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Abstract. The development and evolution of a deep low-
pressure system over the Eastern Mediterranean has been
investigated in comparative numerical experiments with a
limited area model using climatological, gridded analyses,
satellite-derived and high-resolution re-analysis sea surface
temperatures (SSTs) as lower boundary conditions. The se-
vere event of 21–22 January 2004 was selected in view of its
strength and considerable impact on the coastal communities
of the Northern Aegean Sea. The aim of this study is to in-
vestigate the sensitivity of storm development and intensity
to the different SST sources. High resolution model simu-
lations were performed resolving mesoscale features modu-
lated by the different source of SSTs. Although the atmo-
spheric response was considerable in terms of rain bands and
surface fluxes, the general structure of the system was not
significantly affected by the different air-sea interaction forc-
ing. The impact on the model performance (and therefore its
forecasting skill) was further assessed on the basis of quan-
titative verification statistics estimated throughout the period
of the simulations. The methodology was based on the verifi-
cation against surface observations from the World Meteoro-
logical Organization network, covering Southern Greece and
the coastal areas of Western Turkey. The estimated statis-
tical scores revealed small but noticeable deviations among
the forecast skills of the simulations.
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1 Introduction

A complicated matter in current meteorological research is
the explanation of explosive cyclogenesis’s tendency to oc-
cur preferably in wintertime, marine environments and in
regions of strong sea surface temperature (SST) gradients
(∼10◦C per 180 km). During the eighties, much attention
in synoptic meteorology was devoted to the special class
of extratropical cyclones that develop at an unusually rapid
rate. The first synoptic climatological study of such explo-
sively developing storm or “bomb” has been documented
by Sanders and Gyakum (1980), who define an extratropi-
cal cyclone as a bomb when the mean sea-level pressure of
its center falls by at least 1 hPa per hour for 24 h at 60◦ N.
An equivalent rate is obtained for a latitudeφ by multi-
plying this rate by the dimensionless number sinφ/sin60◦.
Sanders and Gyakum (1980) denote this threshold rate as
one bergeron. In addition to the abovementioned study, var-
ious authors have investigated the contribution of the syn-
optic environment, as well as the role of the surface fea-
tures (e.g. surface fluxes, SST databases) in the explosive cy-
clogenesis (Sanders, 1986; Gyakum and Danielson, 2000;
Strahl and Smith, 2001; Rouault et al., 2002; Martin and
Otkin, 2004; Hirose and Fukudome, 2006). According to
Sanders (1986), strong bombs reach their most rapid deep-
ening rates upon crossing regions of high SST gradients,
while, Pandolfo (1985) claims that, rapid cyclogenesis oc-
curs mainly over oceans due to the differences between ma-
rine and continental environments. Minobe at al. (2008) in
turn, investigated the Gulf Stream impacts on the troposphere
and revealed that in the marine boundary layer, atmospheric
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pressure adjustments to sharp sea surface temperature gradi-
ents lead to surface wind convergence that anchors a narrow
precipitation band along the Gulf Stream. In this rain band,
upward motions and cloud formation extend into the upper
troposphere as corroborated by the frequent occurrence of
very cold cloud-top temperatures. These mechanisms offer
a direct pathway, by which the Gulf Stream can affect the
atmosphere both locally and possibly in remote regions via
planetary wave propagation.

Recent modeling studies seem to suggest different roles
of the SST and heat flux in forcing the extratropical atmo-
sphere (Kushnir et al., 2002; Yulaeva et al., 2001; Sutton
and Mathieu, 2002; Liu and Wu, 2004). Arguing along
these lines, Yamamoto and Hirose (2007) as well as Kath-
leen and Capehart (2008) have demonstrated that model sim-
ulations are sensitive to the SST input data. Namely, SSTs
can significantly affect a given forecast based on its spa-
tial and temporal resolution and its original source (e.g. ob-
served, model derived or based on climatology). Rouault et
al. (2003) examined the ability of operational models from
the National Centers for Environmental Prediction (NCEP)
and the European Centre for Medium Range Weather Fore-
casts (ECMWF) to adequately resolve the air-sea heat fluxes
in the Agulhas Current region (South Africa). They sug-
gested that high resolution is needed, due to the tight gradi-
ents in SST between the Agulhas Current core and ambient
waters. In the Mediterranean basin, Lebeaupin et al. (2009)
investigated the mesoscale ocean response and its sensitivity
to the time resolution of the atmospheric forcing. They con-
cluded that the Mediterranean is a region propitious to severe
weather conditions including intense air – sea exchanges,
such as strong local winds and intense cyclogenesis.

