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Abstract. One of the possible mechanisms of the emergence
of freak waves in deep water, based on the dispersive focus-
ing of unidirectional wave packets is analysed. This mech-
anism is associated with the frequency dispersion of water
waves and manifested in the interference of many spectral
components, moving with different velocities. Formation of
a single freak wave in a random wind wave field is consid-
ered in the frame of linear theory. The characteristic lifetime
of an abnormal wave in the framework of this mechanism
for typical conditions is approximately two minutes, thus, a
rapid effect is difficult to predict and prepare for. A rogue
wave quickly changes its shape from a high ridge to a deep
depression.

1 Introduction

The large-amplitude waves suddenly appearing for a short
time on the sea surface (freak or rogue waves) attract the at-
tention of professionals nowadays because of their danger to
ships and oil platforms in sea, ports and tourist resorts on the
coast. Numerous data of observing freak waves in different
areas of the World Ocean can be found, for example, in books
(Lavrenov, 2003; Kurkin and Pelinovsky, 2004; Kharif et al.,
2009) and papers (Kharif and Pelinovsky, 2003; Didenkulova
et al., 2006; Liu, 2007). Among the mechanisms of their
appearance in the open sea the following ones are marked
(Kharif et al., 2009): (a) a superposition of a large number
of individual spectral components, which move with differ-
ent speeds and in different directions (the dispersive and ge-
ometrical focusing); (b) nonlinear mechanisms of modula-
tion instability, in particular, the Benjamin-Feir instability;
and (c) interaction of sea waves with currents and wind flow.
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Each of these mechanisms has its own specificity, which is
ultimately manifested in the probability of freak wave occur-
rence and the time of their life. It is possible that each mech-
anism leads to different forms of rogue waves and scenarios
of their manifestation. All these important features have not
been studied yet.

Here the possible scenario of the freak wave appearance
in deep water, based on dispersive focusing of unidirectional
wave packets is analysed. This mechanism is associated with
the dispersion of water waves and is manifested in the inter-
ference of many spectral components, moving with differ-
ent velocities. This mechanism “works” for both the deter-
ministic (with certain conditions on the phases of spectral
components) and random waves, leading to the appearance
of abnormally high waves. It is possible in both, linear and
nonlinear theories of water waves, although, of course, the
nonlinearity leads to their peculiarities in the wave field (Peli-
novsky and Kharif, 2000; Kharif et al., 2001; Pelinovsky et
al., 2003; Shemer et al., 2007; Shemer and Dorfman, 2008).
We also emphasize that the mechanism of dispersion focus-
ing is very popular with experimentalists, because it allows
generating a wave of huge height in a relatively short tank.
The main attention in the laboratory experiments is paid to
the description of the wave field (the displacement of wa-
ter surface and particle velocities) at the focal point, which
is essential for the subsequent assessment of the impact of
extreme waves on ships and platforms (Brown and Jensen,
2001; Contento et al., 2001; Johannesen and Swan, 2001;
Clauss, 2002; Touboul, 2006; Shemer et al., 2007; Shemer
and Dorfman, 2008; Kharif et al., 2008, 2009; Shemer and
Sergeeva, 2009).

Theoretical results for focusing wave packets in deep wa-
ter are obtained mostly in the linear theory, in the frame-
work of the so-called parabolic equation for the envelope of
the wave packet (see, for example, Clauss and Bergmann,
1986; Magnusson et al., 1999; Pelinovsky and Kharif, 2000;
Shemer et al., 2002; Pelinovsky et al., 2003; Shemer and
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Fig. 1. Evolution of the Gaussian pulse in deep water for long times.

Dorfman, 2008). The particular analytical solution of this
equation is the Gaussian packet, which demonstrates the pro-
cess of the emergence of abnormally high waves and their
disappearance. It is important to emphasize that the parabolic
equation is valid for slow varying envelope on the scale of the
carrier waves, so that the freak wave is a group of waves such
as “Three Sisters” – a term often encountered in the witness
descriptions of the phenomenon. However, it does not meet
a single rogue wave, the description which is also present in
the literature.

