in the rainfall field characteristics. The
different models that can be used may be classified into four
categories (Onof et al., 2000). The first category is formed by
meteorological models, which involve complex sets of differ-
ential equations in order to represent the complete physical
processes controlling precipitation and other weather vari-
ables. The second one is represented by stochastic models
which describe the spatial evolution of the rainfall process in
a scale-independent approach, like the multi-scaling models
(Lovejoy and Schertzer, 1990; Gupta and Waymire, 1994).
A third one is formed by statistical models (single or multi-
site temporal), able to represent spatial non-stationarity and
temporal trend (Stern and Coe, 1984). Finally, the fourth
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category concerns temporal and spatial-temporal stochastic
process models which try to summarize the main rainfall fea-
tures by a few parameters, providing an understanding of the
hierarchical structure of the rainfall process. In particular,
these models follow a point process approach based upon
the use of Poisson and Poisson-cluster processes for explain-
ing the joint or separate arrival and magnitude processes of
daily rainfalls (Waymire and Gupta, 1981a, b, c; Kavvas and
Delleur, 1981; Yevjevich and Dyer, 1983; Rodriguez-Iturbe
et al., 1984, 1987; Onof et al., 2000).

This latter approach has been used for a long time as a tool
for the stochastic modelling of rainfall, combining in differ-
ent ways the basic Poisson process of storm arrivals with the
Neyman-Scott or the Bartlett-Lewis point processes. In more
recent developments, rainfall variables, such as the duration
and intensity of a rainy event, have been treated as correlated
variables or, alternatively, correlation has been introduced
using independent superposed point processes to represent
the different kinds of storms in a region (Cowpertwait et al.,
2007; Leonard et al., 2008). The statistical properties of the
superposed process are normally obtained by aggregation of
the properties of each independent process. In other words,
spatial-temporal models can be flexibly structured with con-
tinuous distributions of storm types, thus providing a param-
eter configuration that can be efficiently fitted to a large range
of historical rainfall records (Cowpertwait, 2010). Point pro-
cess rainfall models are generally fitted to the observed sam-
ple properties using derived moments and model functions.
A good fit is usually assessed by comparing observed prop-
erties of data not used to estimate the model parameters with
equivalent properties simulated using the fitted model (En-
tekhabi et al., 1989; Cowpertwait et al., 2007). This proce-
dure, if successfully extended to extreme values, can certify
the model suitability, due to the sensitivity of the distribu-
tions of the extremes to any departures in the good fitting of
the depth distributions.
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Alternatively, in order to reproduce the temporal and/or
spatial non-stationary features in both the analysis and the
simulation of rainfall variability, the generalized linear mod-
els (GLMs) can be applied (Chandler and Wheater, 2002;
Wheater et al., 2005). These models explain daily rain-
fall variability by using probability distributions in which
the probability of rainfall occurrence is modelled separately
from the amount of rain if non-zero. By developing appropri-
ate methods of spatial-temporal disaggregation of daily rain-
falls, GLMs can also be linked to the single-site models to
provide multi-site sequences incorporating sub-daily tempo-
ral structure.

With reference only to the temporal variability of the rain-
fall process, the stochastic point process models, described
above, are widely used for at-site analysis of storm occur-
rences, in order to explain the intermittent feature of rainfalls
and simulate inter-storm periods. Nevertheless, the stochas-
tic models often hypothesize temporal stationary processes.
In this case, the apparent seasonal periodicity exhibited by
the frequency of the rainfall phenomena can be modelled as
a stationary stochastic process in short temporal intervals,
in which the behaviour can be considered reliably homoge-
neous.

Another approach of functional type, aimed to cope with
seasonal and trend variability of the storm occurrences, is
based on temporally non-homogeneous stochastic point pro-
cesses with time depending parameters (Sirangelo, 1994; Pu-
jol et al., 2007). In this case, great attention has to be paid
to the parsimony of the models, as regards the number of pa-
rameters and the bias introduced into the generation of syn-
thetic series, and to the influence of threshold values in ex-
tracting a peak storm database from daily rainfalls data.