The occurrence of a meteorological bomb in the Mediter-
ranean Sea is not a rare phenomenon. A review of this kind
of cyclones in the Mediterranean basin has been provided by
Conte et al. (2002). Their statistical analysis indicates that
most of these events occur in the central Mediterranean with
a secondary maximum appearing over the Aegean Sea. Ca-
paldo et al. (1980), as well as Karacostas and Flocas (1983),
having investigated the dynamic processes involved in bomb
development in the Mediterranean Sea, put forward two fun-
damental types. In the first type, the bomb develops from
an interaction between a baroclinic, open long wave and an
unstable short wave. The resulting cyclonic vorticity, the
upper air temperature advection and the sensible and latent
heat exchange support the rapid and intense deepening of
the system. In the second type, the bomb originates from
the interaction between a synoptic mid-latitude depression,
deeply penetrated into the Mediterranean, and a sub-synoptic
depression of African origin. Often, the interaction can be
an effective intrusion of an African depression into a larger
scale low-pressure area drawn from middle latitudes. In this
process the low-level jet-stream and the intense baroclinicity
assume highly important roles, related to the strong thermal
contrast between the two systems of quite different origins.

Based on these studies Conte et al. (2002) pointed out the
relevant importance of the Mediterranean SSTs in both types
of development and concluded that the bomb is essentially
a meteo-marine phenomenon. Lagouvardos et al. (1999) in-
vestigated the importance of the surface fluxes in the devel-
opment of a sub-synoptic vortex with the characteristics of a
tropical storm in the Mediterranean. The numerical experi-
ments showed that the triggering mechanism for the vortex
genesis was the synergy of the low level baroclinicity and
the existence of a mid-tropospheric cut-off low while dur-
ing the mature stage of the vortex, latent-heat release within
the convective motions was the dominant mechanism which
sustained the vortex until its landfall. Pastor et al. (2001)
studied 32 torrential rains near the Spanish Mediterranean
Coast. Their analysis based on the National Oceanic and
Atmospheric Administration (NOAA) satellite images and
the trajectories of the surface air masses indicated that the
Mediterranean SST along the rain paths drops by 3–5◦C with
respect to prior values. The reduction in the observed SST
following the event has mainly been the result of vigorous
evaporative cooling along the back door front. For Millán et
al. (1995), thereby, the warmer areas of the Mediterranean
acted as a source of moisture for the torrential episodes. The
authors considered that sea water temperature is one of the
key factors in determining the onset of the torrential precip-
itations, both in their genesis and, once they have started, in
the amount of rain fallen.

In the present study, comparative numerical simulations
of a deep Mediterranean storm in marine environment have
been performed with a non-hydrostatic atmospheric model.
Climatological, gridded analyses, satellite-derived and high-
resolution re-analysis SSTs were applied as lower boundary
conditions. Furthermore, an additional experiment has been
conducted in order to assess the sensitivity of the system on
an extreme and non-realistic surface forcing. This study in
fact aims at determining the sensitivity of precipitation and
storm intensity to various realistic and non-realistic SST pat-
terns. The incident of 21–22 January 2004 was thereby se-
lected as a case study, due to its intensity and significant ef-
fects upon the coastal areas of Northern Aegean Sea and the
Eastern Mediterranean in general. According to the MEDEX
database (MEDiteranean Experiment), this event has been
classified as one of the three deepest cyclones affecting the
Mediterranean over the last 40 years and has been character-
ized as a meteorological bomb (Lagouvardos et al., 2007).
The variable effect of lower boundary conditions on the
model performance is further examined via quantitative ver-
ification statistics based on simulated meteorological fields
and surface observations from the World Meteorological Or-
ganization (WMO) network.
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Fig. 1. (a)Mean sea level pressure (MSLP) in hPa at 12:00 UTC, 21 January 2004,(b) geopotential height (solid lines) at 500 hPa with ab-
solute vorticity (colour shaded; only values greater than 5.0×10−5 s−1 are shown) at 12:00 UTC, 21 January 2004,(c) MSLP at 00:00 UTC,
22 January 2004,(d) geopotential height at 500 hPa with absolute vorticity at 00:00 UTC, 22 January 2004,(e) MSLP at 12:00 UTC, 22
January 2004, and(f) geopotential height at 500 hPa with absolute vorticity at 12:00 UTC, 22 January 2004. The entire fields are based on
ECMWF analyses

.