The aim of this work is to develop a scenario of appear-
ance and disappearance of a single freak wave in the frame
of the dispersive mechanism of focusing wave packets. Sec-
tion 2 provides a solution to the Cauchy problem for waves
in infinitely deep water, corresponding to the initial pertur-
bation in the form of a single pulse. It is the basis for the
demonstration of the occurrence of solitary freak waves in
the deterministic wave field. The process of the appearing
rogue waves in a random field of wind waves is considered
in Sect. 3. It is shown that for typical conditions, the charac-
teristic lifetime of a freak wave is about 2 min, demonstrat-
ing the difficulties in predicting this dangerous phenomenon.
Features of the script of the development of abnormal pulse
are discussed in Sect. 4. It is shown that the freak wave is
not only there for a short time, but quickly changes its shape
from a high ridge to a deep depression. The results are sum-
marized in Sect. 5.

Fig. 2. The dependence of the maximum value of the wave field
from dimensionless time (the solid line corresponds to the exact,
and the dashed line – asymptotic solution).

2 Generation of “huge” wave in a frequency-modulated
wave packet

The transformation of the wave packet into a single large-
amplitude wave in the frame of the linear theory can be con-
sidered using the Fourier-superposition of spectral compo-
nents. In practice, however, a different approach is used
(Kharif et al., 2009): Cauchy problem is solved for the initial
condition, which corresponding to the expected anomalous
wave, and then the resulting solution is inverted in the space.
As a result, possible forms of the wave packet can find the
evolution of which leads to the formation of abnormal waves
in a finite time, followed by its transformation back into the
wave packet. Let us consider a classical solution of Cauchy
problem for waves in deep water, written in the integral form

η(x,τ ) =

+∞∫
−∞

A(k)exp{i [ω(k)τ −kx]}dk, (1)

whereη(x,τ) is a displacement of the water level,A(k) is
Fourier spectrum determined by the initial disturbance, cor-
responding to the expected anomalous waveη0(x)

A(k) =
1

2π

+∞∫
−∞

η0(x)exp(ikx)dx, (2)

ω(k) is a wave frequency determined from the dispersion re-
lation of waves in deep water

ω(k) =
√

gk, (3)

whereg is gravity acceleration. Integral Eq. (1) analytically
is not calculated for ”reasonable” initial disturbances, but at
long times, its presented by a well-known expression ob-
tained by the method of stationary phase (Whitham, 1977)

η(x,τ ) ≈ Z(x,τ)cos
[
ω(x,τ )τ −k(x,τ )x +ϕ[k(x,τ )]−

π

4

]
, (4)
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Fig. 3. Evolution of the pulse at short times.

Z(x,τ)= 2

√
2π∣∣dCgr/dk

∣∣ |A(k)|
√

τ
,

Cgr(k) =
dω

dk
=

1

2

√
g

k
=

x

τ
, (5)

|A| andϕ are module and an argument of the complex spec-
trum of A(k). The last expression in Eq. (5) allows unam-
biguously to find the wave numberk(x,τ ) = gτ2/4x2, then
from Eq. (3) the wave frequencyω(x,τ) = gτ/2x. The final
asymptotic expression for the wave field takes the following
form

η(x,τ )≈ 2
√

π |A(gτ2/4x2)|

√
gτ2

x3
cos

[
gτ2

4x
+ϕ−

π

4

]
,

(6)

it describes, at each moment in time, the wave packet with
variable amplitude and length (frequency-modulated wave
train), and ahead follow longer wavelengths, which have a
great group velocity. Asymptotic solutions for waves of any
physical nature are well-known (Whitham, 1977) and, there-
fore, the details of their derivation are not discussed here.

