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Abstract. The Shiaolin landslide occurred on 9 August
2009 after Typhoon Morakot struck Taiwan, claiming over
400 lives. The seismic signals produced by the landslide
were recorded by broadband seismic stations in Taiwan. The
time-frequency spectra for these signals were obtained by
the Hilbert-Huang transform (HHT) and were analyzed to
obtain the seismic characteristics of the landslide. Empiri-
cal mode decomposition (EMD) was applied to differentiate
weak surface-wave signals from noise and to estimate the
surface-wave velocities in the region. The surface-wave ve-
locities were estimated using the fifth intrinsic mode function
(IMF 5) obtained from the EMD. The spectra of the earth-
quake data were compared. The main frequency content of
the seismic waves caused by the Shiaolin landslide were in
the range of 0.5 to 1.5 Hz. This frequency range is smaller
than the frequency ranges of other earthquakes. The spectral
analysis of surface waves (SASW) method is suggested for
characterizing the shear-wave velocities of the strata in the
region.

1 Introduction

1.1 The Shiaolin landslide

Shiaolin village, located in Southern Taiwan (Fig. 1a), was
destroyed after a landslide and natural dam breach during
Typhoon Morakot. The catastrophic landslide occurred at
06:16 a.m. LT on 9 August 2009, Taiwan. The landslide dam
blocked the Chishan River (Fig. 1b) and covered approxi-
mately half of the Shiaolin village. The landslide dam was
subsequently breached due to flooding, and the surge waves
destroyed the remaining half of the Shiaolin village. This
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catastrophic landslide claimed over 400 lives. The Shiaolin
landslide was primarily triggered by the tremendous amount
of precipitation that occurred over a short period of time (ap-
proximately 1676 mm over three days). The landslide was
deep-seated and occurred on a dipping slope of shale, mud-
stone, and sandstone. The material fell approximately 830 m
from the head scarp (Tsou et al., 2011). The landslide was
estimated to be 25 million m3 in volume and traveled approx-
imately 2.83 km (Fig. 1a), with an average velocity of 20.4 to
33.7 m s−1 (Tsou et al., 2011). The affected area was approx-
imately 252 hectares (Chen and Wu, 2009a). The landslide
dam was approximately 53 m tall, 350 m wide, and 600 m
long. The volume of the dam lake was about 19.5 million m3,
and the area of the dammed lake was approximately 92
hectares (Chen and Wu, 2009b). The surge waves follow-
ing the dam break arrived at Jiasian (approximately 12 km
downstream) at 08:03 a.m. LT and at the Shanlin stream sta-
tion (approximately 30.5 km downstream) at 08:40 a.m. LT
on 9 August 2009 (Feng, 2011). Note that all of the times
referenced in this paper are local time and offset from UTC
by +8 h.

1.2 The seismology of landslides

Seismic signals generated by landslides can be recorded and
analyzed to observe the seismic and geologic aspects and
characteristics of a landslide (Berrocal et al., 1978; Suriñach
et al., 2005). Experimental man-made rockfall-induced seis-
mic signals have been studied to detect rockfall size and the
locations of the impacts (Vilajosana et al., 2008). The seis-
mic method has also been applied to illustrate the seismic
signature of pyroclastic flows (De Angelis et al, 2007), show-
ing that seismology can be useful in characterizing hazardous
processes such as landslides.

The sliding mass of the Shiaolin landslide had a sur-
face magnitude equivalent to anMs = 4.6 seismic event (C.-
H. Lin, personal communications, 2010). The long-period
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seismic signals were recorded by most of the Broadband Ar-
ray in Taiwan for Seismology (BATS) network and by the
F-net in Japan (Lin et al., 2010). Lin et al. (2010) have iden-
tified the location of the Shiaolin landslide using long-period
(20–50 s or 0.02–0.05 Hz) band-pass filtered BATS records.
They also estimated the source locations of 51 other land-
slide events from their long-period BATS signals, including
submarine slumps that occurred during the typhoon. The au-
thor discovered that the seismic signals from the dam-break
surge waves were also captured by the Jiasian SGSB broad-
band station of the BATS network. The characteristics of the
seismic signals caused by the surge waves indicated that the
landslide dam breached 1 h, 24 min after the Shiaolin land-
slide occurred (Feng, 2011).