In this work, the procedure adopted for explaining the oc-
currence process of daily rainfalls greater than the prefixed
threshold values is a non-homogeneous Poisson model, with
temporal variation of intensity expressed by using Fourier
series. The model has been applied to a set of rain gauges
located in different geographical areas of Southern Italy. The
proposed procedure constitutes the first step of a more com-
prehensive peak-over-threshold (POT) analysis, in which the
occurrence and exceedance of rainy events globally depend
on rainfall threshold values.

2 Non-homogeneous Poisson model for storm
occurrence

The storm occurrence process, as successive clustered
events, has been explained by several researchers as the result
of specific atmospheric conditions able to generate climatic
perturbations (Waymire and Gupta, 1981a, b, c; Smith and
Karr, 1983; Chang et al., 1984; Onof et al., 2000). This pro-
cess is generally non-homogeneous in time, as shown for a
typical rain gauge of Southern Italy where a marked reduc-
tion of occurrence intensity related to daily rainfalls during

spring-summer period is detected (Fig. 1). Moreover, the sta-
tistical features of the storm occurrence process can be influ-
enced by the threshold chosen for extracting exceedance val-
ues from the basic rainfall time series. Both the problems of
choosing threshold value and selecting the criteria for retain-
ing peaks represent some of the main difficulties classically
associated with the POT analysis. This approach, a kind of
compromise between annual maxima frequency and classical
time series modelling, requires the analysis of both the mag-
nitude and the arrival time of storm peaks, neglecting the au-
tocorrelation structure of the basic data. The higher rainfall
values of different sets of consecutive rainy days are gen-
erally assumed as rainfall peaks, thus, practically assuring
the independence required for the Poisson process. For the
choice of threshold value, which directly influences the dis-
tribution of peaks, some statistical tests and practical guide-
lines are available (Lang et al., 1999).

Adopting a non-homogeneous Poisson process, the occur-
rence probability ofn events in a time period [t,t +1t ] is
given by:

pNt,1t (n) =
3n

t,t+1t e
−3t,t+1t

n!
3t,t+1t > 0; n = 0,1,...(1)

The mean number of events3t,t+1t depends on both timet
and interval1t :

3t,t+1t = f (t, 1t) =

∫ t+1t

t

λ(x) dx (2)

where the lawλ(.) represents the temporal variation of the
intensity function of the occurrence process. For a homoge-
neous Poisson process the functionλ(.) is constant, there-
fore, it holds3t,t+1t = λ ·1t .

Actually, the temporal variation of intensity implies
changes in some properties of the homogeneous Poisson pro-
cesses. In particular, the times between consecutive events,
which are independent and exponentially distributed in the
case of homogeneous process, are distributed with the fol-
lowing conditional probability density:

pTn|Tn−1...T1 (τn|τn−1...τ1)

= λ(t +τ1+ ...+τn) e
−

∫ t+τ1+...+τn
t+τ1+...+τn−1

λ(x)dx
(3)

With this position, the waiting times form a Markov chain
with transition density (Snyder, 1975):

pWi |Wi−1 (wi |wi−1) = λ(wi)e
−

∫ wi
wi−1

λ(x)dx
(4)

characterised by the following joint probability density:

pW1,..., Wn (w1,..., wn)

=

[
n∏

i=1

λ(wi)

]
e−

∫ wn
t λ(x)dx t <w1 < ...< wn. (5)
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Table 1. Main statistics of daily rainfall occurrence process for the selected rain gauges.