2 Description of the synoptic conditions

The investigation of the prevailing synoptic conditions dur-
ing storm formation and evolution is based on the anal-
ysis fields of the ECMWF at a horizontal resolution of
0.50◦×0.50◦ and a temporal increment of 6 h. According
to the ECMWF analysis, surface cyclogenesis began at about
12:00 UTC on 21 January 2004 in the Gulf of Sidra with cen-
tral mean sea level pressure of 998.9 hPa (Fig. 1a). The pre-

cursor of the surface cyclone was a cut-off low located over
Libya (Fig. 1b). Figure 1b further indicates the areas where
the absolute vorticity exceeds the threshold of 5.0× 10−5 s−1

at 500 hPa. The fact that the maximum absolute vorticity at
500 hPa (∼30.0× 10−5 s−1) at the time was located west of
the surface cyclone, strongly indicates the rapid baroclinic
development. According to the literature (Sanders, 1986),
high absolute vorticity maximum at 500 hPa which exists up-
stream, and prior to the surface cyclone, interacts with the
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Fig. 2. The integration domain and the resolved topography (m) for
the entire experiments referred in this study.

storm (in the most of the cases) at the time when the ex-
plosive development is triggered. In addition MacDonald
and Reiter (1988) report that during the explosive phase, a
500 hPa vorticity maximum is located about 500 km west of
the surface position of the storm center.

The system deepened further at a rate of 13.2 hPa during
a 12 h period (from 12:00 UTC, 21 January to 00:00 UTC,
22 January) and moved over the southern part of the Greek
Peninsula. Its central mean sea level pressure reached a value
of about 985.7 hPa (Fig. 1c). At that time, a 500 hPa two-
trough system prevailed over the Ionian Sea and Sidra Gulf
and was associated with an absolute vorticity maximum of
40× 10−5 s−1 over Northeastern Lybia (Fig. 1d). At the up-
per troposphere, an intense 300 hPa jet of 90 m s−1 was iden-
tified over the southern edge of the trough (not shown).

By 12:00 UTC on 22 January, the system was located over
the Eastern Aegean Sea and the coastline of western Turkey
(Fig. 1e) and had deepened to about 976.4 hPa. This value
is close to the minimum mean sea-level pressure of 977 hPa
that was reported at the time by the nearby station of Samos
Island (Lagouvardos et al., 2007). Considering that the cy-
clone moved at a mean latitude of about 36◦ N, the deepening
of its central pressure by 22.5 hPa during the last 24 h corre-
sponds to 1.42 bergerons. Therefore, this cyclone fulfils the
criterion of Sanders and Gyakum (1980) and is upgraded to
a bomb. In the middle troposphere the two troughs merged
in one with the maximum absolute vorticity exceeding the
40× 10−5 s−1 over Cyprus (Fig. 1f).

3 Model characteristics and simulations design

3.1 Features of the model

The sensitivity of storm development and evolution to differ-
ent lower boundary conditions has been investigated through
the application of the Weather Research and Forecasting lim-
ited area model with the embedded dynamical core of Non-

hydrostatic Mesoscale Model (WRF-NMM). The numerical
simulations were performed on a single 305× 273 domain
with 0.09◦×0.09◦ (almost 12 km) grid spacing and 38 verti-
cal levels asymmetrically stretched up to 50 mb. The domain
structure, which follows the Arakawa E-staggered grid, was
centered at 39.50◦ N and 14.95◦ E (Fig. 2).

The model physics were based on the Ferrier microphys-
ical scheme (Ferrier et al., 2002) for the grid scale cloud
formation and precipitation. The latter predicts changes in
water vapor and condensate in the forms of cloud water, rain,
cloud ice, and precipitation ice. For the sub-grid scale effects
of convective and/or shallow clouds, the Betts-Miller-Janjic
cumulus scheme has been employed (Janjic et al., 2001; Jan-
jic, 2003). The surface layer physics has been parameter-
ized with the Monin-Obukhov-Janjic scheme (Janjic, 1996,
2002). The surface layer scheme estimates friction velocities
and exchange coefficients that enable the calculation of sur-
face heat and moisture fluxes by the land-surface model and
surface stress in the planetary boundary layer scheme. The
land-surface model is the unified NOAH (Chen and Dud-
hia, 2001). This is a 4-layer soil temperature and moisture
model with canopy moisture and snow cover prediction. It
includes root zone, evapotranspiration, soil drainage, and
runoff, taking into account vegetation categories, monthly
vegetation fraction and soil texture. The scheme provides
sensible and latent heat fluxes to the boundary-layer scheme.
It additionally predicts soil ice and fractional snow cover ef-
fects, has an improved urban treatment and considers surface
emissivity properties. The parameterization of turbulence
in the planetary boundary layer and in the free atmosphere
follows the Mellor-Yamada-Janjic Level 2.5 turbulence clo-
sure scheme (Mellor and Yamada, 1982, Janjic, 1996). The
GFDL scheme is implemented for the estimation of both
longwave and shortwave radiation fluxes. It follows the sim-
plified exchange method of Schwarzkopf and Fels (1991),
with calculation over spectral bands associated with carbon
dioxide, water vapor, and ozone.