As an expected anomalous wave it is natural to choose a
Gaussian pulse with a characteristic amplitudeA0 and half
of a lengthl

η0(x) = A0e
−

x2

l2 . (7)

Then at large distances (x>>l) it transforms into a wave
packet

η(x,τ ) ≈ A0
lτ

x

√
g

x
exp

(
−

g2l2τ4

64x4

)
cos

[
gτ2

4x
−

π

4

]
. (8)

The shape of the wave packet at different moments of the
dimensionless time (t = τ

√
g/l) is shown in Fig. 1. Over

time a train stretches in the space (proportional toτ), and
its amplitude decreases asτ−1/2, ensuring the conservation
of wave energy. The number of individual waves increases
linearly with time, the wave of maximum amplitude retaining
its length and speed of propagation.

At short times the integral Eq. (1) is calculated numeri-
cally, which allowed us to define the limits of applicability
of the asymptotic solutions. As it turned out, at values of
dimensionless time∼20–25, the maximum water displace-
ment (the amplitude of the high ridge) is well described by
the asymptotic value (Fig. 2).

It is clearly seen that in the frame of the exact solution, the
maximum of the field decreases sharply at times of∼5–10
and, consequently, the wave in the form of the hump disap-
pears for a while. The evolution of the wave shape at short
dimensionless times is shown in Fig. 3.

Initially, a positive bell-shaped pulse is transformed into
a wave of depression and further into the wave train. The
quick change of polarity of the pulse had not previously been
noted in the literature, however, as we show below, it plays
an important role in the scenarios of freak wave formation.
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illustrated on Fig. 4, where the time (s) is measured from the onset of solitary wave of large 
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also almost disappear in 1 minute, so the forecast of freak wave is indeed very difficult, and most 

importantly, moreover there is little time to prepare for its appearance in such a short time. What 

is said above is also shown by the time series of the wave field at short distances (500 m) from 

the place of an abnormally large wave (Fig. 5). 

Some presentation of the typical lifetime of the rogue-wave is given by Fig. 6, which shows the 

maximum height of the ridges and deep depressions in domain of 5 km versus time. As it can be 

seen, a significant change in the wave height occurs within about 2 minutes, and this value can 

be taken for the lifetime of the anomalous wave. We emphasize that the freak wave appears both 

in the form of a high ridge, and in form of a deep depression, and near the estimated time the 

wave changed its polarity several times. 

 

  

 

Fig. 4. Snapshots of the wave field at different times (s) 
Fig. 4. Snapshots of the wave field at different times (s).

The solution given above describes the transformation of
a solitary wave in the frequency modulated wave packet. If
the wave packet is inverted in the space, so that now the short
waves with small group velocity are ahead of the long ones,
the wave packet will be transformed into a solitary wave of
Gaussian shape. The property of inverting the solutions of
linear equations of ideal hydrodynamics is used to find opti-
mal conditions for the dispersive focusing. Nonlinearity, of
course, affects the process of focusing. In particular, in the
papers of Shemer et al. (2006, 2007) it was demonstrated that
in an unidirectional focusing process nonlinear effects are es-
sential in two important aspects. They may lead to a con-
siderable modification of the complex amplitude spectrum
in the course of evolution, affecting both absolute values of
the amplitudes of various harmonics and their phases. The
other aspect is related to the contribution of bound waves that
changes considerably the amplitudes of troughs and crests
and violates the symmetry between the two. But if the wave
amplitude is relatively weak, this effect is not fundamental;
it is just needed to make a few adjustments to the form of the
wave packet (Johannesen and Swan, 2001; Clauss, 2002).

Concluding this section, we note that in laboratory condi-
tions a single wave with a broad spectrum is generated by a
wave maker with variable frequency, changing in finite lim-
its according to the linear law (the optimal law for the gen-
eration of solitary waves through the mechanism discussed
above) (see, for example, Brown and Jensen, 2001; Shemer
et al., 2007; Shemer and Dorfman, 2008; Kharif et al., 2008).
In this case, the signal spectrum is almost rectangular, while
the wave itself (through the inverse Fourier transform) – crest
of small, oscillating tails (like sin(x)/x); it is the shape of a
focused wave observed in experiments (Kharif et al., 2008;
Shemer and Dorfman, 2008).