Frequency of
Code Rain gauge Elevation (m) Years No. of data Rainy days rainy days

Western rain gauges

1010 Cosenza 250 80 28 791 9118 0.317
1030 S. Pietro in Guarano 640 71 25 230 7284 0.289
1040 Rende 482 71 25 474 7720 0.303
3060 Paola 97 69 24 715 7690 0.311

Eastern rain gauges

1590 Belvedere Spinello 330 69 24 577 5098 0.207
1620 Verzino 550 67 24 345 6116 0.251
1650 Strongoli 342 69 24 917 5571 0.224
1680 Crotone 6 79 27 801 6647 0.239

Fig. 1. Example of time variability of the intensity function of daily
rainfall occurrences.

2.1 Temporal variation of rainfall occurrence intensity

Meteorological phenomena show statistically significant sea-
sonal and daily features due to the revolution of the Earth
around itself and the sun. Thus, the temporal variation of
rainfall occurrence intensityλ(t) can be expressed through
the Fourier series as a function of periodP = 1 year:

λ(t) =
1

2
a0+

∞∑
k=1

[akck (t)+bksk (t)] (6)

whereck(t) andsk(t) indicate the functions:

sk (t) = sin

(
2π

P
k t

)
ck (t) = cos

(
2π

P
k t

)
(7)

To ensure parsimony of the model, Fourier series has to be
limited to an optimal number of harmonics,nh, matched with
the goal of the proposed procedure:

λ(t) =
1

2
a0+

nh∑
k=1

[akck (t)+bksk (t)] (8)

By integrating the Eq. (2) with the expressions (7) and (8)
one obtains:

3t, t+1t =
1

2
a01t +

P

π

nh∑
k=1

1

k
sk

(
1t

2

)[
akck

(
t +

1t

2

)
+bksk

(
t +

1t

2

)]
(9)

For time intervals equal to 1 yr, independently on the time
valuet , the mean number of events3t,t+1t becomes:

3t,t+P =
1

2
a0P (10)

Moreover, it is well known that a non-homogeneous Poisson
process for rainfall occurrences can be transformed into a ho-
mogeneous and unit one through a suitable transformation of
the time variable (Cox and Isham, 1980). The transformation
is based on the inverse function of Eq. (2), i.e.:

1t∗(1t) = inf
{
w : 3t, t+w ≥ 1t

}
1t > 0 (11)

Operatively, starting from the representation of the function
3t,t+1t in which t = 0 and1t = w varying from 0 toP

(Fig. 2), a subdivision of the interval
[
0; 30,P

]
into ns equal

subperiods is carried out on the vertical axis. Therefore, it
is possible to determine the corresponding partition of the
periodP on the horizontal axis, thus, providingns time sub-
periods.
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Fig. 2. Subdivision of the periodP into ns subperiods (in this ex-
amplens = 10).

2.2 Parameters estimation

The evaluation of the optimal number of harmonicsnh in
Eq. (8) plays a crucial role in parameters estimation ofλ(t)

function. In technical literature, cross-validation techniques
are mostly adopted (Picard and Cook, 1984; Cressie, 1993;
Balachandrudu et al., 2009), but a limit of these methods
consists of the assumption that the residuals, between sam-
ple and theoretical values, are independent and Gaussian dis-
tributed. These hypotheses need further studying (Cressie,
1993). Consequently in this work, besides the application
of cross-validation techniques and, in particular, the evalua-
tion of Cross Validation Error (CVE) (Balachandrudu et al.,
2009), we propose a more robust procedure, which is based
on the property that a non-homogeneous Poisson process can
be transformed into a homogeneous one (Sect. 2.1).

In detail, for each rain gauge and for a prefixed number
of harmonicsnh, the cross-validation approach concerns the
following steps:

a1. the whole data sample is partitioned intoN not over-
lapped subsamples;

b1. a single subsample is withheld and the remaining sub-
samples are used to estimate the parametersa0 andak,
bk, with k = 1, ..., nh, of Eq. (8) by using least squares
method;

c1. the mean-squared difference between the theoretical
and sample values related to the withheld subsample is
computed;

d1. the point (b1) and (c1) are repeated for each subsample.
The average of the squared differences over the num-
ber of withheld subsamples provides the cross validated
square error; its square root represents the CVE.