3.2 Features of the numerical experiments

In an effort to examine the synoptic and mesoscale atmo-
spheric response to different SST sources, five experiments
were carried out. The simulation period extended from 21
January 2004 at 00:00 UTC (that is, 12 h before the formation
of the cyclone and 36 h before the bomb reached its minimum
sea-level pressure) to 23 January at 00:00 UTC. The entire
set of simulations was based on identical atmospheric initial
and lateral boundary conditions produced by ECMWF opera-
tional analyses. Analysis fields by the ECMWF at a 0.50◦

×

0.50◦ (about 45× 56 km) horizontal grid increment and 11
isobaric levels in the vertical were also used for the defini-
tion of the model initial and boundary conditions. The time
increment of ECMWF analyses was set on a 6 h basis on the
main synoptic hours (00:00, 06:00, 12:00 and 18:00 UTC).
The first experiment, considered as the control simulation,

Nat. Hazards Earth Syst. Sci., 11, 1233–1246, 2011 www.nat-hazards-earth-syst-sci.net/11/1233/2011/



P. Katsafados et al.: Numerical simulation of a deep Mediterranean storm 1237

Fig. 3. Horizontal distribution of the sea surface temperature (◦K) of 21 January 2004 at 00:00 UTC based on(a) ECMWF analysis,(b)
AVHRR infrared satellite data,(c) NOAA 30-yr monthly climatology and(d) optimally interpolated GOS reanalysis.

Table 1. The experiments and the characteristics of the sea surface temperature data.

Experiment Sea surface temperature source Horizontal Temporal
resolution increment
(deg-km)

1. ECMWF-SST ECMWF operational analysis SST 0.50◦
×0.50◦ Daily average

(∼ 46×56 km)
2. AVHRR-SST AVHRR infrared satellite SST 0.25◦

×0.25◦ Daily average
(∼ 23×28 km)

3. ClimOI-SST NOAA Optimum Interpolation SST V2 1.0◦
×1.0◦ Monthly average

(∼ 91×111 km)
4. GOS-SST Optimally interpolated re-analysis SST 0.0625◦

×0.0625◦ Daily average
(∼ 5.7×6.9 km)

5. ART-SST Artificially constructed SST based on 0.50◦
×0.50◦ Daily average

ECMWF operational analysis uniformly (∼ 46×56 km)
increased by 3◦K

consisted of ECMWF analysis SST data on 0.50◦
× 0.50◦

horizontal resolution and henceforth, it will be referenced
as ECMWF-SST. Figure 3a depicts the spatial distribution
of ECMWF-SST at the time of model initialization and due
to the coarse horizontal resolution, only large scale Mediter-
ranean circulations were resolved. The second experiment

was based on the Advanced Very High Resolution Radiome-
ter infrared satellite SST data (hereafter AVHRR-SST) on
0.25◦ × 0.25◦ horizontal grid increment with temporal res-
olution of one day. AVHRR SST is a daily average prod-
uct that is bias adjusted using a spatially smoothed 7-day
in situ SST average (Reynolds et al., 2007). Due to the
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Table 2. The central mean sea level pressure (hPa) and the deepening rate (Bergeron) of the system in the five numerical simulations
(ECMWF-SST, AVHRR-SST, CLIM-SST, GOS-SST and ART-SST) from 12:00 UTC on 21 January to 12:00 UTC on 22 January 2004. The
last row of the table presents the central mean sea level pressure (hPa) and the deepening rate (Bergeron) of the system based on the ECMWF
analysis.

Experiment
21 January 2004 22 January 2004 Deepening

Rate
12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00

1.ECMWF-SST 996.1 996.8 995.8 991.2 987.0 983.4 979.6 975.4 974.1 1.43
2. AVHRR-SST 996.2 996.8 995.6 991.0 986.9 983.5 979.7 975.8 974.6 1.40
3. CLIM-SST 996.1 996.8 995.7 991.2 987.1 983.8 980.0 975.9 974.7 1.39
4. GOS-SST 996.1 996.8 995.7 991.1 986.9 983.3 979.2 975.7 974.4 1.41
5. ART-SST 996.1 996.4 995.2 990.4 986.2 982.8 978.1 974.0 973.6 1.43

ECMWF 998.9 – 993.2 – 985.7 – 982.1 – 976.4 1.42
analysis

finer horizontal resolution, higher frequencies of the Mediter-
ranean circulations were adequately resolved revealing sig-
nificant temperature gradients over the Ionian and Libyan
Seas (Fig. 3b). 30-yr monthly climatology (1971–2000) de-
rived from the National Oceanic and Atmospheric Admin-
istration (NOAA) Optimum Interpolation SST V2 product
(Reynolds et al., 2002) on the coarser 1◦

×1◦ horizontal res-
olution (Fig. 3c) was applied in the framework of the third
experiment (hereafter ClimOI-SST). The fourth experiment
was based on the optimally interpolated re-analysis SST data
provided by the Gruppo di Oceanographia da Satellite (GOS)
in the framework of the MFSTEP project (hereafter GOS-
SST). The data has a temporal increment of one day and
covers the Eastern Atlantic and the Mediterranean area on a
very high horizontal resolution of 0.0625◦