3 Generation of a single pulse in a random field of
wind waves

The mechanism of dispersion focusing described above must
occur in a random field of wind waves, the spectral com-
ponents of which move with different velocities. A simple
statistical analysis of a random superposition of waves with
a narrow spectrum in the linear approximation leads to the
Rayleigh distribution, so that the freak wave should appear
once every 10 h (Dysthe et al., 2008; Kharif et al., 2009).
The simulation of the wave field for such long times is rather
a difficult task, so we assume that, along with random com-
ponents, there is a deterministic frequency-modulated packet
of small amplitude, as described above. Then by the linear-
ity the random and regular components of wind wave field
do not interact with each other, so that the process of form-
ing a single pulse from a frequency-modulated packet fol-
lows the scenario described above. The random disturbance,
on average, does not change its energy and the possibility of
a big wave in it is small at relatively short times. As a result,
the initial wave field “looks” purely random, and then there
comes a high ridge, which over time is again “dissolved” in
random waves. Such processes of interference of random
and deterministic fields have already been discussed in the
literature (Kharif et al., 2009), but not for the formation of a
single wave on deep water. Nonlinearity, if it is weak, can
not prevent the dispersive focusing of a deterministic wave
packet, so it can be ignored on the first stage.

In numerical experiments the random wave field is set
by the superposition of spectral components with random
phases

η(x,τ ) =

N∑
i=1

Ai cos(ωiτ −kix +ϕi), (9)
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Fig. 5. Time series of the wave field at different distances (m) from the zone of anomalous wave 

 

Fig. 6. Maximum values of positive and negative amplitudes versus time 

 

4. The scenario of a freak wave appearance 

The calculations given above show that the freak wave exists about 2 minutes, and a detailed 

chronology during that time (the script of the process) will allow to the evolution of the freak 

wave. Fig. 7 shows the shape of the water surface at different times, calculated by the above 

formulas. At this time interval (about 2 min) an anomalous solitary wave is always visible on the 

background of random wind waves. Its shape is constantly changing from crest to trough and 

back quite quickly (within approximately 10 seconds). 

Observability of the rogue waves depends on many factors. For example, if the observer is on the 

plane, he can only see one of the images shown in Fig. 7, and to estimate the height of the 

anomalous wave from its trough to the crest. In fact, such pictures of freak-waves have been 

received from space (Kharif et al, 2009) and are not discussed here. Freak waves were originally 

described in legends, transmitted orally from sailors who having survived the horror of meeting 

with this terrible phenomenon, hurried to share their impressions with others. Naturally, most of 

the stories contained a considerable exaggeration and fictitious descriptions. Having now a 

Fig. 5. Time series of the wave field at different distances (m) from the zone of anomalous wave.

10 
 

 

 

Fig. 5. Time series of the wave field at different distances (m) from the zone of anomalous wave 

 

Fig. 6. Maximum values of positive and negative amplitudes versus time 

 

4. The scenario of a freak wave appearance 

The calculations given above show that the freak wave exists about 2 minutes, and a detailed 

chronology during that time (the script of the process) will allow to the evolution of the freak 

wave. Fig. 7 shows the shape of the water surface at different times, calculated by the above 

formulas. At this time interval (about 2 min) an anomalous solitary wave is always visible on the 

background of random wind waves. Its shape is constantly changing from crest to trough and 

back quite quickly (within approximately 10 seconds). 