The optimal number of harmonicsnh is characterised by the
minimum value of the CVE.

Fig. 3. Subdivision of the periodP (1 yr) into nT short time inter-
vals of size1t and localization ofwc,m (m = 1, ...,nT ).

Fig. 4. Daily rainfall series of Calabria region used in the present
study.

Instead, the procedure based on the transformation of a
non-homogeneous process into a homogeneous one consists
of the following steps, again for each rain gauge and for a
prefixed number of harmonicsnh:

a2. evaluation of the parametersa0 and ak, bk, with k =

1, ..., nh, of Eq. (8) by using least squares method and
considering the whole data sample;

b2. subdivision of the periodP into ns subperiods through
the partition of the segment

[
0;30,P

]
(Fig. 2);

c2. application of two Hald tests (1952), aimed at verifying
that the number of occurrences, related to each subpe-
riod, may be derived from the same homogeneous Pois-
son process (see Appendix A1).

In this case, the optimal number of harmonicsnh coincides
with the minimum number which satisfies the statistical tests
concerning the point (c2).

As regards the application of the least squares method to
both the procedures (points a1 and a2), firstly a sample es-
timation of the occurrence intensity may be obtained. For
this scope, consideringP = 1 yr and consequentlynP years
of rainfall observations, each year is subdivided intonT very
short time interval of size1t (three or five days); in this way
nm,p represents the number of sample occurrences related to
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Fig. 5. Cross validated error (CVE) values estimated for each
threshold value and the number of harmonics for(a) Cosenza and
(b) Crotone rain gauges. The minimum CVE values occur for
nh = 2.

themth interval of thepth year (Fig. 3). Therefore, the sam-
ple evaluation of occurrence intensity is obtained as:

λm =
1

nP

nP∑
p=1

nm,p

1t
m = 1, 2, ..., nT (12)

and applying the least squares method the parameters of
Eq. (8) are evaluated as:

1

2
a0 =

1

nT

nT∑
m=1

λm ak =
2

nT

nT∑
m=1

λmck

(
wc,m

)
bk =

2

nT

nT∑
m=1

λmsk
(
wc,m

)
k = 1,2, ...,nh (13)

wherewc,m is the temporal centre of themth time interval
1t .

Once partitioned the periodP into ns subperiods (Fig. 2),
on the basis of the function3t,t+1t which depends on the
number of harmonicsnh (Eq. 9), it has been indicated as
n

(nh)
i,j the sample occurrences related to thej th sub-period

(j = 1, . . . ,ns) into theith year (i = 1, . . . ,nP ).

Fig. 6. Evaluation ofa0
/

2 for each analysed rain gauge and thresh-
old values.

Considering the sum of the occurrences:

S
(nh)
j =

nP∑
i=1

n
(nh)
i,j j = 1,2,...,ns (14)

for each of the joint set of sub-periodsns , it can be hypoth-
esized that variableS(nh)

j is Poisson-distributed. The appli-
cation of Hald tests (see Appendix A1) is aimed at verify-
ing that all theS(nh)

j variables derive from the same homoge-
neous Poisson process.

The procedures described in this section can be used for
modelling the temporal variability of intensity referred to
storm occurrences of daily rainfall heights exceeding any
threshold valueT , defined as:

T = µ+K ·σ (15)

whereµ is the expected value of daily rainfall,σ is the stan-
dard deviation andK = 1, 2, 3, ... IfK = 0, it is assumed
T = 0.1 mm.