1.3 Purposes of this study

This study employs the vertical components of six broad-
band BATS stations near Shiaolin (Fig. 2) and focuses mainly
on the characteristics of the seismic waves generated by the
Shiaolin landslide. These signals have relatively shorter peri-
ods and higher frequency ranges (0.5–5 Hz) than those used
in Lin et al. (2010).

The empirical mode decomposition (EMD) and Hilbert-
Huang transform (HHT) (Huang et al., 1998) were employed
to explore the characteristics of the seismic signatures of the
Shiaolin landslide. The surface-wave velocities were esti-
mated using the intrinsic mode functions (IMFs) from the
EMD. The earthquake data from the free-field strong-motion
seismometers at two of the broadband stations were also
compared. A potential application of the spectral analysis
of surface waves (SASW) method was also explored.

2 Materials and methods

2.1 The broadband signals

Information about the broadband stations is listed in Table 1,
including their azimuths and distances from Shiaolin. The
seismic signals from the six broadband stations for the 06:10
to 06:25 a.m. LT time interval on 9 August were acquired.
Although three components of the waveform data (Z, N-S,
and E-W) were available, only the vertical components (the
Z-direction) were used in this analysis. These data were
used to estimate arrival times and surface-wave velocities
from the Rayleigh waves. To determine the characteristics
of the seismic signals from the landslide, the time-frequency
spectra from these stations were calculated using the HHT.
The propagation of landslide-induced seismic waves may be
influenced by surface topography. The topographic profiles
from Shiaolin to the stations are plotted in Fig. 3.
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Figure 1 (a) The Shiaolin village and Chishan River prior to the Shiaolin landslide 

(SPOT image from June 22, 2008). The red dotted line indicates the Shiaolin landslide 

zone. 

  

(a)

2 
 

 
Figure 1(b) The landslide area and the landslide dam after the Shiaolin landslide, 

August 9, 2009 (SPOT image August 24, 2009). The red dotted line indicates the 

Shiaolin landslide zone, and the green arrows indicate the sliding directions. 

  

(b)

Fig. 1. (a) The Shiaolin village and Chishan River prior to the
Shiaolin landslide (SPOT image from 22 June 2008). The red dot-
ted line indicates the Shiaolin landslide zone.(b) The landslide area
and the landslide dam after the Shiaolin landslide, 9 August 2009
(SPOT image 24 August 2009). The red dotted line indicates the
Shiaolin landslide zone, and the green arrows indicate the sliding
directions.
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Figure 2The locations of the six broadband seismic stations, the Jiasian rainfall gauge 
station (C0V250), and the Shanlin stream gauge station (1730H058). 

Fig. 2. The locations of the six broadband seismic stations, the Ji-
asian rainfall gauge station (C0V250), and the Shanlin stream gauge
station (1730H058).
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Figure 3 The topographical profiles from Shiaolin to the broadband stations. 
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Fig. 3. The topographical profiles from Shiaolin to the broadband
stations.

2.2 Geology of the Shiaolin-Jiasian-Chishan region

Figure 4 illustrates the geological structures and stratigraphy
of the study area. The Shiaolin-Jiasian-Chishan region is lo-
cated in the southern part of the Western Foothills of Taiwan.
The region is mainly sandstone, mudstone, conglomerate,
and interlayered sandstone and shale. They are of the Qua-
ternary period and the Pliocene and Miocene epochs (Central
Geological Survey, 2010).

According to Chen and Liu (2006), the Neiying Fault runs
across this area with a 10◦ N–30◦ E orientation that is gener-
ally parallel to the strike of the local stratigraphy. It is an
approximately 40-km-long sinistral reverse fault. The ex-
posed formations in the hanging-wall area of the Neiying
Fault are mainly the Changchikeng Formation and the Tan-
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Figure 4 The geological map of the region containing Shiaolin, Jiasian, and Chishan 

(Modified from Tsou et al., 2011).  

  

Fig. 4. The geological map of the region containing Shiaolin, Ji-
asian, and Chishan (Modified from Tsou et al., 2011).

genshan Sandstone, which are from the late Miocene. In the
footwall area of the Neiying Fault, the formations are pri-
marily the Pliocene and Pleistocene Yenshuikeng Shale and
Ailiaochiao Formations. The Changchikeng Formation and
Ailiaochiao Formation consist predominantly of shale, as in-
dicated in Keng (1967).