Observability of the rogue waves depends on many factors. For example, if the observer is on the 

plane, he can only see one of the images shown in Fig. 7, and to estimate the height of the 

anomalous wave from its trough to the crest. In fact, such pictures of freak-waves have been 

received from space (Kharif et al, 2009) and are not discussed here. Freak waves were originally 

described in legends, transmitted orally from sailors who having survived the horror of meeting 

with this terrible phenomenon, hurried to share their impressions with others. Naturally, most of 

the stories contained a considerable exaggeration and fictitious descriptions. Having now a 

Fig. 6. Maximum values of positive and negative amplitudes versus time.

where the spectral amplitudeAi =
√

S(k)1k, 1k is a sam-
pling interval of the spectrum,ki = i1k, ωi =

√
gki , N =

156 is the total number of harmonics. Phasesϕi are evenly
distributed and set with a random number generator,S(k)

is energetic spectrum, for example, the spectrum of the
Pearson-Moskowitz or JONSWAP spectrum. In our calcula-
tions, we used a simpler Gaussian approximation of the wind
wave spectrum

S(k) = Bexp

(
−

(k−k0)
2

l2

)
, (10)

with B = 0.05 m3, l = 0.5 m−1, k0 = 0.063 m−1. In this case,
the characteristic wavelength is 100 m and a significant
height of the waveHs = 1.5 m, thus, the rms value of the
surface elevation variation asσ=Hs /4 yields to steepness
k0σ ≈ 0.025. On the other hand the maximum height of
the freak wave reachesamax= 2.7 m (see below) and, there-
fore, the steepness of the wave of maximum amplitude is
k0amax ∼0.17. This nonlinearity may probably be suffi-
ciently small to justify linear analysis if we compare the ex-
perimental results with Shemer et al. (2007) where the non-
linear effects are manifested atk0amax∼0.3.

The superposition of deterministic and random compo-
nents of the wave field at different times is illustrated in

Fig. 4, where the time (s) is measured from the onset of soli-
tary wave of large amplitude. As we see, even one minute
before, the abnormal waves are not visible and they also al-
most disappear in 1 min, so the forecast of freak wave is in-
deed very difficult and, most importantly, there is little time
to prepare for its appearance in such a short time. What is
said above is also shown by the time series of the wave field
at short distances (500 m) from the place of an abnormally
large wave (Fig. 5).

A presentation of the typical lifetime of the rogue-wave
is given in Fig. 6, which shows the maximum height of the
ridges and deep depressions in the domain of 5 km versus
time. As it can be seen, a significant change in the wave
height occurs within about 2 min, and this value can be taken
for the lifetime of the anomalous wave. We emphasize that
the freak wave appears both in the form of a high ridge and
in form of a deep depression, and near the estimated time the
wave changed its polarity several times.

4 The scenario of a freak wave appearance

The calculations given above show that the freak wave exists
about 2 min, and a detailed chronology during that time (the
script of the process) will allow for the evolution of the freak
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the form of a crest appears in approximately 1 minute prior to its approach to the ship at the 

distance about 600-700 m. If the observer is on board, who also "prescribes" water level 

fluctuations in pitching; he can see only a big crest. This crest can be seen a few times (2 - 4 

Fig. 7. Snapshots of water level for different times (s).

wave. Figure 7 shows the shape of the water surface at dif-
ferent times, calculated by the above formulas. At this time
interval (about 2 min) an anomalous solitary wave is always
visible in the background of random wind waves. Its shape
is constantly changing from crest to trough and back quite
quickly (within approximately 10 s).

Observability of the rogue waves depends on many factors.
For example, if the observer is on the plane, he can only see
one of the images shown in Fig. 7, and to estimate the height
of the anomalous wave from its trough to the crest. In fact,