3 Dataset

The procedure has been applied to 8 daily rainfall series (Ta-
ble 1) located in Calabria region (Southern Italy), out of
which 4 belong to the western zone and 4 to the eastern
zone of the region (Fig. 4). The choice of the database has
been based on length and completeness of the time series.
In particular, the time series have been selected on the ba-
sis of availability of at least 50 yr in the time period 1921–
1986, chosen as the calibration period, and of all the years of
observation in the subsequent validation period 1987–2001,
where the daily rainfall occurrence process variability is un-
der hypothesis. The mean number of observation years of
the dataset during the period 1921–2001 is 71.9, with a max-
imum of 80 yr (Cosenza rain gauge), while the mean values
of daily rainfall frequency are 0.305 and 0.230, respectively,
for the western and eastern sets of rain gauges.
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Fig. 7. Cosenza (1010) and Crotone (1680) rain gauge: sampling vs. theoretical distribution of intensity functionλ(t) by using Fourier series
with 2 harmonics, forK = 0 (a), K = 1 (b), K = 2 (c) andK = 3 (d).

3.1 Calibration of the non-homogeneous Poisson model

For each prefixed threshold value (K = 0, 1, 2, 3), the pa-
rameters estimation of the non-homogeneous Poisson model
for different numbers of harmonics has been obtained with
reference to the observed data during the period 1921–1986
(calibration period) under the hypothesis of unchanged daily
rainfall process. The values of the parametersa0, a

(nh)
k and

b
(nh)
k have been obtained by means of least squares method

through Eq. (13) by considering1t equal to 5 days (Fig. 3
and Table 2). For each threshold, Hald tests showed thatnh =

2 satisfies the hypothesis of homogeneity for the transformed
occurrence process by usingns = 10 (see Appendix A2).

The resultnh = 2 is also confirmed by the application of
the cross-validation approach. As examples, Fig. 5 illus-
trates the CVE evaluation related to Cosenza and Crotone
rain gauges, for which the data sample was partitioned into
N = 10 subsamples.

For each analysed rain gauge and threshold value, Fig. 6
shows the evaluation ofa0

/
2, which represents the expected

value of intensityλ(t) on the whole periodP (see Eqs. 8
and 13). ForK = 0 (i.e. considering the occurrences of daily
rainfall heights greater than 0.1 mm) there are no significant
differences between the two zones. Focusing attention on
each thresholdK ≥ 1, it can be noticed that the western zone
is characterised by higher values with respect to the eastern
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Table 2. Parameters estimation for non-homogeneous Poisson model through least square method applied to daily rainfall occurrence process
(data belong to the calibration period 1921–1986; Fourier series withnh = 2 harmonics).

Code Rain gauge K a0 a1 b1 a2 b2

1010 Cosenza 0 0.253 0.0374 0.0186−0.0127 −0.0143
1 0.133 0.0496 0.0057 −0.0018 −0.0058
2 0.077 0.0341 −0.0014 0.0022 −0.0046
3 0.043 0.0218 −0.0019 0.0026 −0.0024

1030 S. Pietro in Guarano 0 0.237 0.0394 0.0173−0.0124 −0.0146
1 0.144 0.0502 0.0078 −0.0069 −0.0052
2 0.085 0.0378 −0.0007 0.0012 −0.0043
3 0.043 0.0207 −0.0022 0.0011 −0.0041

1040 Rende 0 0.251 0.0388 0.0178−0.0161 −0.0147
1 0.123 0.0475 0.0056 −0.0036 −0.008
2 0.073 0.0345 0.0003 0.0019−0.0032
3 0.040 0.0223 −0.0018 0.0045 −0.0027

3060 Paola 0 0.254 0.0391 0.0178−0.0164 −0.0156
1 0.140 0.0465 0.0015 −0.0053 −0.0079
2 0.081 0.0304 −0.0018 −0.0017 −0.0077
3 0.046 0.0183 −0.003 0.0002 −0.008

1590 Belvedere Spinello 0 0.219 0.0463 0.0108−0.0110 −0.0102
1 0.077 0.0255 −0.0048 −0.0028 −0.005
2 0.047 0.0199 −0.0051 −0.0008 −0.0035
3 0.031 0.0137 −0.0052 −0.0003 −0.0036

1620 Verzino 0 0.255 0.0502 0.0169−0.0110 −0.0083
1 0.079 0.0289 −0.0035 −0.0003 −0.0063
2 0.045 0.0193 −0.0047 −0.0021 −0.0042
3 0.030 0.0143 −0.0034 −0.0011 −0.0022