×0.0625◦ (about
6× 7 km). For the production of the GOS-SST, a complete
re-analysis and interpolation on the MFSTEP OGCM (Ocean
General Circulation Model) grid of the AVHRR SST mea-
surements from 1985 to 2005 was performed (Marullo et
al., 2007). In the GOS-SST, mesoscale patterns of Mediter-
ranean circulations were resolved exhibiting meridional gra-
dients of almost 0.6◦K/deg over the Ionian and Libyan Seas.
Indeed, a narrow strip of prominent temperature gradient
was located over the Southern Ionian Sea and according to
Sanders (1986), it is a favourable marine environment for
rapid storm development, since meteorological bombs are
assumed baroclinic disturbances forced by a deep convective
flux of latent and sensible heat received from the sea surface
(Fig. 3d).

An additional experiment was conducted to assess the sen-
sitivity of the system to an extreme and non-realistic sur-
face forcing. Thus, a perturbed SST was developed us-
ing as a background field the ECMWF analysis SST uni-
formly increased by +3◦K for the entire computational do-
main. The artificially constructed SST (hereafter ART-SST)
was applied as a lower boundary condition on 0.50◦

×0.50◦

horizontal resolution and the initial and lateral boundary con-
ditions of the experiment were based on ECMWF operational
analyses.

The SST sources and their characteristics for the five ex-
periments of this study are described in Table 1 and compar-
ative plots of the ECMWF SST deviations from the AVHRR,
ClimOI and GOS SSTs are presented in Fig. 4. The compar-
ison between the ECMWF and AVHRR SSTs revealed lo-
cally noticeable differences over the Eastern Mediterranean
(Fig. 4a). Indeed, a maximum temperature deviation of
+1.5◦K of the warmest ECMWF SST was evident over the
Southern Mediterranean Sea from the Gulf of Sidra to the
southern coastline of Crete, while the largest differences
(up to about +2.0◦K) appeared locally over the Aegean Sea
between Peloponnesus (southern Greek mainland) and the
northern coastline of Crete. Local maxima were also evident
at the central Aegean Sea, as well as close to the northwest-
ern coastline of Cyprus. Temperature deviations of ECMWF
analyses from ClimOI SST were even smaller (Fig. 4b) with
most of the values ranging between−0.5◦K and +0.5◦K.
Positive differences showed a warm bias of the ECMWF SST
with local maxima (up to +1.5◦K) to be located around the
Greek Peninsula and especially over the eastern Aegean Sea.
The comparison between the ECMWF and the high resolu-
tion GOS SSTs revealed an extended area of negative differ-
ences up to−1.5◦K, locally appearing over the Ionian and
Libyan Seas (Fig. 4c). Finally, the most prominent spatially
distributed differences appeared between the AVHRR and
GOS SSTs. Indeed, the systematically warmer GOS SST
compared to the AVHRR SST revealed greater and more
widespread temperature differences (locally exceeding the
−2.0◦K) over the entire eastern Mediterranean Sea (Fig. 4d).
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Fig. 4. Maps of the difference (in◦K) between the(a) ECMWF
and the AVHRR SSTs,(b) ECMWF and the ClimOI SSTs,(c)
ECMWF and the GOS SSTs, and(d) AVHRR and the GOS SSTs
valid at 00:00 UTC, 21 January 2004. Positive values indicate areas
of warmer SSTs in the former dataset.

Fig. 5. Simulated storm tracks of the experiments(a) ECMWF-
SST, AVHRR-SST, ClimOI-SST and GOS-SST, and(b) ECMWF-
SST and ART-SST valid from 18:00 UTC 21 January 2004 to 12:00
UTC 22 January 2004 with 3-h time increment (7 time spots). The
labels indicate the central mean sea level pressure (hPa) of the sys-
tem and the values in the parentheses denote the relevant time spots.

www.nat-hazards-earth-syst-sci.net/11/1233/2011/ Nat. Hazards Earth Syst. Sci., 11, 1233–1246, 2011
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Fig. 6. Maps of difference of the 12-h accumulated precipitation (mm) over Greece between the experiments:(a) ECMWF-SST and AVHRR-
SST,(b) AVHRR-SST and ClimOI-SST,(c) AVHRR-SST and GOS-SST and(d) ECMWF-SST and ART-SST for the period 18:00 UTC, 21
January 2004 to 06:00 UTC, 22 January 2004. Values in the range±2 mm are masked white.

4 Analysis of the numerical experiments

As it is shown in Table 2, the sensitivity of storm develop-
ment in the five experiments gets initially expressed in terms
of storm central mean sea-level pressure (SCP). Based on the
model output, the SCP has been estimated on a three hour ba-
sis starting from 21 January 2004 at 12:00 UTC till 22 Jan-
uary 2004 at 12:00 UTC. This period was chosen because
it appropriately describes the explosive cyclogenesis of the
system and its passage over the Aegean Sea.