such pictures of freak-waves have been received from space
(Kharif et al., 2009) and are not discussed here. Freak waves
were originally described in legends, transmitted orally from
sailors who having survived the horror of meeting with this
terrible phenomenon, hurried to share their impressions with
others. Naturally, most of the stories contained a consider-
able exaggeration and fictitious descriptions. Having now a
model of freak waves, it is possible to develop a “standard-
ized” description schematizing the reaction of sailors to this
phenomenon.
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Thus, in the case of the focusing wave packets, as shown
above, the apparent abnormal wave in the form of a crest ap-
pears in approximately 1 min prior to its approach to the ship
at the distance about 600–700 m. If the observer is on board,
who also “prescribes” water level fluctuations in pitching, he
can only see a big crest. This crest can be seen a few times
(2–4 times) for about 10 s, before it comes to the ship. In
this case, the first not the highest ridges will hardly attract
the attention of seafarers and, in fact, the freak waves will be
visible for about 30 s before meeting with the biggest wave.
And only when the wave appears just before the ship, the ob-
server can see that the wave consists of a crest and trough or
of trough/crest.

That is why phrases of the descriptions are typical: “crews
do not have time to prepare for the meeting with the dan-
ger” (Kharif et al., 2009), which greatly aggravates the con-
sequences of the meeting with the elements. The fact of the
sudden appearance of the freak waves requires from the crew
of any vessel not only professional knowledge, but also men-
tal preparation. The reaction of seafarers, of course, depends
on their experience related to stressful situations, such as dur-
ing a storm. There are specific, purely psychological factors
(the so-called sthenic or asthenic emotions, ability to antici-
pate situations in life and willingness to encounter them and
so on). According to (Rogovin and Karpova, 1985), the will-
ingness of action to external irritants is 0.5–2 s later, thus,
there is no time to be prepared for a meeting with the freak
wave. Therefore, one important task is to study the psycho-
logical characteristics of human behaviour in case of meeting
with a freak wave and the development of special techniques
and simulators for the crew of ships. In addition to purely
technical issues (stability of the ship in large waves, a spe-
cial lashing, etc.) this will prevent the severe consequences
of this type of maritime disasters.

We should point out that in our study the temporal evolu-
tion problem is considered. The relation between the tem-
poral and the spatial formulation was considered in detail in
Shemer and Dorfman (2008). While the temporal approach
is simpler and more “natural” for numerical simulations, it
can not be realized in experiments where the evolution is spa-
tial and the initial conditions are prescribed atx = 0 rather
than att = 0. It is possible that spatial formulation would be
more appropriate from the point of view of the ship’s captain
watching the approaching waves, as attempted in the present
manuscript. But in linear approximation, both approaches
lead to the same results. The study by Shemer et al. (2010)
indicated that for wider spectrum the importance of nonlin-
ear effects seems to decrease and, therefore, we may use the
temporal approach to analyse the scenario of appearance of
the single freak wave.

Let us note that here we have considered the case when the
wave of maximum amplitude is a ridge. Quite similarly, we
can investigate a freak wave in the form of a deep depression.
In the framework of linear theory, it is sufficient to change
the sign in the Eq. (7). The scenario of the appearance of a

freak wave in this case is almost not changed: waves of large
amplitude are noticeable for about a minute and they change
their polarity, appearing and disappearing at the sea surface
for a short time. However, directly at the ship it will manifest
itself in the form of a wave of deep depression and it will fail
in trough. To predict the polarity of the freak wave (crest or
trough), in the framework of this approach, is impossible if
we use only the observation of waves in previous times.

5 Conclusions

The appearance of abnormally large waves on the sea surface
is due to the different physical mechanisms. In this paper,
we discuss the dispersive focusing scenario of a single freak
wave formation. For typical conditions, it is shown that the
characteristic lifetime of the freak waves is about two min-
utes. It is noted that at this time, the wave quickly (in about
10 s) changes its shape from crest to trough and back. At
the same time, for an observer onboard a ship, when only
the high ridges are seen, the appearance of a freak wave is al-
ways unexpected, especially because about a minute before a
large wave, it appears only 2–4 times, each time for 10 s. The
probability that the ship will rise to the top of the wave (if it
is a crest), or fail in to the hole (if it has a negative polarity),
is the same, and can not be determined in advance. All these
points to the inherent difficulties in forecasting a freak wave,
even a short time before when large waves become apparent
on the sea surface.
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