1650 Strongoli 0 0.237 0.0611 0.0168−0.0134 −0.0078
1 0.075 0.0287 −0.0038 −0.0025 −0.0051
2 0.046 0.0206 −0.004 −0.0011 −0.004
3 0.031 0.015 −0.0027 −0.0009 −0.0037

1680 Crotone 0 0.239 0.0663 0.0181−0.0099 −0.0083
1 0.075 0.0329 −0.0083 −0.0037 −0.0072
2 0.046 0.0213 −0.0064 −0.0014 −0.0045
3 0.031 0.0147 −0.0063 −0.0015 −0.0037

zone (about twice), that is the frequency of heavy daily rain-
falls is greater in the western part of the region.

As an example, the fit ofλ(t) theoretical distribution
through the Fourier series with 2 harmonics on sampling oc-
currence process referred to each threshold value is shown
in Fig. 7 for Cosenza and Crotone rain gauges, as the rep-
resentative stations of western and eastern zones, respec-
tively. Analysing the diagrams, it can be noted that, except
for K = 0, in the winter period the occurrence intensityλ(t)

of Cosenza is about twice as high as the Crotone one, con-
firming what has been shown in Fig. 6.

3.2 Check on occurrence process changes

In order to test the hypothesis that the daily rainfall occur-
rence process preserves the same behaviour in more recent
time periods, the theoretical distribution of intensity func-
tion λ(t), evaluated for each threshold value in the calibra-
tion period 1921–1986 (Sect. 3.1), has been also adopted for
the 15-yr observation data collected in the validation period
1987–2001.

For each rain gauge, by using the Monte Carlo approach,
1000 synthetic generations of a 15-yr period of daily rainfall
occurrences have been carried out and, for every simulation,
sampleλ(t) has been estimated. This procedure has been
adopted because of the complexity of determining analytical
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Fig. 8. Cosenza rain gauge: confidence interval of sample intensity functionλ(t) referred to the validation period forK = 0 (a), K = 1 (b),
K = 2 (c) andK = 3 (d).

Fig. 9. Crotone rain gauge: confidence interval of sample intensity functionλ(t) referred to the validation period forK = 0 (a), K = 1 (b),
K = 2 (c) andK = 3 (d).

statistical confidence intervals referred to the sample inten-
sity λ(t).

Sample intensity, theoretical function of the calibration pe-
riod and 95% confidence interval, evaluated by Monte Carlo
approach, are reported, as an example, for one rain gauge
of each zone (Cosenza and Crotone) in Figs. 8–9. The dif-
ferences between the sample and theoreticalλ(t) appear not

important, as more than 95% of the sample occurrence inten-
sities are inside the statistical bounds evaluated by synthetic
generation.

A further test has been performed for each rain gauge:
considering the different threshold values, the root-mean-
square error (RMSE), evaluated between the theoreticalλ(t)

and the sample of recorded data, and the corresponding 95%

Nat. Hazards Earth Syst. Sci., 11, 1657–1668, 2011 www.nat-hazards-earth-syst-sci.net/11/1657/2011/
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Fig. 10. Sample root-mean-square error (RMSE) and 95% one-tailed confidence intervals, forK = 0 (a), K = 1 (b), K = 2 (c) andK = 3
(d).

one-tailed confidence interval, evaluated from the RMSE val-
ues between the sampleλ(t) of each synthetic series and
the theoretical one, were obtained and reported in Fig. 10.
Analysing these results, it may be observed that the western
zone is characterised by differences, between sampleλ(t) of
the 1987–2001 period and theoreticalλ(t), which are higher
than those concerning the eastern zone. This different be-
haviour between western and eastern zones emerges by con-
sidering threshold valuesK ≥ 1. However, for each zone and
threshold, these deviations are statistically acceptable, as all
the sample RMSEs are inside their 95% confidence interval.