The locations of the SGSB seismic station in Jiasian
and the TWMB seismic station in Chishan, along with the
C0V250 weather station in Jiasian, are shown in Fig. 4.
Shiaolin village, SGSB and TWMB are located in the foot-
wall of the Neiying Fault and are aligned in an almost straight
line that is subparallel to the strike of the stratigraphy in this
area.

2.3 Earthquake data from the free-field strong-motion
stations

The earthquake records of the free-field, strong-motion sta-
tions and broadband stations at Jiasian and Chishan were
compared. The earthquake records include theMs =

6.4 earthquake (4 March 2010; 120.71◦ E, 22.97◦ N) near
Shiaolin and Jiasian, theMs = 7.3 Chi-Chi earthquake (21
September 1999; 120.82◦ E, 23.85◦ N), and theMs = 6.4
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Table 1. Station information and the distances to Shiaolin.

Station Location Longitude, Latitude, Elevation Distance to Shiaolin-to
Code E N (m) Shiaolin, -station Azimuth

1 (km) (degrees)

Shiaolin – Shiaolin 120.65 23.16 345 – –
Landslide

Broadband SGSB Jiasian 120.59 23.08 278 11.39 215.54
seismic TPUB Dapu 120.63 23.30 370 15.30 350.30
stations ELDB Lidao 121.03 23.19 1040 37.96 86.26

ALSB Alishan 120.81 23.51 2413 41.39 23.12
TWMB Chishan 120.43 22.82 340 44.40 211.41
WGKB Gukeng 120.57 23.68 75 58.25 351.59

Jiasian rainfall C0V250 Jiasian 120.58 23.08 270 11.80 215.37
gauge station (12∗)

Shanlin stream 1730H058 Shanlin 120.54 22.99 130 22.05 209.14
gauge station (30.5∗)

∗ River length from the station to the Shiaolin landslide dam.

Table 2. The percentage powers of the IMFs at the SGSB, TPUB,
and TWMB stations.

IMF Percentage Percentage Percentage
power (%) power (%) power (%)
at SGSB at TPUB at TWMB

IMF 1 0.76 5.41 0.18
IMF 2 2.15 1.23 0.10
IMF 3 2.64 1.36 0.04
IMF 4 3.86 2.75 0.13
IMF 5 38.84 44.93 0.90
IMF 6 15.54 17.14 10.06
IMF 7 29.48 21.28 74.05
IMF 8 4.93 4.76 12.20
IMF 9 0.74 0.48 1.43
Sum of 10∼ 14 IMFs 1.06 0.65 0.9

Note: These percentage powers for the SGSB and TWMB IMFs were calculated using
signals from a 15-min duration (from 06:10 to 06:25) on 9 August 2009. For the TPUB
station, a 5-min duration (from 06:15 to 06:20 a.m. LT) was used.

Jiayi earthquake (22 October 1999; 120.42◦ E, 23.52◦ N).
Records from anMs = 4.57 earthquake (2 May 2010;
120.54◦ E, 22.96◦ N) were acquired from the SGSB and
TWMB stations to compare with the equivalent-magnitude
(Ms = 4.6) signal generated by the Shiaolin landslide. The
differences in the time-frequency spectra of the signals
caused by the Shiaolin landslide and the earthquakes were
then compared.
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Figure 5 The hourly and quarter-hourly precipitation levels at the Jiasian rainfall 

gauge station (C0V250) during Typhoon Morakot (August 7 – 11, 2009). 
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Fig. 5. The hourly and quarter-hourly precipitation levels at the
Jiasian rainfall gauge station (C0V250) during Typhoon Morakot
(7–11 August 2009).

2.4 Precipitation and the water level of the Chishan
River during Typhoon Morakot

The typhoon precipitation data from the Jiasian Weather Sta-
tion (C0V250), which were taken at one-minute intervals,
were acquired. The hourly and quarter-hourly precipitation
levels are shown in Fig. 5. The cumulative precipitation had
reached 1676 mm by the time the Shiaolin landslide occurred
(Tsou et al., 2011). The location of C0V250 is about 12 km
SSW of Shiaolin. It is close to the SGSB seismic station;
however, the high-intensity precipitation did not perturb the
seismic signals from the SGSB, as indicated by Feng (2011).