Comparing the ECMWF analysis data on 22 January 2004
at 00:00 UTC to the first four simulations, the latter showed
higher SCP values ranging from 986.9 to 987.1 hPa instead
of 985.7 hPa (Table 2). Twelve hours later, when the sys-
tem reached its minimum SCP, the conventional meteorolog-
ical station located at Samos Island (Eastern Aegean Sea)
recorded a mean sea level pressure of 977 hPa, while the

model-generated SCPs for the grid point nearest to Samos
ranged from 974.1 to 974.7 hPa. At that time, the fifth ex-
periment based on the artificially constructed SST (ART-
SST) simulated a slightly deeper system with SCP equal to
973.6 hPa. Furthermore, the deepening rates in the four ex-
periments ranged from 1.39 to 1.43 bergerons, a value most
close to that of 1.42 appearing in the ECMWF analyses. The
ART-SST simulation produced a similar deepening rate with
1.43 bergerons. Such basic evaluation shows that the model
was able to resolve the main synoptic evolution of the bomb,
represented by the SCP that characterizes this kind of rapidly
developing system. However, a more detailed and compre-
hensive evaluation follows in the next section.

The simulated storm tracks were extracted on the basis of
3-hourly SCP values, from 21 January 2004 at 18:00 UTC
to 22 January 2004 at 12:00 UTC (7 time spots). In Fig. 5a
the colored lines illustrate how the four realistic experiments
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Fig. 7. Maps of the difference of the surface latent heat
flux (W m−2) between(a) ECMWF-SST and AVHRR-SST,(b)
AVHRR-SST and GOS-SST and(c) ECMWF-SST and ART-SST
simulations, valid at 03:00 UTC on 22 January 2004. Values in the
range±50 W m−2 are masked white. The contour lines denote the
mean sea level pressure (hPa) in the control (ECMWF-SST) exper-
iment.

simulated the track of the storm. More specifically, the blue
solid line corresponds to the storm track simulated in the
AVHRR-SST experiment, the red solid line corresponds to
the ECMWF-SST track, the green dashed line denotes the
ClimOI-SST track and the black dot-dashed line corresponds
to the GOS-SST track. The blue, green, red and black la-
bels refer to the SCP values as they were extracted from
the AVHRR-SST, ClimOI-SST, ECMWF-SST and GOS-
SST experiments respectively. As it is shown, storm tracks
and SCPs simulated by the ECMWF-SST and ClimOI-SST
were almost identical for the defined 3-hourly time spots,
while small but noticeable and not systematic deviations of
the track were estimated by the AVHRR-SST. The simula-
tion forced by the high resolution GOS-SST produced al-
most negligible deviations on the storm track and the SCP
compares to both the ECMWF-SST and ClimOI-SST experi-
ments. Such similarities across the four experiments indicate
that the SST data source had a limited impact on the intensity
and location of the storm.

Comparing the storm tracks and SCPs patterns simulated
by the ECMWF-SST and ART-SST experiments, one does
not fail to notice their strong similarity (Fig. 5b). The signifi-
cant perturbation of the ECMWF SST with an unrealistic and
uniform increase of +3◦K did not result in a different track
of the storm while the maximum difference of the SCPs was
just up to 1.5 hPa on 22 January at 06:00 UTC (Table 2).
These similarities have also been documented by McInnes et
al. (1992) through the investigation of cut-off lows and their
sensitivity to sea-surface temperature conditions.

Despite such a small response to the storm track and the
SCP, more detailed investigation indicated the existence of
spatiotemporal deviations in the distribution of precipitation
due to the implementation of different SST sources. The
differences in the 12-h (18:00 UTC, 21 January 2004 to
06:00 UTC, 22 January 2004) accumulated precipitation be-
tween the first four experiments are plotted in Fig. 6 and in-
dicate that the maximum precipitation amount remained al-
most insensitive to the different SSTs. Although the different
sea-surface forcing produced limited response to the transi-
tion speed of the system and the amount of precipitation, it
significantly influenced the spatial distribution of the rain-
bands. Thus, the ECMWF-SST experiment placed the main
cores of precipitation southeasterly of those simulated by the
AVHRR-SST experiment (Fig. 6a). Similarly, ClimOI-SST
exhibited a significant shift of the simulated rainbands com-
pared to those estimated by AVHRR-SST (Fig. 6b). Further-
more the GOS-SST experiment shifted the simulated precip-
itation to a southeasterly direction compared to the one sim-
ulated by AVHRR-SST (Fig. 6c).