As a conclusion, the hypothesis that the occurrence pro-
cess of the observed rainfall, referred to the validation pe-
riod, derives from the sameλ(t) theoretical distribution of
the calibration period cannot be rejected at 5% significance
level.

4 Conclusions

In this paper, a non-homogeneous Poisson model has been
adopted for the stochastic interpretation of the seasonal vari-
ability concerning the daily rainfall occurrence process in 8
rain gauges selected among the longest data series in two dif-
ferent zones of the Calabria region (Southern Italy).

The procedure applied to a calibration time interval (1921–
1986) shows that a Fourier series with 2 harmonics repre-
sents a good fit for explaining the variability of the occur-
rence intensity functionλ(t) for all the rain gauges, consid-
ering different threshold values (POT analysis). This result is
obtained by carrying out both a classical approach concern-
ing cross-validation and a more robust technique related to

the property that a non-homogeneous Poisson process can be
transformed into a homogeneous one.

The theoretical distribution so obtained has been adopted
to verify possible changes ofλ(t) function for the validation
period (1987–2001), by using the Monte Carlo approach to
generate synthetic series of rainfall occurrences. The results
showed that the differences between the sample and the the-
oreticalλ(t) behaviour do not appear significant. Moreover,
a statistical test based on RMSE has shown that the hypoth-
esis of the sameλ(t) theoretical distribution for calibration
and validation periods cannot be rejected at 5% significance
level. Therefore, there is no statistically significant evidence
of rainfall occurrence process changes for more recent peri-
ods in the analysed area.

Further applications of the non-homogeneous Poisson
model will concern the joint analyses of the storm occurrence
process with the precipitation height marks, interpreted by
using a temporally homogeneous model in suitable sub-year
intervals.

Appendix A

A1 Theory of Hald tests

Once partitioned the periodP into ns subperiods, on the ba-
sis of the function3t,t+1t (Fig. 2) which depends on the
number of harmonicsnh, let n

(nh)
i,j be the occurrences re-

lated to thej th sub-period (j = 1, . . . , ns) into the ith year
(i = 1, . . . ,nP ), n(nh)

i,j may be assumed as identically Poisson-
distributed with parameter:
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Table A1. Results from the application of Hald tests.

nh = 0 nh = 1 nh = 2

Code Rain gauge K Hald1 Hald2 Hald1 Hald2 Hald1 Hald2

1010 Cosenza 0 37.8% 204.4 57.8% 34.3 100.0 % 4.1
1 20.0% 456.0 97.8% 8.9 100.0 % 4.3
2 22.2% 378.7 80.0% 18.8 100.0 % 5.3
3 24.4% 280.3 86.7% 15.6 100.0 % 11.0

1030 S. Pietro in Guarano 0 37.8% 194.8 62.2% 34.7 100.0 % 3.3
1 17.8% 380.8 86.7% 14.5 100.0 % 2.0
2 17.8% 350.9 93.3% 10.4 100.0 % 6.7
3 22.2% 222.4 97.8% 9.9 100.0 % 8.5

1040 Rende 0 40.0% 192.3 53.3% 41.8 100.0 % 5.6
1 20.0% 395.0 86.7% 18.0 100.0 % 4.9
2 20.0% 339.5 86.7% 14.5 100.0 % 7.1
3 26.7% 267.8 97.8% 10.0 100.0 % 4.6

3060 Paola 0 37.8% 186.0 55.6% 37.8 100.0 % 3.5
1 20.0% 321.3 88.9% 16.6 100.0 % 4.8
2 22.2% 242.7 80.0% 17.5 100.0 % 2.2
3 26.7% 175.7 91.1% 14.0 100.0 % 1.7

1590 Belvedere Spinello 0 28.9% 229.7 62.2% 37.3 100.0 % 10.0
1 22.2% 181.2 93.3% 10.8 100.0 % 3.6
2 24.4% 183.3 97.8% 6.4 100.0 % 4.7
3 35.6% 149.8 68.9% 23.1 100.0 % 11.0