The Shanlin Stream station (173H058) is located approxi-
mately 30.5 km SSW from Shiaolin, downstream along the
Chishan River. It recorded water-level variations at ten-
minute intervals. The water levels measured at the Shanlin
station during Typhoon Morakot are shown in Fig. 6a. The
decrease in the water level at the arrow labeled K in Fig. 6a
is related to the breaking of a dike near Jiasian, as noted by
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Figure 6 (a) The water levels (stages) measured at the Shanlin stream gauge station 
(1730H058) from 06:00 to 11:00 on August 9, 2009, with a 10-minute sampling 
frequency. (b) The rate of change in the water level is in units of m/10 min. 
 

Fig. 6. (a)The water levels (stages) measured at the Shanlin stream
gauge station (1730H058) from 06:00 to 11:00 a.m. LT on 9 August
2009, with a 10-min sampling frequency.(b) The rate of change in
the water level is in units of m 10 min.

Chen and Wu (2009b). The decreasing water level labeled A
is due to the landslide dam blocking. The suddenly increas-
ing water level labeled C is caused by the surge waves from
the breaking of the dam.

The water-level curve of the Shanlin in Fig. 6a was dif-
ferentiated to obtain the rate of the water-level change (1 m
per 10 min), as shown in Fig. 6b. When the rate of change
is close to zero, the water level remains approximately con-
stant. A positive rate represents a rising water level; a nega-
tive rate represents a falling water level. The rate of change in
the water level due to the landslide dam blockage was 1.3 m
per 10 min at 07:20 (time-point F). The highest rate (2.8 m
per 10 min) was observed at 08:50 (time-point G) during the
initial surge of waves from the dam break. The water level
dropped quickly (–2.5 m per 10 min) at 09:50 (time-point H)
when the surge of waves retrogressed.

2.5 Empirical mode decomposition and the
Hilbert-Huang transform

The HHT developed by Huang et al. (1998) includes EMD
and the Hilbert transform. The EMD process can decompose
a signal into a set of intrinsic mode functions (IMFs). This
method is powerful because of its adaptability and efficiency.
It is useful for analyzing nonlinear and nonstationary signals.
The EMD method decomposes signals into many IMFs with
a low-frequency residual. Then, using the Hilbert transform,
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Figure 7 IMFs 1 – 14 of the vertical velocity from the Jiasian SGSB station (06:10 to 

06:25, August 9, 2009). 
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Fig. 7. IMFs 1–14 of the vertical velocity from the Jiasian SGSB
station (06:10 to 06:25 a.m. LT, 9 August 2009).

each of the IMFs can be transformed to obtain their instan-
taneous frequencies as a function of time. Subsequently, the
time-frequency energy spectra of the signals can be obtained.
The seismic characteristics can be interpreted by examining
the frequency contents in the time domain. For details of
the EMD and HHT methods, please see Huang et al. (1998).
EMD and the HHT have been applied to many areas of geo-
physics, including seismic, atmospheric, climatic, ground-
water, sea-wave, and soil-science studies (Huang and Wu,
2008; Crockett et al., 2010; Crockett and Gillmore, 2010).
The Visual Signal software (AnCAD, Inc., 2010) was used
in this study to perform EMD and the HHT.

EMD was employed to “sift” the time series signals of the
broadband stations and to “separate” the frequency ranges of
the signals caused by the Shiaolin landslide. By obtaining
the time-frequency-energy spectra of the broadband signals
using the HHT, the characteristics of the seismic data could
be more clearly observed and compared.

3 Results and discussion

3.1 EMD of the landslide signals from the
broadband stations

SGSB is the nearest station to the Shiaolin Landslide; there-
fore, the seismic signals of the landslide were clearest there.
The 14 IMFs resulting from the EMD processing of the 15-
min vertical-component velocity signal are shown in Fig. 7.
Table 2 lists the percentage powers of the IMFs that were
calculated using signals from 06:10 to 06:25 a.m. LT on 9
August 2009. Note that the percentage powers of each IMF
can change when different durations are chosen for the anal-
ysis. The percentage power of the fifth IMF (IMF 5) was
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38.84 % of the total spectrum power from the SGSB sta-
tion, and it was the highest percentage power among the 14
SGSB IMFs that were calculated (Table 2). Although some
small portion of the signals from the Shiaolin landslide is
distributed in IMFs other than IMF 5, their influence is min-
imal. IMFs 1 through 3 at SGSB appear to represent noise,
as shown in Fig. 7. There were also landslide-relevant sig-
nals in SGSB IMFs other than IMF 5, such as IMFs 4 and
6 (Fig. 7), that had similar signal patterns. IMFs 7 through
14 contained mostly noise but also may have contained some
low frequency and/or aperiodic trend information; however,
the percentage powers of IMFs 9 through 14 were quite low.