However, the artificially constructed SSTs prominently
affected both the simulated spatiotemporal distribution of
precipitation and the local rain maxima (Fig. 6d). Compar-
ing against the ECMWF-SST experiment (control run), ART-
SST produced a more widespread spatial structure of the pre-
cipitation and moved the main cores of the rain towards a
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Fig. 8. Locations of the World Meteorological Organization
(WMO) stations used in the statistical evaluation.

southeastern direction. The displacement of the rainbands
appearing in the various experiments that utilized identical
initial and boundary conditions everywhere but on the sea-
surface, is possibly associated with the surface heat fluxes.
Furthermore, warmer SSTs induce stronger vertical momen-
tum mixing, which is responsible for mesoscale features in
the surface wind convergence field (Xie, 2004; Chelton et
al., 2004). Indeed, Fig. 7a and b show that the ECMWF-SST
and GOS-SST experiments induced stronger upward latent
heat fluxes than AVHRR-SST with differences exceeding
150 W m−2. The local maxima of the latent heat flux differ-
ences were mainly located over the cold sector of the storm
and almost collocated with the SST anomalies in Fig. 4a and
d, supplying the system with excess energy. Such results
further prove that the warmer the SSTs, the more promi-
nent the surface fluxes become. Figure 7c shows that the
perturbed SST induced stronger upward latent heat fluxes
compared to the control run, producing a significantly more
unstable marine boundary layer. The latent heat flux differ-
ences reached 300 W m−2 in extended regions of the Central-
Eastern Mediterranean. In summary, the stronger bound-
ary layer destabilization in the ART-SST experiment affected
prominently both the simulated spatiotemporal distribution
and the local maxima of precipitation, but not the SCP and
the storm track.

5 Statistical verification

The impact of the different SST forcing on model perfor-
mance has been finally evaluated using a statistically based
methodology. The aim was to provide a quantitative assess-
ment of the model response to different lower boundary forc-
ing. To this end, observational data from 10 conventional sta-
tions in the vicinity of the storm track (Fig. 8) were used to

verify and compare categorical model forecasts for both con-
tinuous (mean sea level pressure and wind speed at 10 m)
and discrete (precipitation) variables. The evaluation was
carried out between 21 January at 12:00 UTC and 22 Jan-
uary at 18:00 UTC (that is during the intensification phase)
and was based on point-to-point comparison between model-
generated variables and observations. Therefore, 110 pairs
of model estimated and observed values were extracted from
each experiment for the predefined evaluation period. For the
continuous variables, the produced scores were the standard
mean error (bias) and the root mean square error (RMSE)
(Wilks, 1995). The verification scores for the precipitation
were BIAS and RMSE as well, and were derived using the
contingency table approach (Papadopoulos and Katsafados,
2009).

Mean sea level pressure bias time-plots indicated that the
bias values of both ECMWF-SST and ClimOI-SST were al-
most similar throughout the evaluation period and in general,
they were smaller that the mean errors of the AVHRR-SST
and GOS-SST simulations (Fig. 9a). Furthermore, RMSE
properties revealed an increasing trend over time which has
been more prominent in the AVHRR-SST and GOS-SST ex-
periments (Fig. 9b). The ECMWF-SST and ClimOI-SST
produced lower errors than the other two experiments in the
second half of the simulation period when the system reached
maximum intensity. In contrast to the mean sea level pres-
sure, all four simulations overestimated the wind speed at
10 m with a bias peak of 4.5 m s−1 on January 22 at 06:00
UTC (Fig. 9c), which is associated with increased RMSE
scores up to 5.5 m s−1 (Fig. 9d). The increased bias and
RMSE scores of the wind speed are related to the misplace-
ment of the system, especially at the time of entering in the
Aegean Sea which is possibly attributed to the poor repre-
sentation of the complex terrain and the existence of small
islands there. However, the GOS-SST experiment showed
overall improved scores at a range of 10–15% than those
estimated by the rest simulations during the entire period
of evaluation. Figure 9e illustrates that small precipitation
thresholds (0.5–6 mm) in all four experiments were slightly
overestimated whthe GOS-SST showed reduced overestima-
tion of the lower precipitation thresholds and the ECMWF-
SST produced the lowest underestimation in the range of
thresholds exceeding 6.0 mm. However the RMSE values
were almost similar for all thresholds across the four experi-
ments (Fig. 9f).