1620 Verzino 0 31.1% 225.6 84.4% 15.4 100.0 % 5.5
1 22.2% 213.6 88.9% 13.9 100.0 % 6.2
2 28.9% 181.4 88.9% 13.0 100.0 % 7.9
3 31.1% 155.7 93.3% 11.5 100.0 % 7.6

1650 Strongoli 0 24.4% 356.1 66.7% 30.7 100.0 % 2.3
1 20.0% 231.7 93.3% 13.5 100.0 % 9.0
2 24.4% 199.9 93.3% 12.8 100.0 % 9.1
3 26.7% 159.1 97.8% 7.8 100.0 % 4.2

1680 Crotone 0 20.0% 475.4 68.9% 30.6 100.0 % 9.7
1 13.3% 376.2 88.9% 14.3 100.0 % 6.7
2 22.2% 262.3 97.8% 8.6 100.0 % 6.0
3 20.0% 213.3 84.4% 20.9 100.0 % 11.5

3
(nh)
j =

∫ wF ij

wI ij

λ(nh)(x)dx (A1)

wherewI,ij andwF,ij are, respectively, initial and final val-
ues of sub-periodj in the original time scale. If we consider
the sum of the occurrences:

S
(nh)
j =

nP∑
i=1

n
(nh)
i,j j = 1,2,...,ns (A2)

for each of the joint set of sub-periodsns , it can be hypoth-
esized that variableS(nh)

j is yet Poisson-distributed with pa-
rameters:

θ
(nh)
j = nP 3

(nh)
j (A3)

This hypothesis can be verified by means of two homogene-
ity tests both proposed by Hald (1952). The first test com-
pares the values of the meansθ

(nh)
j1

andθ
(nh)
j2

for any chain
of periodj1 andj2. The test is verified if all comparisons
between couplesj1 = 1, 2, . . .ns−1 andj2 = j1 +1, . . . ,ns

are fulfilled. Statistically, the single hypothesisθ
(nh)
j1

= θ
(nh)
j2

has to be rejected if:

Fsample=
S

(nh)
max

1+S
(nh)
min

≥ F1−α0/2(f1,f2) (A4)

whereS
(nh)
max and S

(nh)
min are maximum and minimum values

of couple [S
(nh)
j1

, S
(nh)
j2

], andF1−α0/2(f1,f2) is the 1-α0/2
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value of Fisher’s distribution with freedom degreesf1 =

2[1+S
(nh)
min ] andf2 = 2S

(nh)
max.

The second test concerns the verification of contemporary
equal values of the meansθ (nh)

j for all the sub-periodsj = 1,

2, . . . ,ns . The test can be applied ifnP > 5 andS
(nh)
j > 5.

The hypothesisθ (nh)
j1

= θ
(nh)
j2

= ... = θ
(nh)
ns

has to be re-
jected if:

χ2
sample= np

m′
2S −m′2

1S

m′

1S

≥ χ2
1−α0

(f ) (A5)

wherem′
ms =

1
nP

nP∑
j=1

[
S

(nh)
j

]m

andχ2
1−α0

(f ) is the 1-α0 value

of χ2 distribution withf = ns −1 degrees of freedom.

A2 Results of Hald tests

Results obtained from the application of Hald tests are re-
ported in Table A1, in whichα0 is set equal to 0.05.
The percentage of couples satisfying the propertyFsample<

F1−α0/2(f1,f2) (see Eq. A4) is indicated with “Hald1” (ns =

10 subperiods are considered in this context), while “Hald2”
is related to value ofχ2

sample(see Eq. A5) which must be less

thanχ2
1−α0

(f ), equal to 16.9. By analysing the results, it is
clear that the adoption ofnh = 2 harmonics satisfies both the
statistical tests for each considered thresholdK and, conse-
quently, the transformed occurrence process may be consid-
ered as homogeneous.
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