For the SGSB, the signals in IMF 5 were deemed the most
representative of the seismic-wave patterns generated by the
landslide. All of the IMFs could be used for the Hilbert trans-
form; the amplitude-time-frequency Hilbert spectrum was
obtained and is shown in Fig. 8a. During the landslide, a
change in frequency over time can be observed. In Fig. 8a,
the high spectral magnitudes distribute among 0.5 to 1.5 Hz
and the energy from 1.5 Hz to 5 Hz is generally of lower fre-
quency vibrations. Because IMF 5 from the SGSB station
in Jiasian contained about 38.84 % of the total energy and
most of the noise was removed, it was worthwhile to check
its Hilbert spectrum. Figure 8b shows the Hilbert spectrum
of the SGSB IMF 5. High and certain very-low frequencies
spectra were not seen in the Hilbert spectrum. The IMF 5;
energy of the landslide signal was mainly distributed from
0.5 to 1.5 Hz, as indicated by the Fourier transform of the
SGSB IMF 5 that is shown in Fig. 9a.

For comparison, the percentage power and the Fourier
transform of IMF 5 for the TPUB and TWMB stations were
also calculated; they are shown in Table 2 and Figs. 9b and
c, respectively. Among the six stations analyzed, the TPUB
station was the second closest to Shiaolin. The percentage
power of IMF 5 (44.93 %) was the largest among the TPUB
IMFs, which was similar to IMF 5 having the largest percent-
age power at the SGSB station. The frequency range of the
TPUB IMF 5 was also from 0.5 to 1.5 Hz (Fig. 9b). There-
fore, the TPUB IMF 5 and the frequencies from 0.5 to 1.5 Hz
should be directly related to the Shiaolin landslide.

The distance from the TWMB station to the Shiaolin land-
slide was 44.4 km, substantially farther than the distances
from the SGSB and TPUB stations to the landslide. There-
fore, the TWMB signals contained high levels of noise. The
percentage power of the TWMB IMF 5 was only 0.9 % (Ta-
ble 2), and the percentage powers for many of the other
TWMB IMFs were larger.

There may be an argument that the TWMB IMF 5 was not
representative of the signals for the Shiaolin landslide. An
examination of IMFs 1 through 14 from the TWMB station
(Fig. 10) revealed that IMF 5 was the most relevant to the
Shiaolin landslide, and the signal should not be identified as
noise simply because of the low percentage power (0.9 %).
Based on the signal pattern of IMF 4 shown in Fig. 10, the
TWMB IMF 4 should also contain some signal from the
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Figure 8 (a) The SGSB amplitude-time-frequency Hilbert spectrum. (b) The 

amplitude-time-frequency Hilbert spectrum of the SGSB IMF 5. 

  
Fig. 8. (a)The SGSB amplitude-time-frequency Hilbert spectrum.
(b) The amplitude-time-frequency Hilbert spectrum of the SGSB
IMF 5.
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Figure 9 The IMF 5 Fourier transform for stations (a) SGSB, (b) TPUB, and (c) 

TWMB. 
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Fig. 9. The IMF 5 Fourier transform for stations(a) SGSB,(b)
TPUB, and(c) TWMB.

landslide. IMFs 6 through 8 from the TWMB stations were
difficult to identify as being related to the landslide, even
though they contained significant percentage powers (partic-
ularly IMF 7, which contained 74.05 % of the energy) (Ta-
ble 2). Although the 0.9 % power of the TWMB IMF 5 was
small, the landslide signal could still be extracted by EMD.
This result shows the power of EMD for analyzing nonlinear
and nonstationary time series.