The above scores revealed that the different SST sources
produced noticeable effects on the model’s performance. In-
deed, the ECMWF-SST experiment slightly outperformed
the simulation forced by a higher horizontal resolution SST,
namely the AVHRR-SST. This can mainly be attributed to
the balanced fields supported by the ECMWF, as they were
produced from advanced data assimilation schemes enriched
with satellite retrievals and a number of sea surface obser-
vational data (e.g. buoys, drifters etc). In addition, the very
high resolution GOS SST was able, owing to the adequate
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Fig. 9. Time plots of the bias scores (a, c ande) and RMSE scores (b, d and f) of the mean sea level pressure (hPa), the wind speed at
10 m (m s−1) and the 6-hourly accumulated precipitation (mm) respectively across the ECMWF-SST (solid red line), AVHRR-SST (solid
blue line), ClimOI-SST (green dashed line) and GOS-SST (black dot-dashed line) experiments for the period 12:00 UTC, 21 January 2004
to 18:00 UTC, 22 January 2004.

representation of the mesoscale oceanic features, to produce
a rather moderate improvement on the wind speed and the
precipitation skill scores. However the results of the statisti-
cal evaluation for this specific case can not characterize the
quality of the applied high-resolution SSTs in general since
their impact on the forecasting and hindcasting skill of the
numerical models has been well documented in the literature
(e.g. Castellari et al., 2000; Natale et al., 2006).

6 Concluding remarks and discussion

The sensitivity of a storm development in marine environ-
ment and its intensity to different SST forcing has been ana-
lyzed through comparative numerical simulations. The case
of an explosively developing storm over the Eastern Mediter-
ranean on 21–22 January 2004 was selected in view of its
intensity and severe effects. The methodology consisted
of four comparative simulations based on identical atmo-
spheric initial and boundary conditions, but different SST
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forcing (ECMWF analysis, AVHRR satellite-derived, GOS
optimally interpolated re-analysis and 30-year monthly cli-
matology SST data) to be applied as lower boundary condi-
tions. Furthermore, an additional experiment was conducted
in order to assess the sensitivity of the system to an extreme
and non-realistic surface forcing (ART-SST). The artificially
constructed SST was based on the ECMWF analysis SST
uniformly increased by +3◦K for the entire computational
domain.

Despite the fact that the storm was supported with an ad-
ditional latent heat flux up to 150 W m−2, especially in the
case of the ECMWF-SST simulation, all four realistic nu-
merical experiments revealed a rather insensitive system to
sea surface conditions and processes. Thus, the impact of
the four different SST fields was to produce different storm
central mean sea level pressures (SCPs) by values ranging
between 0.1 and 0.8 hPa. Turning to the spatial organization
of the system, the simulated storm paths remained almost
unchanged among the four experiments. In addition ART-
SST simulation induced stronger upward latent heat fluxes,
with differences locally exceeding by 300 W m−2 the ones of
ECMWF-SST, and its impact was to deepen the SCP up to
1.5 hPa.

The abovementioned similarities indicate that surface
fluxes did not play a primary role in the development of
the meteorological bomb (in agreement with Lagouvardos
et al., 2007) and that they had a limited impact on the
intensity and the location of the storm, differentiating it
from some “tropical cyclone”-like Mediterranean storms in
which the Wind Induced Surface Heat Exchange mechanism
(e.g. Emanuel, 1986; Craig and Gray, 1996) assumes a pri-
mary role (Pytharoulis et al., 2000). The system was mainly
controlled by the upper air atmospheric conditions, because
its rapid development was mainly associated with a two-
trough system which, under the influence of a very intense
upper-level jet, was merged into one. However, the existence
of spatiotemporal deviations on the distribution of precipita-
tion could be characterized as the most significant response
to the different sea-surface forcing. The displacement of the
rainbands appearing in the various experiments can possi-
bly be associated with the simulated surface heat fluxes that
induce stronger vertical momentum mixing responsible for
mesoscale features in the surface wind convergence field.

The model’s performance and its response to the different
lower boundary forcing, has been also statistically assessed.
This assessment was carried out using surface data from con-
ventional weather observing stations across the track of the
storm. According to the statistical scores, a systematic over-
estimation of the mean sea-level pressure and the wind speed
at 10 m, as well as an underestimation of high precipitation
rates (>8 mm/6 h), characterized all experiments. In partic-
ular, the GOS-SST experiment showed an overall improve-
ment of the wind speed estimation at a range of 10–15% dur-
ing the entire period of evaluation. However, the ECMWF-
SST and ClimOI-SST simulations exhibited almost similar

accuracy and slightly better skill scores than the AVHRR-
SST experiment. The results obtained reveal the possible
limitations of the imposed satellite-derived and on a higher
horizontal resolution AVHRR SST. The ECMWF SST was
able to reproduce the model’s lower boundary forcing in a
more efficient manner by assimilating a number of in-situ
sea surface observational data. The simulation forced by the
high resolution GOS SST outperformed the AVHRR-SST in
most cases, showing reduced overestimation in the lower pre-
cipitation thresholds (up to 6 mm). Although the abovemen-
tioned diagnoses indicate a rather weak role of SSTs in the
intensity and the characteristics of this deep Mediterranean
storm, additional simulations with advanced nudging meth-
ods covering more case studies and under various synoptic
conditions are in the authors’ near future plans.
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