The frequency range of the TWMB IMF 5 was also from
0.5 to 1.5 Hz (Fig. 9c). In addition, the TWMB IMF 5
(Fig. 10) was similar in appearance to the SGSB waveform
in Fig. 7.

For practical estimation, the TWMB, ELDB, ALSB, and
WGKB IMF 5s were considered to be characteristic of the
Shiaolin landslide; however, SGSB IMFs 4 and 6 (Fig. 7)
were used to assist in estimating the arrival times of the
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Figure 10 IMFs 1 – 14 of the vertical velocity from the TWMB station (06:10 to 

06:25, August 9, 2009). 
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Fig. 10. IMFs 1–14 of the vertical velocity from the TWMB station
(06:10 to 06:25 a.m. LT, 9 August 2009).

waves. The TWMB IMF 4 (Fig. 10) was also helpful for
estimating the arrival time.

Based on the above discussion, the IMFs that contain high
energy might have been noise, especially for stations that
were located far from the landslide, such as TWMB, ALSB,
and WGKB. For the closer stations, SGSB and TPUB, the
energy was sufficient for identifying the landslide signals.
For the more-distant stations, however, the frequency content
was a better diagnostic because the frequencies generated
by a landslide should be approximately constant and change
minimally with wave propagation. The EMD is able to “sift”
the signals from noise into the IMF frequency ranges, and
the signals relevant to the landslide could be identified by vi-
sual observation of the IMF results, which demonstrates the
usefulness and advantages of the EMD.

3.2 The velocity of seismic waves induced by the
landslide and the landslide origin time

The two-minute-long ground-velocity seismic waveforms at
the six stations from 06:16 to 06:18 on 9 August 2010 are
shown in Fig. 11. The signals from the Shiaolin landslide
at the SGSB and TPUB stations were easier to identify be-
cause the stations were closest to the landslide zone (11.39
and 15.3 km, respectively). The maximum velocity was
0.01 cm s−1 at SGSB; however, the velocities at the four
other stations quickly attenuated and fell below the noise
level. It was therefore difficult to identify which portions of
the signals at these stations were caused by the Shiaolin land-
slide. As shown in Fig. 12, IMF 5 was calculated for each of
the signals in Fig. 11 using the EMD method. IMF 5 was
chosen because the “sifted” waveforms showed less noise
and could better represent the signals propagated from the
Shiaolin landslide. In Fig. 12, the signals from the Shiaolin
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Figure 11 The vertical velocity waveforms recorded by the six broadband stations. 
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Fig. 11.The vertical velocity waveforms recorded by the six broad-
band stations.

landslide are reasonably “extracted” in IMF 5, as is discussed
in Sect. 3.1. Even though the original signals at the TWMB,
ELDB, ALSB, and WGKB stations in Fig. 11 contain high
levels of noise, the signals related to the Shiaolin landslide
are observable (Fig. 12). Therefore, only the IMF 5 s from
the broadband stations were analyzed in this study.

The IMF 5 velocity amplitudes decayed quickly with in-
creasing distance from the landslide origin and with increas-
ing elevation. For example, the distances of the ELDB and
ALSB stations from the landslide origin were about 38 and
41.4 km, respectively, but the amplitudes of the ELDB and
ALSB signals were much smaller than those of the TWMB
signals (44.4 km) (Fig. 12). As shown in Fig. 3, the eleva-
tions of the ELDB and ALSB stations were higher (1040 and
2413 m above sea level, respectively) than Shiaolin, which
caused the surface waves from the landslide to attenuate
more quickly while traveling upward along the irregular to-
pography. The landslide-induced seismic wave propagating
through different geological conditions may also have caused
the amplitudes of the ELDB and ALSB signals to attenuate
more quickly. In general, high frequency waves should de-
cay faster and very low frequency waves should travel farther
and through deeper crust.
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Figure 12 The IMF 5 of the vertical velocity waveforms obtained from the EMD. 
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Fig. 12. The IMF 5 of the vertical velocity waveforms obtained
from the EMD.

The SGSB and TWMB IMF 5 signals were chosen to es-
timate the velocities of the seismic waves and the origin time
of the Shiaolin landslide because SGSB and TWMB form
an approximate line with Shiaolin. The azimuths of Shiaolin
to SGSB and TWMB are 215.54◦ and 211.41◦, respectively
(Table 1). The strata in this area are assumed to be approx-
imately linear and homogeneous, as explained in Sect. 2.2.
The signal duration was approximately 98 s, given that the
vertical component of the wave arrived at the SGSB station
at 06:16:11 and the coda continued until 06:17:49. The ver-
tical component of the seismic wave arrived at the TWMB
stations at approximately 06:16:36, and the coda ended at
06:18:30, making the signal duration approximately 114 sec.
The estimated first-arrival times are indicated as solid ar-
rows in Figs. 11 and 12. The first-arrival times correspond
to the compressive P-waves. Therefore, the travel time of
the P-waves between the SGSB and TWMB stations was
24.5± 1 s. The distance between the SGSB and TWMB
stations is 33 km; thus, the average propagation velocity of
the P-waves is estimated to be 1350±50 m s−1. The higher-
amplitude peaks in the SGSB and TWMB IMF 5 s were used
for the approximate R-wave velocity. The average onset of
these six to seven R-wave peaks was 06:16:50 for the SGSB
station and 06:17:29 for the TWMB station, as indicated by
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Figure 13 The HHT time-frequency spectra of the six seismic stations. The red dashed 

lines encircle the most significant spectra ranges for the Shiaolin landslide. Fig. 13. The HHT time-frequency spectra of the six seismic sta-
tions. The red dashed lines encircle the most significant spectra
ranges for the Shiaolin landslide.

the open arrows in Fig. 12. Based on the open arrows in
Fig. 11, the average timing of these R-wave peaks is not
as easy to identify from the original TWMB signal as from
the TWMB IMF 5 (Fig. 12). The approximate travel time
of the R-wave between the SGSB and TWMB stations was
38.8±0.5 s. Using the 33-km distance between the two sta-
tions, the propagation velocity of the R-wave was approxi-
mately 850±10 m s−1.

These two average velocities, 1350 m s−1 and 850 m s−1,
are reasonable for P-waves and R-waves, respectively, travel-
ing along a relatively shallow crustal path (<500 m depth) in
the sedimentary strata of this region. They are much slower
than the 4000 m s−1 P-wave velocity of the Shiaolin landslide
event that was deduced from the long-period signals in Lin
et al. (2010). It is because the long-period waves were trav-
eling at greater depths and their velocities are much faster
than those of waves traveling in shallow depths. Further-
more, the two estimated average velocities were calculated
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Figure 14The HHT time-frequency spectra of the earthquakes recorded at the Jiasian 
and Chishan free-field strong-motion and broadband stations.(M: Richter scale 
magnitude.) 

Fig. 14. The HHT time-frequency spectra of the earthquakes
recorded at the Jiasian and Chishan free-field strong-motion and
broadband stations. (M: Richter scale magnitude.)

from the short-period signals (0.5 to 1.5 Hz) shifted by EMD
and the long-period signals were mostly excluded, thus they
could represent the slower velocities of surface waves travel-
ing in shallower depths.

The 114-s duration of the landslide signals at the TWMB
station was longer than the 98-s duration measured at the
SGSB station. This behavior was the result of the wave prop-

agation dispersion phenomenon that causes waves of differ-
ent frequencies to travel at different velocities (Deparis et al.,
2008). The distance from Shiaolin to SGSB is 11.39 km, and
the landslide-induced P-waves should have taken approxi-
mately 8 s to travel this distance in shallow earth surface.
Therefore, the origin time of the Shiaolin landslide was esti-
mated to be 06:16:03 on 9 August 2009. These estimates are
close to the calculations determined by Tsou et al. (2011) that
were obtained using the IMF 5 s of N-S components from
SGSB and TWMB stations.

3.3 Time-frequency spectra

The HHT spectra for the six stations are shown in Fig. 13. To
aid in visual inspection of the spectra, the red dashed lines
encircle the most significant spectra ranges for the Shiaolin
landslide. The landslide’s time-frequency spectra from the
closest station (SGSB) are predominantly between 0.5 to
5 Hz (encircled by the red dashed line) and last approxi-
mately 98 s, as was mentioned previously. The successively
larger impacts from the Shiaolin landslide show larger spec-
tral magnitudes and higher frequency content. The frequen-
cies below 0.5 Hz contain high noise levels. The significant
frequencies related to the Shiaolin landslide are between 0.5
and 1.5 Hz, as determined from the Fourier transform of the
SGSB IMF 5. The HHT spectra of the other five stations also
show spectral magnitudes that belong to the Shiaolin land-
slide event, although they contain more noise. Some spec-
tra are difficult to identify as being related to the Shiaolin
landslide, such as those from the ELDB and WGKB stations
(Figs. 13d and f).

3.4 A spectral comparison between the landslide and
earthquakes

The time-frequency spectra obtained by the HHT for the
vertical signals of three earthquakes recorded at the Jiasian
and Chishan free-field strong-motion stations are shown in
Fig. 14, along with the Shiaolin landslide spectrum for com-
parison. There were high-frequency responses in the spectra
of the earthquakes, with frequencies as high as 17 Hz. The
closer the station was to the epicenter, the stronger the high-
frequency components of the spectra were. For comparison,
the 2 May 2010Ms = 4.57 earthquake near the SGSB and
TWMB stations was also analyzed, as shown in Figs. 14d
and h. Due to a magnitude that was smaller than those of
the 21 September 1999, 22 October 1999, and 4 March 2010
earthquakes, the high-frequency content of the 2 May 2010
earthquake was smaller, although the epicenter of the 2 May
2010 earthquake was closer to Jiasian and Chishan. How-
ever, the frequency contents for the 2 May 2010Ms = 4.57
earthquake at the two stations were still higher than those for
the Shiaolin landslide, even though the magnitudes of the 2
May 2010 earthquake and the Shiaolin landslide were simi-
lar.
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The main frequency range of the Shiaolin landslide fell
between 0.5 and 1.5 Hz (Figs. 13 and 14), which was much
smaller than those of the earthquakes in question. The deep-
seated landslide mass could only produce a few heavy im-
pacts per second during the sliding, rolling, and rebounding
on the failure surfaces.

3.5 The potential application of the SASW method to
characterize the shear velocity of strata

A potential application of the spectral analysis of surface
waves (SASW) method (Nazarian et al., 1983) is proposed to
characterize the surface shear-wave velocity of the regional
strata between Jiasian and Chishan to a depth of approxi-
mately 10 km. This method may be applied because Shiaolin,
Jiasian, and Chishan are located in the same geological unit,
they form an approximate straight line (Fig. 2), and their el-
evations are similar (Fig. 3). The SGSB and TWMB IMF
5 s (Figs. 12a and b) can be selected for this purpose; how-
ever, because the TWMB IMF 5 still contains noise and
may not contain most of the surface seismic signals after the
EMD, the surface shear wave velocity obtained by the SASW
method is not of high quality. Although the Shiaolin land-
slide provided a rare opportunity to apply the SASW method,
the Shiaolin landslide produced more than one significant im-
pact, limiting the use of the SASW method. If the geographic
requirements for using the SASW method are met and the
seismic signals of a near vertical free-fall event can be ac-
quired (the rockfall events of Yosemite Valley, California are
a good example of this type of event; Stock and Uhrhammer,
2010), the SASW method should be successfully applied.

4 Summary and conclusions

The Shiaolin landslide occurred on 9 August 2009 and pro-
duced seismic signals. The signals recorded by six broad-
band stations were analyzed to understand the seismic sig-
nals caused by the landslide. The timing of the landslide
event was resolved using the EMD. The time-frequency spec-
tra obtained by the Hilbert-Huang Transform (HHT) clearly
showed the landslide event and frequency contents of the sig-
nals. The EMD was successfully used to separate the weak
surface wave signals induced by the Shiaolin landslide from
the background noise. Most of the signal from the Shiaolin
landslide was distributed in the fifth intrinsic mode function
(IMF 5). The average velocities of the surface waves in the
region’s shallow strata could then be approximately quan-
tified using IMF 5 s from the SGSB and TWMB stations.
The 0.5 Hz to 1.5 Hz frequency range was identified in IMF
5 of the Shiaolin landslide seismic waves. This range was
smaller than those produced by the other earthquakes that
were also analyzed. Finally, the potential application of the
SASW method to characterize the shear velocity of the strata
in the region was suggested. Analyzing and understanding

the seismic signatures of the Shiaolin landslide should pro-
vide a great opportunity for further large-scale landslide re-
search.
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